Loss of Heterozygosity Associated with Uniparental Disomy in Breast Carcinoma Sabita K

Total Page:16

File Type:pdf, Size:1020Kb

Loss of Heterozygosity Associated with Uniparental Disomy in Breast Carcinoma Sabita K Loss of Heterozygosity Associated with Uniparental Disomy in Breast Carcinoma Sabita K. Murthy, Ph.D., Lisa M. DiFrancesco, M.D., R. Travis Ogilvie, M.D., Douglas J. Demetrick, Ph.D., M.D. Departments of Pathology and Laboratory Medicine (SKM, LMD, RTO, DJD), Oncology (LMD, RTO, DJD), and Biochemistry and Molecular Biology (DJD), The University of Calgary; and Calgary Laboratory Services (LMD, RTO, DJD), Calgary, Alberta, Canada presence of both copies of the tumor suppressor Loss of heterozygosity is commonly assumed to be gene in the cases with loss of heterozygosity of span- due to deletion of the appropriate genomic region ning markers and internal markers for that tumor in one chromosome within a neoplastic cell but may suppressor gene could be explained by somatic re- be due to other mechanisms such as mitotic non- combination resulting in uniparental disomy, but disjunction or somatic recombination leading to not mitotic nondisjunction or deletion. As the uniparental heterodisomy. We chose to study the mechanism for physical deletion of a chromosome genomic regions surrounding the p53 and RB1 tu- may be different from those mediating somatic re- mor suppressor genes in breast carcinoma to eval- combination, study of this phenomenon may iden- uate the different mechanisms that could mediate tify different pathways of genomic instability that loss of heterozygosity. A microsatellite analysis of may be of diagnostic or treatment significance in polymorphic markers in 50 breast cancer samples breast or other cancers, particularly in those treat- showed loss of heterozygosity for at least 1 of the 10 ments based upon DNA-altering agents. markers analyzed in 50% of the tumors studied, and an overall 8.47% of the informative loci showed loss KEY WORDS: Breast cancer, FISH, Loss of heterozy- of heterozygosity. All of the cases with loss of het- gosity, Microsatellite, Somatic recombination. erozygosity were further analyzed for gene copy Mod Pathol 2002;15(12):1241–1250 number of the tumor suppressor genes RB1 and p53 by fluorescence in situ hybridization of either tu- The cumulative activation of oncogenes and inac- mor touch preparations or microdissected tumor tivation of tumor suppressor genes causes disrup- nuclei with specific genomic probes. Surprisingly, tion of critical events in cell division and differen- all samples showed the presence of both copies of tiation, leading to neoplastic clones (1, 2). The tumor suppressor genes, including 4/50 cases show- paradigm of ordered alterations in the tumor sup- ing loss of heterozygosity of tumor suppressor gene- pressor gene is first a mutation of one allele and spanning markers. One of the 4 cases showed loss of then the loss of the other allele, thus, allelic losses heterozygosity of markers spanning a distance of 6 are regarded as hallmarks of chromosomal regions cM over the RB1 gene, with normal copy numbers harboring tumor suppressor genes (1, 3–6). Reduc- of the gene. Three other cases showed loss of het- tion to homozygosity of the tumor suppressor gene erozygosity of markers within the tumor suppressor can be detected as loss of heterozygosity of infor- gene (RBI or p53) and at least one other spanning mative polymorphic markers in the region of the marker. No cases showed a simultaneous reduction tumor suppressor gene. In conventional models of to homozygosity of markers both near the tumor tumor suppressor gene inactivation, an initial mu- suppressor gene and distal loci. We suggest that the tational event sets the stage for cancer, however, it is the second event of mutation that is thought to Copyright © 2002 by The United States and Canadian Academy of initiate the cancer (3, 4). Pathology, Inc. By comparing the constitutional and tumor ge- VOL. 15, NO. 12, P. 1241, 2002 Printed in the U.S.A. Date of acceptance: July 20, 2002. notypes, it was possible to determine whether loss The Canadian Institutes of Health Research and Calgary Laboratory Ser- vices provided salary support to DJD. This work was supported by an of heterozygosity occurred for the whole chromo- Alberta Cancer Board Pilot Project grant. some, or a part of the chromosome. As gene dele- Address reprint requests to: Douglas J. Demetrick, Ph.D., M.D., Room 302, HMRB, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2L 1X9; e-mail: tion is usually accepted to be the second hit, loss of [email protected]; fax: 403-283-8727. heterozygosity at chromosomal sites of known tu- DOI: 10.1097/01.MP.0000032535.62750.D1 mor suppressor genes is considered indicative of 1241 mutations in the remaining copy of the gene and ered by comparing normal and neoplastic alleles of loss of tumor suppressor function of the gene prod- polymorphic markers surrounding or within a gene, uct. The loss-of-heterozygosity event, however, with a quantitative evaluation of neoplastic cell may theoretically arise by several mechanisms, in- gene copy number (Fig. 1). Although deletion of a cluding deletion, mitotic nondisjunction, or so- gene may lead to a loss of heterozygosity pattern matic recombination resulting in uniparental dis- (Fig. 1: Options 2b, 2c, 3d), the presence of a normal omy (Fig. 1; 7–12). The net result of any of these gene copy number in the context of loss of het- mechanisms may be loss of the normal allele of a erozygosity is evidence for a different mechanism of tumor suppressor gene, with subsequent selection allelic loss (Fig. 1: Options 2d, 3a, 3b, 3c, 3d). Sur- of clones bearing only mutant alleles. Using the prisingly few of these evaluations have been per- typical example of a tumor suppressor gene, ge- formed. One study of breast cancer by fluorescence netic analysis of retinoblastomas showed often that in situ hybridization (FISH) with an RB1 genomic somatic recombination rather than deletion events probe identified a discordance between FISH- resulted in the phenotypic expression of the mu- observed RB1 copy number and that expected from tated tumor suppressor gene (10, 13). loss of heterozygosity analysis (17). These investi- Uniparental disomy has been occasionally docu- gators suggested that somatic recombination or du- mented in pediatric cancers associated with inher- plication of chromosome 13 containing mutant RB1 ited syndromes such as Beckwith-Wiedemann syn- could explain their findings. The authors also com- drome (14–16). In these pediatric tumors, mented, however, that their evaluation of p53 did uniparental disomy was confirmed using DNA from not yield similar findings, and these observations both parents. It is more difficult, however, to dem- were subsequently published (18). Another study of onstrate uniparental disomy by conventional strat- breast cancer examined loci within chromosome 3p egies in adult cancer types, such as breast cancer, (19). This investigation found that the dominant where parental DNA samples are usually not avail- alteration within 3p in breast cancer was a physical able. Fortunately, many of these cases will have deletion, demonstrated by concordance between normal tissue within the specimen that can be dis- loss of heterozygosity, as assessed by restriction sected free of tumor and can serve as a source of fragment length polymorphisms, and FISH copy normal patient DNA. From such specimens, indi- number. The other cases, however, showed discor- rect evidence for uniparental disomy may be gath- dance between FISH or loss of heterozygosity da- FIGURE 1. Mechanisms leading to loss of heterozygosity due to uniparental disomy. Strategies for possible recombination events leading to loss of heterozygosity and their detectable sequelae. Informative microsatellite alleles are A and B and are in the region of the tumor suppressor gene. White and grey markers distinguish specific alleles of the tumor suppressor gene. Solid black signals indicate the FISH interphase appearance with a specific tumor suppressor gene probe that cannot distinguish alleles. The asterisk (*) is a distal FISH chromosomal marker (or a centromeric probe). Note that several mechanisms can give rise to an loss of heterozygosity, but only 2b, 2c, and 3di and 3dii are associated with a copy number deletion. Cells with any of these events may be selected during clonal outgrowth. 1242 Modern Pathology ta—either with normal copy number in the pres- laser capture microdissection (Pix Cell II, Arcturus ence of loss of heterozygosity or allelic gain. The Engineering Inc.). Cases with Ͼ80% tumor cellular- authors suggest that different mechanisms of tumor ity were used without laser capture microdissection suppressor gene inactivation may be specific for for tumor specimens, and their corresponding nor- certain chromosomal locations. Another study also mal tissue margin blocks were used for normal identified discordance between FISH and loss of tissue specimens. For the cases in which laser cap- heterozygosity in specimens of Wilms’ tumor ture microdissection was performed, approximately (20)—a pediatric tumor that has been shown to 2000–5000 cells were collected on the laser capture illustrate uniparental disomy for the WT1 locus. In microdissection cap. Normal cells were collected this study, 4/18 cases showed loss of heterozygosity from the same slide on another cap or from a sep- with a normal copy number at DS16S422 by FISH. A arate normal tissue section. DNA was extracted recent, extensive study of colon carcinoma cell lines from cap samples by incubating the cells in 50 ␮Lof passaged in nude mice identified a variety of struc- laser capture microdissection DNA digestion buffer tural alterations
Recommended publications
  • Effective Population Size and Genetic Conservation Criteria for Bull Trout
    North American Journal of Fisheries Management 21:756±764, 2001 q Copyright by the American Fisheries Society 2001 Effective Population Size and Genetic Conservation Criteria for Bull Trout B. E. RIEMAN* U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 316 East Myrtle, Boise, Idaho 83702, USA F. W. A LLENDORF Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA Abstract.ÐEffective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus con¯uentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively. Although Ne strongly depends on census population size, it also depends on demographic and life history characteristics that complicate any estimates. This is an especially dif®cult problem for species like bull trout, which have overlapping generations; biologists may monitor annual population number but lack more detailed information on demographic population structure or life history. We used a generalized, age-structured simulation model to relate Ne to adult numbers under a range of life histories and other conditions characteristic of bull trout populations. Effective population size varied strongly with the effects of the demographic and environmental variation included in our simulations. Our most realistic estimates of Ne were between about 0.5 and 1.0 times the mean number of adults spawning annually. We conclude that cautious long-term management goals for bull trout populations should include an average of at least 1,000 adults spawning each year. Where local populations are too small, managers should seek to conserve a collection of interconnected populations that is at least large enough in total to meet this minimum.
    [Show full text]
  • The Tempus HRD Test a New Companion Test for Detecting Homologous Recombination Deficiency from Next-Generation Sequencing Data
    TEMPUS TECH SPOTLIGHT The Tempus HRD Test A New Companion Test for Detecting Homologous Recombination Deficiency From Next-generation Sequencing Data INTRODUCTION As part of our mission to provide precision medicine to cancer patients, Tempus Labs has recently developed a laboratory test to detect homologous recombination deficiency (HRD) from next-generation sequencing (NGS) data. Tempus HRD is a DNA-based test available as an additional assessment for patients who receive the Tempus|xT Solid Tumor + Normal Test. We offer the HRD test to ensure physicians and patients have every tool available to make informed treatment decisions without requiring additional specimens. The HRD test is designed and analytically validated to provide insights regarding patients who may be sensitive to Poly (ADP-ribose) Polymerase inhibitors (PARPi). The Emergence of PARPi Therapy in Oncology In recent years, PARPi have been established as a viable therapy for the treatment and maintenance of BRCA-mutated cancers. Besides the FDA approval of various PARPi in BRCA-mutated ovarian, breast, pancreatic, and prostate cancers,1,2 emerging evidence also suggests therapeutic benefit in bladder, endometrial, gastric, colon, lung, and other solid tumors.3-7 Furthermore, treatment with PARPi has demonstrated clinical utility beyond the setting of BRCA-mutated cancers,8-10 including a recent FDA approval for the treatment of castration-resistant metastatic prostate cancers harboring mutations in any homologous recombination (HR)-related gene.11 Another notable example is the FDA approval of niraparib for the treatment of patients with HRD-positive ovarian cancer, regardless of germline BRCA mutation status. The approval was based on results from the PRIMA trial, wherein patients who progressed within ≥6 months of their last platinum-based treatment were selected for PARPi therapy solely based on HRD status.
    [Show full text]
  • Loss of Heterozygosity at the BRCA2 Locus Detected by Multiplex
    Human Cancer Biology Loss of Heterozygosity at the BRCA2 Locus Detected by Multiplex Ligation-Dependent Probe Amplification is Common in Prostate Cancers from Men with a Germline BRCA2 Mutation Amber J. Willems,1Sarah-Jane Dawson,2 Hema Samaratunga,4 Alessandro De Luca,5 Yoland C. Antill,2 John L. Hopper,3 Heather J. Thorne1 and kConFab Investigators Abstract Purpose: Prostate cancer risk is increased for men carrying a pathogenic germline mutation in BRCA2 , and perhaps BRCA1. Our primary aim was to test for loss of heterozygosity (LOH) at the locus of the mutation in prostate cancers from men who a carry pathogenic germline mutation in BRCA1 or BRCA2 , and to assess clinical and pathologic features of these tumors. Experimental Design: From 1,243 kConFab families: (a) 215 families carried a pathogenic BRCA1 mutation, whereas 188 families carried a pathogenic BRCA2 mutation; (b)ofthe158 men diagnosed with prostate cancer (from 137 families), 8 were confirmed to carry the family- specific BRCA1 mutation, whereas 20 were confirmed to carry the family-specific BRCA2 mutation; and (c) 10 cases were eliminated from analysis because no archival material was available. The final cohort comprised 4 and 14 men with a BRCA1 and BRCA2 mutation, respec- tively. We examined LOH at the BRCA1 and BRCA2 genes using multiplex ligation-dependent probe amplification of DNA from microdissected tumor. Results: LOH at BRCA2 was observed in 10 of 14 tumors from BRCA2 mutation carriers (71%), whereas no LOHat BRCA1 was observed in four tumors from BRCA1 mutation carriers (P =0.02). Under the assumption that LOH occurs only because the cancer was caused by the germline mutation, carriers of BRCA2 mutations are at 3.5-fold (95% confidence interval, 1.8-12) increased risk of prostate cancer.
    [Show full text]
  • Prognostic Value of Loss of Heterozygosity at BRCA2 in Human Breast Carcinoma
    British Joumal of Cancer (1997) 76(11), 1416-1418 © 1997 Cancer Research Campaign Prognostic value of loss of heterozygosity at BRCA2 in human breast carcinoma I Bieche', C Nogubs2, S Rivoilan', A Khodja1, A Latill and R Lidereau1 'Laboratoire d'Oncogenetique and 2D6partement de Statistiques M6dicales, Centre Rend Huguenin, 35 rue Daily, F-92211 St-Cloud, France Summary To confirm several recent studies pointing to loss of heterozygosity (LOH) at BRCA2 as a prognostic factor in sporadic breast cancer, we examined this genetic alteration in a large series of human primary breast tumours for which long-term patient outcomes were known. LOH at BRCA2 correlated only with low oestrogen and progesterone receptor content. Univariate analysis of metastasis-free survival and overall survival (log-rank test) showed no link with BRCA2 status (P = 0.34, P = 0.29 respectively). LOH at BRCA2 does not therefore appear to be a major prognostic marker in sporadic breast cancer. Keywords: BRCA2; loss of heterozygosity; prognostic value; breast cancer Breast cancer, one of the most common life-threatening diseases in this gene in the aggressiveness of breast tumours (Bignon et al, women, occurs in hereditary and sporadic forms. The two major 1995; Beckmann et al, 1996; Kelsell et al, 1996). Recently, in a breast cancer susceptibility genes, BRCAI and BRCA2, were pilot study, LOH at BRCA2 was found to be an independent prog- recently isolated (Miki et al, 1994; Wooster et al, 1995; Couch et nostic factor (van den Berg et al, 1996). However, this study al, 1996). Both are considered to be tumour-suppressor genes and involved a heterogeneous population of 84 primary tumours from are thought to be inactivated by a 'two-hit' mechanism originally both familial (n = 45) and sporadic (n = 39) cases of breast cancer.
    [Show full text]
  • CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Surveillance for Children with Leukemia-Predisposing Conditions Christopher C
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Surveillance for Children with Leukemia-Predisposing Conditions Christopher C. Porter1, Todd E. Druley2, Ayelet Erez3, Roland P. Kuiper4, Kenan Onel5, Joshua D. Schiffman6, Kami Wolfe Schneider7, Sarah R. Scollon8, Hamish S. Scott9, Louise C. Strong10, Michael F. Walsh11, and Kim E. Nichols12 Abstract Leukemia, the most common childhood cancer, has long been patients. The panel recognized that for several conditions, recognized to occasionally run in families. The first clues about routine monitoring with complete blood counts and bone the genetic mechanisms underlying familial leukemia emerged marrow evaluations is essential to identify disease evolution in 1990 when Li-Fraumeni syndrome was linked to TP53 muta- and enable early intervention with allogeneic hematopoietic tions. Since this discovery, many other genes associated with stem cell transplantation. However, for others, less intensive hereditary predisposition to leukemia have been identified. surveillance may be considered. Because few reports describ- Although several of these disorders also predispose individuals ing the efficacy of surveillance exist, the recommendations to solid tumors, certain conditions exist in which individuals are derived by this panel are based on opinion, and local expe- specifically at increased risk to develop myelodysplastic syn- rience and will need to be revised over time. The development drome (MDS) and/or acute leukemia. The increasing identifica- of registries and clinical trials is urgently needed to enhance tion of affected individuals and families has raised questions understanding of the natural history of the leukemia-predis- around the efficacy, timing, and optimal methods of surveil- posing conditions, such that these surveillance recommenda- lance.
    [Show full text]
  • Evaluation of Loss of Heterozygosity and Microsatellite Instability in Human Pterygium: Clinical Correlations
    1324 Br J Ophthalmol 1998;82:1324–1328 Br J Ophthalmol: first published as 10.1136/bjo.82.11.1324 on 1 November 1998. Downloaded from Evaluation of loss of heterozygosity and microsatellite instability in human pterygium: clinical correlations E T Detorakis, G Sourvinos, J Tsamparlakis, D A Spandidos Abstract tions for surgery include progressive growth Aims—To evaluate the incidence of loss of towards the visual axis, irregular astigmatism, heterozygosity (LOH) and microsatellite and restriction of ocular motility while other instability (MI) in pterygia and their pos- indications are contact lens intolerance, sible correlation with clinical variables. chronic irritation, and disfigurement.2 Apart Methods—50 pterygia, blood, and con- from the tendency to grow in size, pterygia junctival specimens were obtained. A per- often recur after excision. Recurrent pterygium sonal and family history was recorded for usually grows more aggressively and requires each patient. Amplification of 15 micro- more sophisticated surgery.2 Fibroblasts from satellite markers at regions 17p, 17q, 13q, pterygia have been shown to behave as 9p, and 9q was performed using the neoplastic cells in vitro3 and random histologi- polymerase chain reaction. The electro- cal examination has revealed neoplastic phoretic pattern of DNA from pterygia features.4 Polymerase chain reaction (PCR) was compared with the respective pattern studies have revealed viral presence (herpes from blood and conjunctiva. simplex virus, cytomegalovirus, human papil- 56 Results—LOH incidence
    [Show full text]
  • Defining Genetic Diversity (Within a Population)
    Primer in Population Genetics Hierarchical Organization of Genetics Diversity Primer in Population Genetics Defining Genetic Diversity within Populations • Polymorphism – number of loci with > 1 allele • Number of alleles at a given locus • Heterozygosity at a given locus • Theta or θ = 4Neμ (for diploid genes) where Ne = effective population size μ = per generation mutation rate Defining Genetic Diversity Among Populations • Genetic diversity among populations occurs if there are differences in allele and genotype frequencies between those populations. • Can be measured using several different metrics, that are all based on allele frequencies in populations. – Fst and analogues – Genetic distance, e.g., Nei’s D – Sequence divergence Estimating Observed Genotype and Allele Frequencies •Suppose we genotyped 100 diploid individuals (n = 200 gene copies)…. Genotypes AA Aa aa Number 58 40 2 Genotype Frequency 0.58 0.40 0.02 # obs. for genotype Allele AA Aa aa Observed Allele Frequencies A 116 40 0 156/200 = 0.78 (p) a 0 40 4 44/200 = 0.22 (q) Estimating Expected Genotype Frequencies Mendelian Inheritance Mom Mom Dad Dad Aa Aa Aa Aa •Offspring inherit one chromosome and thus A A one allele independently A a and randomly from each parent AA Aa •Mom and dad both have genotype Aa, their offspring have Mom Dad Mom Dad Aa Aa three possible Aa Aa genotypes: a A a a AA Aa aa Aa aa Estimating Expected Genotype Frequencies •Much of population genetics involves manipulations of equations that have a base in either probability theory or combination theory. -Rule 1: If you account for all possible events, the probabilities sum to 1.
    [Show full text]
  • Frequent Loss of Expression and Loss of Heterozygosity of the Putative Tumor Suppressor Gene DCC in Prostatic Carcinomas1
    [CANCER RESEARCH 53. 2723-2727. June 15. 1993] Advances in Brief Frequent Loss of Expression and Loss of Heterozygosity of the Putative Tumor Suppressor Gene DCC in Prostatic Carcinomas1 Xiang Gao, Kenneth V. Honn, David Grignon, Wael Sakr, and Yong Q. Chen2 Departments of Pathology [D. C., W. S., Y. Q. C.J and Radiation Oncology ¡X.G., K. V. H., Y. Q. C.¡,Wayne State University School of Medicine, Detroit, Michigan 48201 Abstract carcinoma cells. Transfection with a normal RB gene suppressed cell tumorigenicity in nude mice (12). Isaacs et al. (13) showed that The putative tumor suppressor gene DCC has been shown to be fre prostatic carcinoma cell lines (TSUPr-1, PC-3, and DU 145) contain quently lost or expressed at low levels in coloréela!,gastric, pancreatic, mutations in the p53 gene and that transfection of the wild-type and esophageal carcinomas. In the present study, the DCC gene and its p53 gene reduces their tumorigenicity. In the present study, we have mRNA expression in human and rat prostatic carcinoma cells as well as in prostatic carcinoma tissues were examined by reverse transcriptase-poly- assessed the DCC gene in prostatic carcinoma at both mRNA expres merase chain reaction and polymerase chain reaction-loss of heterozygos- sion and LOH levels. DCC mRNA expression was measured in 4 ity. The DCC gene was present and expressed in normal prostatic cells. human and 5 rat prostatic carcinoma cell lines as well as 14 patient However, its expression was decreased or undetectable in all prostatic tissue samples. Loss of heterozygosity of the DCC gene was deter carcinoma cells from either humans (4 cell lines) or rats (5 cell lines).
    [Show full text]
  • Rates of Loss of Heterozygosity and Mitotic Recombination in NF2 Schwannomas, Sporadic Vestibular Schwannomas and Schwannomatosis Schwannomas
    Oncogene (2010) 29, 6216–6221 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc ORIGINAL ARTICLE Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas KD Hadfield1, MJ Smith1, JE Urquhart1, AJ Wallace1, NL Bowers1, AT King2, SA Rutherford2, D Trump1, WG Newman1 and DG Evans1 1Department of Genetic Medicine, St Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK and 2Department of Neurosurgery, Hope Hospital, Salford, Manchester, UK Biallelic inactivation of the NF2 gene occurs in the tosis, suggesting that susceptibility to MR varies accord- majority of schwannomas. This usually involves a ing to the disease context. combination of a point mutation or multiexon deletion, Oncogene (2010) 29, 6216–6221; doi:10.1038/onc.2010.363; in conjunction with either a second point mutation or loss published online 23 August 2010 of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel Keywords: mitotic recombination; schwannomatosis; of 239 schwannoma tumours: 97 neurofibromatosis type 2 SMARCB1; NF2; vestibular schwannoma (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 Introduction mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH Schwannomas are benign peripheral nerve sheath was by far the most common form of second hit. A tumours that occur within the context of the tumour combination of microsatellite analysis with either conven- suppressor syndromes, neurofibromatosis type 2 (NF2) tional comparative genomic hybridization (CGH) or and schwannomatosis.
    [Show full text]
  • Loss of Heterozygosity and Point Mutation at Aprt Locus in T Cells and ®Broblasts of Pms27/7 Mice
    Oncogene (2002) 21, 2840 ± 2845 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Loss of heterozygosity and point mutation at Aprt locus in T cells and ®broblasts of Pms27/7 mice Changshun Shao1, Moying Yin2, Li Deng1, Peter J Stambrook3, Thomas Doetschman2 and Jay A Tisch®eld*,1 1Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, NJ 08854-8082, USA; 2Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, OH 45267-0521, USA; 3Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio, OH 45267-0521, USA Mice null for the Pms2 mismatch repair (MMR) gene tion (Harfe and Jinks-Robertson, 2000). Third, MMR exhibit a predisposition to lymphoma, microsatellite plays a role in the regulation of apoptosis (Gong et al., repeat instability, and failure of spermatogenesis. To 1999; Toft et al., 1999; Zhang et al., 1999; Zeng et al., study the role of Pms2 in the maintenance of in vivo 2000). In the absence of MMR, apoptosis is genomic integrity in somatic cells, we characterized Aprt compromised in cells with DNA damage, and the mutations in T cells and ®broblasts of 1296C3H increased chance of survival and proliferation of those Pms27/7Aprt+/7 mice. The spontaneous frequency of cells may allow further accumulation of mutations. DAP-resistant T lymphocytes, as a consequence of Organisms and cells that are MMR-de®cient typi- APRT-de®ciency, was increased threefold. Point muta- cally exhibit an increased level of genetic instability, or tion, which accounted for less than 20% of the DAPr a mutator phenotype.
    [Show full text]
  • Targeting Loss of Heterozygosity: a Novel Paradigm for Cancer Therapy
    pharmaceuticals Review Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy Xiaonan Zhang and Tobias Sjöblom * Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future. Keywords: loss of heterozygosity; cancer therapy; drug development and cancer evolution 1. Introduction Several different somatic genetic and epigenetic processes contribute to the develop- ment of cancer, including copy number alterations, deletions, rearrangements or transloca- Citation: Zhang, X.; Sjöblom, T. tions of certain genes, somatic point mutations, and hypermethylation of promoters [1]. Targeting Loss of Heterozygosity: A Loss of heterozygosity (LOH) was originally discovered using polymorphic markers which Novel Paradigm for Cancer Therapy. were heterozygous in germline DNA but homozygous in the tumor, and is common in the Pharmaceuticals 2021, 14, 57.
    [Show full text]
  • Loss of Heterozygosity and Microsatellite Instability in HCC 469
    British Journal of Cancer (1999) 80(3/4), 468–476 © 1999 Cancer Research Campaign Article no. bjoc.1998.0380 Loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in Taiwan J-C Sheu1, Y-W Lin3, H-C Chou1, G-T Huang1, H-S Lee1, Y-H Lin1, S-Y Huang1, C-H Chen1, J-T Wang1, P-H Lee2, J-T Lin1, F-J Lu3 and D-S Chen1 Departments of 1Internal Medicine and 2Surgery,College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, Taiwan; 3Department of Biochemistry, National Taiwan University, No. 7, Chung-Shan S. Road, Taipei, Taiwan Summary Elucidation of the basic genetic changes of human hepatocellular carcinoma is important for the understanding and treatment of this cancer. We used microsatellite polymorphism markers to study 30 cases of hepatocellular carcinoma (34 tumours) on all human chromosomes. DNA from 34 pairs of hepatocellular carcinomas and corresponding non-tumour parts was prepared. Loss of heterozygosity (LOH) and microsatellite instability on 23 chromosomes were investigated by 231 sets of microsatellite markers. More than 20% LOH was shown for loci on 16q (47.1%), 13q (32.4%), 17p (32.4%), 5q (26.5%), 11p (23.5%) and 9p (20.6%). The commonly affected regions were mapped to 16q12.1, 16q12.2, 16q24, 13q12.1–32, 17p13, 5q32, 5q34, 5q3, 11p15, 11q23–24 and 9p21. Hepatitis B virus carriers had a significantly higher frequency of LOH on chromosomes 5q, 11p and 16q. Furthermore, larger tumour size tended to have higher frequency of LOH at D16S409 locus (16q12.1).
    [Show full text]