BIGMAC: Fine-Grained Policy Analysis of Android Firmware Grant Hernandez1, Dave (Jing) Tian2, Anurag Swarnim Yadav1, Byron J. Williams1, and Kevin R. B. Butler1 1Florida Institute for Cyber Security (FICS) Research, University of Florida, Gainesville, FL, USA {grant.hernandez,anuragswar.yadav,butler}@ufl.edu,
[email protected]fl.edu 2Purdue University, West Lafayette, IN, USA
[email protected] Abstract the security model of the Android middleware layer, which The Android operating system is the world’s dominant mo- mediates access decisions made by Android applications [13]. bile computing platform. To defend against malicious appli- However, underneath this middleware lies a Linux kernel and cations and external attack, Android relies upon a complex at this layer, the security model is similar to that of many other combination of discretionary and mandatory access control Linux-based systems. The access control framework includes mechanisms, including Linux capabilities, to maintain least not only a discretionary access control (DAC) mechanism privilege. To understand the impact and interaction between common to UNIX operating systems, but supports mandatory these layers, we created a framework called BIGMAC that access control (MAC) as well through Security-Enhanced An- combines and instantiates all layers of the policy together in droid (SEAndroid) [37], a customized version of SELinux. a fine grained graph supporting millions of edges. Our model Moreover, other mechanisms such as Linux capabilities are filters out paths and types not in use