Fortmp – Mex Manual
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux.. -
Solving Mixed Integer Linear and Nonlinear Problems Using the SCIP Optimization Suite
Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany TIMO BERTHOLD GERALD GAMRATH AMBROS M. GLEIXNER STEFAN HEINZ THORSTEN KOCH YUJI SHINANO Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin. ZIB-Report 12-27 (July 2012) Herausgegeben vom Konrad-Zuse-Zentrum f¨urInformationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Telefon: 030-84185-0 Telefax: 030-84185-125 e-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite∗ Timo Berthold Gerald Gamrath Ambros M. Gleixner Stefan Heinz Thorsten Koch Yuji Shinano Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, fberthold,gamrath,gleixner,heinz,koch,[email protected] July 31, 2012 Abstract This paper introduces the SCIP Optimization Suite and discusses the ca- pabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming frame- work SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, give an overview of available interfaces, and outline plans for future development. ∗A Japanese translation of this paper will be published in the Proceedings of the 24th RAMP Symposium held at Tohoku University, Miyagi, Japan, 27{28 September 2012, see http://orsj.or. -
Numericaloptimization
Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A. -
Using COIN-OR to Solve the Uncapacitated Facility Location Problem
The Uncapacitated Facility Location Problem Developing a Solver Additional Resources Using COIN-OR to Solve the Uncapacitated Facility Location Problem Ted Ralphs1 Matthew Saltzman 2 Matthew Galati 3 1COR@L Lab Department of Industrial and Systems Engineering Lehigh University 2Department of Mathematical Sciences Clemson University 3Analytical Solutions SAS Institute EURO XXI, July 4, 2006 Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem The Uncapacitated Facility Location Problem Developing a Solver Additional Resources Outline 1 The Uncapacitated Facility Location Problem UFL Formulation Cutting Planes 2 Developing a Solver The ufl Class COIN Tools Putting It All Together 3 Additional Resources Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem The Uncapacitated Facility Location Problem UFL Formulation Developing a Solver Cutting Planes Additional Resources Input Data The following are the input data needed to describe an instance of the uncapacitated facility location problem (UFL): Data a set of depots N = {1, ..., n}, a set of clients M = {1, ..., m}, the unit transportation cost cij to service client i from depot j, the fixed cost fj for using depot j Variables xij is the amount of the demand for client i satisfied from depot j yj is 1 if the depot is used, 0 otherwise Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem The Uncapacitated Facility -
Robert Fourer, David M. Gay INFORMS Annual Meeting
AMPL New Solver Support in the AMPL Modeling Language Robert Fourer, David M. Gay AMPL Optimization LLC, www.ampl.com Department of Industrial Engineering & Management Sciences, Northwestern University Sandia National Laboratories INFORMS Annual Meeting Pittsburgh, Pennsylvania, November 5-8, 2006 Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 1 AMPL What it is . A modeling language for optimization A system to support optimization modeling What I’ll cover . Brief examples, briefer history Recent developments . ¾ 64-bit versions ¾ floating license manager ¾ AMPL Studio graphical interface & Windows COM objects Solver support ¾ new KNITRO 5.1 features ¾ new CPLEX 10.1 features Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 2 Ex 1: Airline Fleet Assignment set FLEETS; set CITIES; set TIMES circular; set FLEET_LEGS within {f in FLEETS, c1 in CITIES, t1 in TIMES, c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2}; # (f,c1,t1,c2,t2) represents the availability of fleet f # to cover the leg that leaves c1 at t1 and # whose arrival time plus turnaround time at c2 is t2 param leg_cost {FLEET_LEGS} >= 0; param fleet_size {FLEETS} >= 0; Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 3 Ex 1: Derived Sets set LEGS := setof {(f,c1,t1,c2,t2) in FLEET_LEGS} (c1,t1,c2,t2); # the set of all legs that can be covered by some fleet set SERV_CITIES {f in FLEETS} := union {(f,c1,c2,t1,t2) -
Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool Danielle E
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-10-2010 Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool Danielle E. Yaple Follow this and additional works at: https://scholar.afit.edu/etd Part of the Systems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Yaple, Danielle E., "Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool" (2010). Theses and Dissertations. 2060. https://scholar.afit.edu/etd/2060 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. SIMULATION AND APPLICATION OF GPOPS FOR A TRAJECTORY OPTIMIZATION AND MISSION PLANNING TOOL THESIS Danielle E. Yaple, 2nd Lieutenant, USAF AFIT/GAE/ENY/10-M29 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/GAE/ENY/10-M29 SIMULATION AND APPLICATION OF GPOPS FOR A TRAJECTORY OPTIMIZATION AND MISSION PLANNING TOOL THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Danielle E. -
Notes 1: Introduction to Optimization Models
Notes 1: Introduction to Optimization Models IND E 599 September 29, 2010 IND E 599 Notes 1 Slide 1 Course Objectives I Survey of optimization models and formulations, with focus on modeling, not on algorithms I Include a variety of applications, such as, industrial, mechanical, civil and electrical engineering, financial optimization models, health care systems, environmental ecology, and forestry I Include many types of optimization models, such as, linear programming, integer programming, quadratic assignment problem, nonlinear convex problems and black-box models I Include many common formulations, such as, facility location, vehicle routing, job shop scheduling, flow shop scheduling, production scheduling (min make span, min max lateness), knapsack/multi-knapsack, traveling salesman, capacitated assignment problem, set covering/packing, network flow, shortest path, and max flow. IND E 599 Notes 1 Slide 2 Tentative Topics Each topic is an introduction to what could be a complete course: 1. basic linear models (LP) with sensitivity analysis 2. integer models (IP), such as the assignment problem, knapsack problem and the traveling salesman problem 3. mixed integer formulations 4. quadratic assignment problems 5. include uncertainty with chance-constraints, stochastic programming scenario-based formulations, and robust optimization 6. multi-objective formulations 7. nonlinear formulations, as often found in engineering design 8. brief introduction to constraint logic programming 9. brief introduction to dynamic programming IND E 599 Notes 1 Slide 3 Computer Software I Catalyst Tools (https://catalyst.uw.edu/) I AIMMS - optimization software (http://www.aimms.com/) Ming Fang - AIMMS software consultant IND E 599 Notes 1 Slide 4 What is Mathematical Programming? Mathematical programming refers to \programming" as a \planning" activity: as in I linear programming (LP) I integer programming (IP) I mixed integer linear programming (MILP) I non-linear programming (NLP) \Optimization" is becoming more common, e.g. -
ILOG AMPL CPLEX System Version 9.0 User's Guide
ILOG AMPL CPLEX System Version 9.0 User’s Guide Standard (Command-line) Version Including CPLEX Directives September 2003 Copyright © 1987-2003, by ILOG S.A. All rights reserved. ILOG, the ILOG design, CPLEX, and all other logos and product and service names of ILOG are registered trademarks or trademarks of ILOG in France, the U.S. and/or other countries. JavaTM and all Java-based marks are either trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Microsoft, Windows, and Windows NT are either trademarks or registered trademarks of Microsoft Corporation in the U.S. and other countries. All other brand, product and company names are trademarks or registered trademarks of their respective holders. AMPL is a registered trademark of AMPL Optimization LLC and is distributed under license by ILOG.. CPLEX is a registered trademark of ILOG.. Printed in France. CO N T E N T S Table of Contents Chapter 1 Introduction . 1 Welcome to AMPL . .1 Using this Guide. .1 Installing AMPL . .2 Requirements. .2 Unix Installation . .3 Windows Installation . .3 AMPL and Parallel CPLEX. 4 Licensing . .4 Usage Notes . .4 Installed Files . .5 Chapter 2 Using AMPL. 7 Running AMPL . .7 Using a Text Editor . .7 Running AMPL in Batch Mode . .8 Chapter 3 AMPL-Solver Interaction . 11 Choosing a Solver . .11 Specifying Solver Options . .12 Initial Variable Values and Solvers. .13 ILOG AMPL CPLEX SYSTEM 9.0 — USER’ S GUIDE v Problem and Solution Files. .13 Saving temporary files . .14 Creating Auxiliary Files . .15 Running Solvers Outside AMPL. .16 Using MPS File Format . -
Treball (1.484Mb)
Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització. -
Open Source Tools for Optimization in Python
Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints. -
Combining Simulation and Optimization for Improved Decision Support on Energy Efficiency in Industry
Linköping Studies in Science and Technology, Dissertation No. 1483 Combining simulation and optimization for improved decision support on energy efficiency in industry Nawzad Mardan Division of Energy Systems Department of Management and Engineering Linköping Institute of Technology SE-581 83, Linköping, Sweden Copyright © 2012 Nawzad Mardan ISBN 978-91-7519-757-9 ISSN 0345-7524 Printed in Sweden by LiU-Tryck, Linköping 2012 ii Abstract Industrial production systems in general are very complex and there is a need for decision support regarding management of the daily production as well as regarding investments to increase energy efficiency and to decrease environmental effects and overall costs. Simulation of industrial production as well as energy systems optimization may be used in such complex decision-making situations. The simulation tool is most powerful when used for design and analysis of complex production processes. This tool can give very detailed information about how the system operates, for example, information about the disturbances that occur in the system, such as lack of raw materials, blockages or stoppages on a production line. Furthermore, it can also be used to identify bottlenecks to indicate where work in process, material, and information are being delayed. The energy systems optimization tool can provide the company management additional information for the type of investment studied. The tool is able to obtain more basic data for decision-making and thus also additional information for the production-related investment being studied. The use of the energy systems optimization tool as investment decision support when considering strategic investments for an industry with complex interactions between different production units seems greatly needed. -
User's Guide for SNOPT Version 7: Software for Large-Scale Nonlinear
User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming∗ Philip E. GILL Department of Mathematics University of California, San Diego, La Jolla, CA 92093-0112, USA Walter MURRAY and Michael A. SAUNDERS Systems Optimization Laboratory Department of Management Science and Engineering Stanford University, Stanford, CA 94305-4026, USA June 16, 2008 Abstract SNOPT is a general-purpose system for constrained optimization. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for large-scale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. SNOPT finds solutions that are locally optimal, and ideally any nonlinear functions should be smooth and users should provide gradients. It is often more widely useful. For example, local optima are often global solutions, and discontinuities in the function gradients can often be tolerated if they are not too close to an optimum. Unknown gradients are estimated by finite differences. SNOPT uses a sequential quadratic programming (SQP) algorithm. Search di- rections are obtained from QP subproblems that minimize a quadratic model of the Lagrangian function subject to linearized constraints. An augmented Lagrangian merit function is reduced along each search direction to ensure convergence from any starting point. On large problems, SNOPT is most efficient if only some of the variables enter nonlinearly, or there are relatively few degrees of freedom at a solution (i.e., many constraints are active). SNOPT requires relatively few evaluations of the problem functions. Hence it is especially effective if the objective or constraint functions (and their gradients) are expensive to evaluate.