Influence of Stress on Extracellular Matrix and Integrin Biology

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Stress on Extracellular Matrix and Integrin Biology Oncogene (2011) 30, 2697–2706 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc REVIEW Influence of stress on extracellular matrix and integrin biology C Jean1,2,3, P Gravelle1,2,3, J-J Fournie1,2,3 and G Laurent1,2,3,4 1INSERM UMR1037-Cancer Research Center of Toulouse, Toulouse, France; 2Universite´ de Toulouse, Toulouse, France; 3CNRS ERL, Toulouse, France and 4Service d’He´matologie, CHU Purpan, Toulouse, France Dynamic interactions between cells and extracellular Keywords: stress; ECM; integrin biology; remodeling; matrix (ECM) through integrins influence most cellular cellular response functions. Normal cells, but even more, tumor cells are subjected to different forms of stress, including ischemia, radical oxygen species production, starvation, mechanical stress or genotoxic insults due to anti-cancer drugs or Introduction irradiation. In these situations, an adaptative cellular response occurs, integrating a complex network of Tissues are made of cells and a protein support, termed intracellular signaling modules, which, depending on stress extracellular matrix (ECM). ECM contains a variable intensity, may result to either damage repair followed by proportion of a large variety of matrix and non-matrix complete restitution of cellular functions, or programmed proteins. The latter consists of growth factors, inflamma- cell death. Because of its implication in oncogenesis and tory molecules, or immune soluble mediators. These anti-cancer therapy, cellular stress response has been proteins can be retained by ECM, thus acting as a thoroughly investigated. However, most of these studies reservoir for these important regulators. In this review, the have been performed in the context of isolated cells term of ECM is restricted to intrinsic matrix proteins such without taking into consideration that most cells are part as collagens (27 members), glycoproteins (fibronectin, of the tissue within which they interact with ECM through laminin, vitronectin, tenascin, thrombospondin, SPARC integrin. Few studies have described the influence of stress for secreted protein acidic and rich in cysteine), proteogly- on cell-to-ECM interaction. However, one can speculate cans (aggrecan, decorin, perlecan, syndecan and versican) that, in these conditions, cells could functionally interact and elastin. ECM composition notably influences its with protein microenvironment either to create positive mechanical properties such as compliance, which, at least interactions to survive (for example by facilitating in part, regulates integrin biology. For example, collagen, protective pathways) or negative interaction to die (for especially when polymerized, increases the stiffness of the example by facilitating detachment). In this review, matrix support, compared with fibronectin. we summarize the knowledge relative to the influence of ECM composition is regulated through synthesis and different stress modalities on ECM remodeling, integrin degradation. It is generally believed that, in tumors, the expression and/or function modifications, and possible main cellular source of ECM is resident fibroblasts, even if functional consequences, independently from the cellular virtually all types of cells may synthesize ECM proteins. model as these findings came from a large variety of Degradation is under control of many proteases among cells (mesenchymal, endothelial, muscular, epithelial and which metalloproteases (MMPs) have one of the most glandular) and fields of application (cancer, vascular important role. MMP family consists in 23 members of biology and tissue engineering). Most studies support the Zn-dependent endopeptidases with variable spectrum of general notion that non-lethal stress favors ECM stiffness, specificity, collagen and fibronectin being the main integrin activation and enhanced survival. This field opens substrates. Synthesis and degradation often appear as large perspectives not only in tumor biology but also in two coordinated processes for ECM remodeling, resulting anti-cancer therapy by targeting one or several steps of in precise mechanical properties (from stiff to soft) the integrin-mediated signaling pathway, including inte- depending on the tissue function and organization. grin ligation, or activation of integrin-linked enzymes or Cells interact physically and functionally with ECM integrin adaptors. through transmembrane proteins termed integrins, Oncogene (2011) 30, 2697–2706; doi:10.1038/onc.2011.27; which connect ECM to cell cytoskeleton (for review, published online 21 February 2011 see Desgrosellier and Cheresh, 2010). Integrin proteins are heterodimers composed of an a-chain (18 types) and a b-chain (8 types) for a total of 24 combinations. Although a-chain is involved in ligand specificity, Correspondence: Dr C Jean, CPTP, INSERM UMR1037, Pavillon b-chain binds to cytoskeleton and transduces the signal Lefebvre Bat. B, Place du Dr. Baylac, CHU PURPAN, BP 3028, from ECM to the cell (see below). Integrins can also be Toulouse 31024, France. E-mail: [email protected] classified according to ligand specificity region. Thus, Received 16 December 2010; revised and accepted 16 January 2011; GFOGER, an amino peptide sequence contained in published online 21 February 2011 most collagen fraction, reacts with a2b1 integrin. RGD, Influence of stress on ECM and integrin biology C Jean et al 2698 a consensus sequence present in fibronectin and invasiveness. The decrease in integrin function results vitronectin, binds to avb3 and a5b1. Laminin receptors in reduced adhesion and ultimately to cell detachment. and leukocytes-specific receptors bind to a6b1 and a4b1, In non-transformed cells, cell detachment results, respectively, the latter being widely expressed in hemato- in turn, in a type of programmed-cell death termed poietic cells. anoı¨kis. This has been described in normal epithelial Upon binding, integrins gather together in mem- and endothelial cells, whereas tumor cells are most brane-specific region and recruits through their intra- often resistant to anoı¨kis (for review, see Frisch and cellular domains several coupling proteins, which form Ruoslahti, 1997). Anoı¨kis may also be facilitated by the focal adhesion complex. Among these proteins, focal the loss of cell-to-cell contacts following dissociation adhesion kinase (FAK), a non-receptor tyrosine kinase, of the cadherin-catenin complexes (Fouquet et al., 2004; has a central role in transducing integrin-mediated Hofmann et al., 2007; Lugo-Martinez et al., 2009). signal through focal adhesion contact (for review, see This observation strengthens the notion that anoı¨kis Berrier and Yamada, 2007). FAK and Src, another non- activation is a more general process for preventing receptor tyrosine kinase, control the recruitment inappropriate cell detachment, and, for this reason, of adaptor proteins that behave as molecular hubs for considered as a tumor suppressor mechanism. However, transducing integrin signals. Among them, the most some cells are resistant to anoı¨kis, and thus may detach important are p130Cas (BCAR1) and NEDD9 (neural while remaining alive. Resistance to anoı¨kis can be precursor cell expressed, developmentally downregu- related to intrinsic cellular defects or external signals. lated 9). Through these proteins, integrin engagement Among the former, FAK overexpression or constitutive results in the activation of a vast spectrum of signaling activation, and ERK deregulation, may indeed con- pathways involving protein tyrosine kinase, small tribute to protection against anoı¨kis (Frisch et al., 1996; GTPase of the Rho family, as well as the activation of Howe et al., 2002). Alternatively, external signals may JNK, ERK and PI3K/Akt modules (for review, see Guo also regulate anoı¨kis. For example, it has been shown and Giancotti, 2004). Strong evidences support the that some specific laminin domains, laminin-proteogly- notion that not only FAK, but also integrin adap- can complexes or collagen IV are highly efficient to tors, have a role in cell transformation, tumor progres- block anoı¨kis (Weber et al., 2008; Salo et al., 2009; sion and chemoresistance (Cabodi et al., 2010). Munoz et al. 2010). Resistance to anoı¨kis is a pre- ECM-cell interaction acts in two ways. From ECM to requisite for epithelial-mesenchymal transition, and the cell, in so far as it has been shown that integrin- acquisition of invasion capacity. mediated signal is strongly influenced by spatial Normal cells, but even more, tumor cells are subjected organization (2D versus 3D) and mechanical properties to different forms of stress, including radical oxygen (stiff versus soft) of ECM support. In this context, species production, ischemia, starvation, mechanical integrins act as sensors of mechanical constraints stress, genotoxic insults or irradiation. It has recently generated by the microenvironment and which convey emerged that cellular stress may affect ECM remodeling these informations to the cell. This ‘outside-in’ signaling and integrin biology, and subsequently may deregulate may influence through FAK and other key regulators, virtually all the processes described above. The influence important cellular functions such as proliferation, of the redox balance on ECM-cell interaction has been survival or motility. From the cell to ECM, in so far recently reviewed (Chiarugi, 2008). We review below the as it has been also shown that forces exerted on influence of other forms of stress on ECM composition, the cytoskeleton regulate, in turn, integrin-binding integrin
Recommended publications
  • PAPC Couples the Segmentation Clock to Somite Morphogenesis by Regulating N-Cadherin-Dependent Adhesion
    © 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 664-676 doi:10.1242/dev.143974 RESEARCH ARTICLE PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion Jérome Chal1,2,3,4,5,*, Charlenè Guillot3,4,* and Olivier Pourquié1,2,3,4,5,6,7,‡ ABSTRACT specific level of the PSM called the determination front. The Vertebrate segmentation is characterized by the periodic formation of determination front is defined as a signaling threshold epithelial somites from the mesenchymal presomitic mesoderm implemented by posterior gradients of Wnt and FGF (Aulehla (PSM). How the rhythmic signaling pulse delivered by the et al., 2003; Diez del Corral and Storey, 2004; Dubrulle et al., segmentation clock is translated into the periodic morphogenesis of 2001; Hubaud and Pourquie, 2014; Sawada et al., 2001). Cells of somites remains poorly understood. Here, we focused on the role of the posterior PSM exhibit mesenchymal characteristics and paraxial protocadherin (PAPC/Pcdh8) in this process. We showed express Snail-related transcription factors (Dale et al., 2006; that in chicken and mouse embryos, PAPC expression is tightly Nieto, 2002). In the anterior PSM, cells downregulate snail/slug regulated by the clock and wavefront system in the posterior PSM. We expression and upregulate epithelialization-promoting factors such observed that PAPC exhibits a striking complementary pattern to N- as paraxis (Barnes et al., 1997; Sosic et al., 1997). This molecular cadherin (CDH2), marking the interface of the future somite boundary transition correlates with the anterior PSM cells progressively in the anterior PSM. Gain and loss of function of PAPC in chicken acquiring epithelial characteristics (Duband et al., 1987; Martins embryos disrupted somite segmentation by altering the CDH2- et al., 2009).
    [Show full text]
  • Sample Lab Report
    3030 Venture Lane, Suite 108 ● Melbourne, Florida 32934 ● Phone 321-253-5197 ● Fax 321-253-5199 PATIENT: DOE, JAMES ACCESSION NO: CLINICIAN/ PATIENT ID: REQUESTING DATE OF BIRTH: 1/5/1986 DOCTOR: GENDER: MALE DATE COLLECTED: 5/26/2015 DATE OF REPORT: 6/15/2015 RESULTS PRIMARY TUMOR TYPE RIGHT TESTICLE BIOLOGICALLY IMPORTANT ONCOGENES DETECTED GENE IMPLICATION TP53 TP53 mutations may be an important driver of tumorigenesis and / or a reason for treatment resistance in a some patients. PTEN Responsible for uncontrolled growth. MDM2 Causes p53 inactivation. Associated with cancer growth and progression. TGFB1 TGFB appears to promote tumor progession by stimulating invasion and metastasis. TUBB2A Microtubules are the key components of the cytoskeleton of eukaryotic cells and have an important role in various cellular functions such as intracellular migration and transport, cell shape maintenance, polarity, cell signaling and mitosis. c-JUN Proto-oncogene PHB2 Prohibitins play a crucial role in adhesion processes in the cell and thereby sustaining cancer cell propagation and survival. Clinical Impression: Low Aggressive Potential Additional Genes Detected: ABCG2, ARHGAP5, ATF4, BIRC5, BNIP3, CAPNS1, CARD17, CCNB1, CD24, CDC20, CDK18, CKS2, DCN, DEPDC1, FTL, FZD5, FZD9, GAPDH, GNB2, GPR126, H2AFZ, HDAC1, HMGN2, ID1, IFITM1, JUNB, KPNA2, KRT18, LDHA, LTF, MAD2L1, MAP2K1, MAP2K2, MAP2K4, MAPRE1, MAS1, NME1, NME3, NPM1, PA2G4, PABPC1, PFDN4, PGAM1, PGK1, PHB, PIK3CB, PKM, PPIA, PPIH, PRKX, PRNP, PTMA, RAC1, RAC2, RALBP1, RAP1A, RBBP4, RHOB, RHOC,
    [Show full text]
  • Kinetic Properties of Collagen Receptors on Human Keratinocytes 2337
    Journal of Cell Science 112, 2335-2345 (1999) 2335 Printed in Great Britain © The Company of Biologists Limited 1999 JCS9937 Integrin α and β subunit contribution to the kinetic properties of α2β1 collagen receptors on human keratinocytes analyzed under hydrodynamic conditions Bénédicte Masson-Gadais, Anne Pierres, Anne-Marie Benoliel, Pierre Bongrand* and Jean-Claude Lissitzky Laboratoire d’Immunologie, INSERM U 387, Hôpital de Sainte-Marguerite, BP 29, 13274 Marseille Cedex 09, France *Author for correspondence (e-mail: [email protected]) Accepted 10 May; published on WWW 24 June 1999 SUMMARY The adhesion of keratinocytes to type I collagen or with ligand recognition and also with the ligand-β1 chain laminin 5 was studied in a laminar flow chamber. These interactions responsible for bond stabilization. The latter experiments provided an insight into the binding kinetics hypothesis was supported by the finding that the partial of integrins in their natural environment and the effects of alteration of α2 chain function by inhibiting antibodies was monoclonal antibodies specific for α and β chains. Cells corrected by anti-β1 chain antibody TS2/16. These results driven by a force too low to alter the natural lifetime of a could not be ascribed to allosteric changes of the functional single bond displayed multiple arrests. Studying the region of β1 integrin subunits regulated by TS2/16 since frequency and duration of these arrests yielded fairly direct there was no competition between the binding of TS2/16 information on the rate of bond formation (on-rate) and and anti-α2 chain antibodies. dissociation (off-rate). Off-rate values obtained on collagen Interpreted within the framework of current concepts of or laminin 5 (0.06 seconds−1) were tenfold lower than values integrin-ligand binding topology, these data suggest that determined on selectins.
    [Show full text]
  • Conditional Ablation of P130cas/BCAR1 Adaptor Protein
    Camacho Leal et al. Cell Communication and Signaling (2018) 16:73 https://doi.org/10.1186/s12964-018-0289-z RESEARCH Open Access Conditional ablation of p130Cas/BCAR1 adaptor protein impairs epidermal homeostasis by altering cell adhesion and differentiation Maria del Pilar Camacho Leal†, Andrea Costamagna†, Beatrice Tassone, Stefania Saoncella, Matilde Simoni, Dora Natalini, Aurora Dadone, Marianna Sciortino, Emilia Turco, Paola Defilippi, Enzo Calautti‡ and Sara Cabodi*‡ Abstract Background: p130 Crk-associated substrate (p130CAS; also known as BCAR1) is a scaffold protein that modulates many essential cellular processes such as cell adhesion, proliferation, survival, cell migration, and intracellular signaling. p130Cas has been shown to be highly expressed in a variety of human cancers of epithelial origin. However, few data are available regarding the role of p130Cas during normal epithelial development and homeostasis. Methods: To this end, we have generated a genetically modified mouse in which p130Cas protein was specifically ablated in the epidermal tissue. Results: By using this murine model, we show that p130Cas loss results in increased cell proliferation and reduction of cell adhesion to extracellular matrix. In addition, epidermal deletion of p130Cas protein leads to premature expression of “late” epidermal differentiation markers, altered membrane E-cadherin/catenin proteins localization and aberrant tyrosine phosphorylation of E-cadherin/catenin complexes. Interestingly, these alterations in adhesive properties in absence
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Expression Profiling of KLF4
    Expression Profiling of KLF4 AJCR0000006 Supplemental Data Figure S1. Snapshot of enriched gene sets identified by GSEA in Klf4-null MEFs. Figure S2. Snapshot of enriched gene sets identified by GSEA in wild type MEFs. 98 Am J Cancer Res 2011;1(1):85-97 Table S1: Functional Annotation Clustering of Genes Up-Regulated in Klf4 -Null MEFs ILLUMINA_ID Gene Symbol Gene Name (Description) P -value Fold-Change Cell Cycle 8.00E-03 ILMN_1217331 Mcm6 MINICHROMOSOME MAINTENANCE DEFICIENT 6 40.36 ILMN_2723931 E2f6 E2F TRANSCRIPTION FACTOR 6 26.8 ILMN_2724570 Mapk12 MITOGEN-ACTIVATED PROTEIN KINASE 12 22.19 ILMN_1218470 Cdk2 CYCLIN-DEPENDENT KINASE 2 9.32 ILMN_1234909 Tipin TIMELESS INTERACTING PROTEIN 5.3 ILMN_1212692 Mapk13 SAPK/ERK/KINASE 4 4.96 ILMN_2666690 Cul7 CULLIN 7 2.23 ILMN_2681776 Mapk6 MITOGEN ACTIVATED PROTEIN KINASE 4 2.11 ILMN_2652909 Ddit3 DNA-DAMAGE INDUCIBLE TRANSCRIPT 3 2.07 ILMN_2742152 Gadd45a GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 ALPHA 1.92 ILMN_1212787 Pttg1 PITUITARY TUMOR-TRANSFORMING 1 1.8 ILMN_1216721 Cdk5 CYCLIN-DEPENDENT KINASE 5 1.78 ILMN_1227009 Gas2l1 GROWTH ARREST-SPECIFIC 2 LIKE 1 1.74 ILMN_2663009 Rassf5 RAS ASSOCIATION (RALGDS/AF-6) DOMAIN FAMILY 5 1.64 ILMN_1220454 Anapc13 ANAPHASE PROMOTING COMPLEX SUBUNIT 13 1.61 ILMN_1216213 Incenp INNER CENTROMERE PROTEIN 1.56 ILMN_1256301 Rcc2 REGULATOR OF CHROMOSOME CONDENSATION 2 1.53 Extracellular Matrix 5.80E-06 ILMN_2735184 Col18a1 PROCOLLAGEN, TYPE XVIII, ALPHA 1 51.5 ILMN_1223997 Crtap CARTILAGE ASSOCIATED PROTEIN 32.74 ILMN_2753809 Mmp3 MATRIX METALLOPEPTIDASE
    [Show full text]
  • Breast Cancer Antiestrogen Resistance-3 Expression Regulates Breast Cancer Cell Migration Through Promotion of P130cas Membrane Localization Andmembrane Ruffling
    Research Article Breast Cancer Antiestrogen Resistance-3 Expression Regulates Breast Cancer Cell Migration through Promotion of p130Cas Membrane Localization andMembrane Ruffling Randy S. Schrecengost,1 Rebecca B. Riggins,2 Keena S. Thomas,1 Michael S. Guerrero,1 and Amy H. Bouton1 1Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia and 2Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia Abstract antiestrogen resistance-1 (BCAR1; also known as p130Cas; refs. 2, 3). Antiestrogens such as tamoxifen are widely used in the clinic A second protein, BCAR3 (the human homologue of the murine to treat estrogen receptor–positive breast tumors. Resistance protein AND-34), was identified in a genetic screen along with to tamoxifen can occur either de novo or develop over time in BCAR1 as a gene product whose overexpression conferred tamoxifen resistance in vitro (4). BCAR3 is a member of the novel a large proportion of these tumors. Additionally, resistance is S p associated with enhanced motility and invasiveness in vitro. rc homology 2 (SH2)–containing rotein (NSP) family that One molecule that has been implicated in tamoxifen resis- includes two other members, Chat/SHEP1 and NSP1. These tance, breast cancer antiestrogen resistance-3 (BCAR3), has proteins share a common domain structure consisting of an also been shown to regulate migration of fibroblasts. In this amino-terminal SH2 domain and a carboxyl-terminal domain with study, we investigated the role of BCAR3 in breast cancer cell sequence homology to the Cdc25-family of guanine nucleotide exchange factors (GEF). Several studies have shown that BCAR3 migration and invasion.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Of VLA-4 and VLA-5 VCAM-1 and Fibronectin Through Clustering Promoting Macrophage Adhesion to Chemerin Contributes to Inflammati
    Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5 This information is current as of October 1, 2021. Rosie Hart and David R. Greaves J Immunol 2010; 185:3728-3739; Prepublished online 18 August 2010; doi: 10.4049/jimmunol.0902154 http://www.jimmunol.org/content/185/6/3728 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/08/18/jimmunol.090215 Material 4.DC1 http://www.jimmunol.org/ References This article cites 60 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/185/6/3728.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5 Rosie Hart and David R.
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • High BCAR1 Expression Is Associated with Early PSA Recurrence in ERG Negative Prostate Cancer Asmus Heumann1†, Nina Heinemann1†, Claudia Hube-Magg1, Dagmar S
    Heumann et al. BMC Cancer (2018) 18:37 DOI 10.1186/s12885-017-3956-3 RESEARCHARTICLE Open Access High BCAR1 expression is associated with early PSA recurrence in ERG negative prostate cancer Asmus Heumann1†, Nina Heinemann1†, Claudia Hube-Magg1, Dagmar S. Lang1, Katharina Grupp2, Martina Kluth1, Sarah Minner1, Christina Möller-Koop1,MarkusGraefen3, Hans Heinzer3, Maria Christina Tsourlakis1, Waldemar Wilczak1, Corinna Wittmer1,FrankJacobsen1,HartwigHuland3, Ronald Simon1* ,ThorstenSchlomm3,4, Guido Sauter1, Stefan Steurer1,PatrickLebok1 and Andrea Hinsch1 Abstract Background: Breast cancer anti-estrogen resistance 1 (BCAR1/p130cas) is a hub for diverse oncogenic signaling cascades and promotes tumor development and progression. Methods: To understand the effect of BCAR1 in prostate cancer, we analyzed its expression on more than 11,000 prostate cancer samples. BCAR1 expression levels were compared with clinical characteristics, PSA recurrence, molecular subtype defined by ERG status and 3p, 5q, 6q and PTEN deletion. Results: BCAR1 staining was barely detectable in normal prostate glands but seen in 77.6% of 9472 interpretable cancers, including strong expression in 38.5%, moderate in 23.2% and weak in 15.9% of cases. BCAR1 up regulation was associated with positive ERG status (p < 0.0001), high Gleason score (p < 0.0001), advanced pathological tumor stage (p = 0.0082), lower preoperative PSA level (p < 0.0001), increased cell proliferation (p < 0.0001), early PSA recurrence (p = 0.0008), and predicted prognosis independently from clinico-pathological parameters available at the time of the initial biopsy. However, subset analyses revealed that the prognostic impact of BCAR1 expression was limited to ERG-negative cancer. That BCAR1 up regulation was linked to almost all analyzed deletions (p < 0.0001 each for PTEN, 5q, 6q deletion) may suggest a functional link to genomic instability.
    [Show full text]
  • Myeloid Innate Immunity Mouse Vapril2018
    Official Symbol Accession Alias / Previous Symbol Official Full Name 2810417H13Rik NM_026515.2 p15(PAF), Pclaf RIKEN cDNA 2810417H13 gene 2900026A02Rik NM_172884.3 Gm449, LOC231620 RIKEN cDNA 2900026A02 gene Abcc8 NM_011510.3 SUR1, Sur, D930031B21Rik ATP-binding cassette, sub-family C (CFTR/MRP), member 8 Acad10 NM_028037.4 2410021P16Rik acyl-Coenzyme A dehydrogenase family, member 10 Acly NM_134037.2 A730098H14Rik ATP citrate lyase Acod1 NM_008392.1 Irg1 aconitate decarboxylase 1 Acot11 NM_025590.4 Thea, 2010309H15Rik, 1110020M10Rik,acyl-CoA Them1, thioesterase BFIT1 11 Acot3 NM_134246.3 PTE-Ia, Pte2a acyl-CoA thioesterase 3 Acox1 NM_015729.2 Acyl-CoA oxidase, AOX, D130055E20Rikacyl-Coenzyme A oxidase 1, palmitoyl Adam19 NM_009616.4 Mltnb a disintegrin and metallopeptidase domain 19 (meltrin beta) Adam8 NM_007403.2 CD156a, MS2, E430039A18Rik, CD156a disintegrin and metallopeptidase domain 8 Adamts1 NM_009621.4 ADAM-TS1, ADAMTS-1, METH-1, METH1a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 1 Adamts12 NM_175501.2 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 12 Adamts14 NM_001081127.1 Adamts-14, TS14 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 14 Adamts17 NM_001033877.4 AU023434 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 17 Adamts2 NM_001277305.1 hPCPNI, ADAM-TS2, a disintegrin and ametalloproteinase disintegrin-like and with metallopeptidase thrombospondin
    [Show full text]