Preparation of Yttrium and Rare-Earth Metals by Metallothermic Reduction

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of Yttrium and Rare-Earth Metals by Metallothermic Reduction AN ABSTRACT OF THE THESIS OF Frank Elmer Block for the Ch.E. in Chemical Engineering (Name) (Degree) Date thesis is presented Title PREPARATION OF YTTRIUM AND RARE -EARTH METALS BY METALLOTHERMIC REDUCTION Abstract approved Major Professor An investigation was made of various methods for the preparation of yttrium or rare -earth metals by metallothermic reduction. Particular emphasis was placed on the use of high -purity chloride salts as intermediates. Methods were stressed which appeared adaptable to production of high - purity, ductile metal on a plant scale. Reactions were chosen for study on the basis of thermo- dynamic considerations and also from a standpoint of chemical and physical properties of reactants and byproducts. Consideration was given to construction materials and their contribution of impurities to the metal products. Yttrium or rare -earth chlorides, fluorides, bromides or iodides were investigated as intermediates for metal production. Emphasis was placed on the development of methods for pre- paring these halides and for refining them to a high state of purity. Rare -earth chlorides were prepared either by slow dehydration of hydrated salts while in contact with ammonium chloride, or by a more rapid technique involving the direct chlorination of mixtures of rare -earth oxides and carbon. In either case, chloride salts were purified by vacuum distillation or by filtration of molten salts. Lithium, sodium, potassium and calcium were tested as reductants for anhydrous halides. These metals were compared as reductants on the basis of operating characteristics, purity of metal product, and yield of product. Yttrium and rare -earth metals prepared in this study were consolidated, usually by inert -atmosphere arc melting, and the consolidated metals were evaluated on the basis of chemical analyses and mechanical workability. Of the many systems studied, best results were obtained by the lithium reduction of rare -earth chlorides in Inconel or molybdenum apparatus. Metal made by this procedure was freed of byproduct lithium chloride by vacuum distillation, and the rare -earth metal, which appeared as a sponge, was consolidated by arc -melting. Yttrium was prepared by this technique on a scale of 15 pounds of metal per batch. Metal recoveries were greater than 95 percent and the major impurity, oxygen, was usually present in amounts less than 500 ppm. Samarium and europium cannot be prepared by reduction of their halide salts. These metals were produced by reduction of their oxides in a high vacuum employing lanthanum, cerium, or zirconium as reductants. Yields were usually over 90 per- cent during tests conducted at 900 to 1450°C. PREPARATION OF YTTRIUM AND RARE -EARTH METALS BY METALLOTHERMIC REDUCTION by FRANK ELMER BLOCK A THESIS submitted to OREGON STATE UNIVERSITY in partial fulfillment of the requirements for the degree of CHEMICAL ENGINEER June 1963 APPROVED: Professor of Chemical Engineering Head of Department of Chemical Engineering Chairman of School Graduate Committee MIMEDean of Graduate School / __ Date thesis is presented s , - 4__) , ) Typed by Grace Danton Bernice Wirowek ACKNOWLEDGEMENT The work on which this thesis is based was performed at the Albany Metallurgy Research Center of the U. S. Bureau of Mines. It was supported by funds authorized by the Bureau of Mines and by the U. S. Atomic Energy Commission. The author is grateful to the Bureau for the opportunity to present this work. Special thanks are due his colleagues, Thomas T. Campbell, Ralph E. Mussler, and Gabriel B. Robidart who participated in the project upon which this thesis is based. Credit is also acknowl - edged to the many other associates who contributed to this broad project. The author is also grateful to Dr. Charles E. Wicks and other members of the Staff of the Department of Chemical Engineering for their encouragement and help in furthering the chemical engineering profession within the metallurgical industry. TABLE OF CONTENTS Page INTRODUCTION 1 THEORETICAL CONSIDERATIONS 5 Free -Energy Changes 5 Physical Properties of Reactants and Products 17 Purity of Reactants 25 EXPERIMENTAL PROCEDURES AND RESULTS 28 Preparation of Rare -Earth Fluorides by Reaction of Rare -Earth Oxides With Ammonium Bifluoride -- 28 Preparation of Rare -Earth Chlorides 30 Reaction of Rare -Earth Oxides With Ammonium Chloride 34 Dehydration of Hydrated Rare -Earth Chlorides in Presence of Ammonium Chloride 38 Direct Chlorination of Rare -Earth Oxides 39 Purification of Rare -Earth Chlorides 44 Vacuum Distillation 44 Filtration of Molten Chlorides 47 Materials of Construction 49 Preparation of Yttrium Bromide and Iodide by Reaction of Yttrium Carbide with Hydrogen Halides 52 Metallic Reduction of Rare -Earth Halides 55 Bomb Reduction of Rare -Earth Chlorides 57 Calcium Reduction of Rare -Earth Halides 58 Reduction of Rare -Earth Chlorides 64 Reduction of Yttrium Bromides and Iodides 75 Metallic Reduction of Samarium and Europium Oxides in Vacuo 77 Consolidation of Rare -Earth Metals by Arc - Melting 85 Page Impurity Analysis of Rare -Earth and Yttrium Metal - - -- 86 Mechanical Working of Rare -Earth Metals 96 CONCLUSIONS 98 BIBLIOGRAPHY 102 LIST OF FIGURES Figure Title Page 1. Free -Energy Change for Metallic Reduction of Rare -Earth Oxides 7 2. Free -Energy Change for Metallic Reduction of Rare -Earth Oxides 8 3. Free -Energy Change for Metallic Reduction of Rare -Earth Fluorides 9 4. Free -Energy Change for Metallic Reduction of Rare -Earth Fluorides 10 5. Free -Energy Change for Metallic Reduction of Rare -Earth Chlorides 11 6. Free -Energy Change for Metallic Reduction of Rare -Earth Chlorides - 12 7. Free- Energy Change for Metallic Reduction of Rare -Earth Bromides - - -- 13 8. Free- Energy Change for Metallic Reduction of Rare -Earth Bromides 14 9. Free -Energy Change for Metallic Reduction of Rare -Earth Iodides 15 10. Free -Energy Change for Metallic Reduction of Rare -Earth Iodides 16 11. Vacuum Dehydration and Ammonium Halide Sublimation Unit 35 12. Rare -Earth Chlorination Apparatus 42 13. Rare -Earth Halide Purification Assembly 46 14. Halogenation Apparatus for Preparing Yttrium Bromide or Yttrium Iodide 54 15. Inert Atmosphere Reduction Assembly 62 16. High -Vacuum Reduction -Distillation Assembly - -- 66 17. Metallic -Reduction. Assembly 72 18. Large Scale Reduction -Distillation Assembly 80 19. Split- Graphite Re sistor Furnace Assembly 84 20. Photomicrographs of Rare -Earth Metals 95 LIST OF TABLES Number Page 1. Rare -Earth Halide Melting Points and Estimated Temperatures for 2 mm and 760 mmHg Vapor Pressure 19 2. Fusion and Vaporization Temperatures of Reduc- tants and Their Halide Salts 23 3. Analysis of Metallic Reductants 26 4. Preparation of Rare -Earth Fluorides by Reaction of Rare -Earth Oxides with Ammonium Bifluoride 31 5. Preparation of Rare -Earth Chlorides by Reaction of Rare -Earth Oxides with Ammonium Chloride 37 6. Preparation of Rare -Earth Chlorides by Dehydra- tion of Hydrated Chlorides in the Presence of Ammonium Chloride 40 7. Preparation of Rare -Earth Chlorides by Chlorina- tion of Rare -Earth Oxides 43 8. Results of Yttrium Chloride Corrosion Tests - - -- 51 9. Preparation of Yttrium Iodides and Bromides 56 10. Bomb Reduction of Lanthanum and Cerium Chlorides 59 11. Inert -Atmosphere Crucible -Reduction of Rare - Earth Fluorides 65 12. Inert -Atmosphere Crucible -Reduction of Rare - Earth and Yttrium Chlorides 71 13. Sodium Reduction of Yttrium Chloride 75 14. Metallic Reduction of Yttrium Bromides and Iodides 77 15. Metallic Reduction of Samarium and Europium Oxides - 82 16. Semiquantitative Spectrographic Analysis of Rare -Earth Metals Prepared by Bomb Reduction 88 17. Chemical and Semiquantitative Spectrographic Analysis of Rare Earth Metals Prepared by Calcium Reduction 89 18. Chemical and Semiquantitative Spectrographic Analysis of Rare -Earth Metals Prepared by Lithium and Sodium Reduction of Anhydrous Chlorides 90 19. Chemical and Semiquantitative Spectrographic Analysis of Yttrium Metal Prepared from Yttrium Bromides and Iodides - 91 20. Chemical and Semiquantitative Spectrographic Analysis of Samarium and Europi um Metal - 92 PREPARATION OF YTTRIUM AND RARE -EARTH METALS BY ME TALLOTHERMIC REDUCTION INTRODUCTION The group of 16 1/ elements which comprise yttrium and the rare earths, or lanthanides, are always found closely associated in nature. Chemists have long sought ways to separate these elements and although complex fractional precipitation techniques had been employed with partial success for over 150 years, only during the last 15 years have methods been developed for preparing individual rare -earth oxides in high purity form. Spedding and co- workers at Iowa State University (40,41) developed ion exchange techniques by which rare -earth ions can be selectively eluted from cation exchange resins to separate these elements in any required state of purity. During the last 10 years high - purity rare -earth oxides have become available commercially and tonnage quantities of yttrium oxide have been produced for government contract research. Rare -earth metals have been prepared on a gram scale by reduction of anhydrous halides, notably chlorides, almost as long as rare -earth compounds have been separated. As long ago as 1827 Mosander prepared metallic cerium by reducing cerous chloride with 1/ Element 61, promethium, does not exist in nature as a stable element. 2 potassium (36). Since that time most experimenters have employed metallic reduction of halide salts as a method for metal
Recommended publications
  • Synthesis and Characterization of the New Uranium Yttrium Oxysulfide
    ARTICLE IN PRESS Journal of Solid State Chemistry 182 (2009) 1861–1866 Contents lists available at ScienceDirect Journal of Solid State Chemistry journal homepage: www.elsevier.com/locate/jssc Synthesis and characterization of the new uranium yttrium oxysulfide UY4O3S5 Geng Bang Jin a, Eun Sang Choi b, Daniel M. Wells a, James A. Ibers a,Ã a Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA b Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA article info abstract Article history: Red needles of UY4O3S5 have been synthesized by the solid-state reaction at 1273 K of UOS and Y2S3 Received 16 January 2009 with Sb2S3 as a flux. UY4O3S5 adopts a three-dimensional structure that contains five crystal- Received in revised form lographically unique heavy-atom positions. U and Y atoms disorder on one eight-coordinate metal 11 April 2009 position bonded to four O atoms and four S atoms and two seven-coordinate metal positions bonded to Accepted 20 April 2009 three O atoms and four S atoms. Another eight-coordinate metal position with two O and six S atoms Available online 3 May 2009 and one six-coordinate metal position with six S atoms are exclusively occupied by Y atoms. UY4O3S5 is Keywords: a modified Curie–Weiss paramagnet between 1.8 and 300 K. Its effective magnetic moment is estimated Uranium yttrium oxysulfide to be 3.3(2) mB.UY4O3S5 has a band gap of 1.95 eV. The electrical resistivity along the [010] direction of a X-ray crystal structure single crystal shows Arrhenius-type thermal activation with an activation energy of 0.2 eV.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Uptake of Nanoparticles of Cerium Oxide and Yttrium Oxide by Acanthamoeba Castellanii (Protozoa) and Daphnia Magna (Crustacea) James R
    Virginia Journal of Science Volume 62, 1 & 2 Spring 2011 Uptake of Nanoparticles of Cerium Oxide and Yttrium Oxide by Acanthamoeba castellanii (Protozoa) and Daphnia magna (Crustacea) James R. Palmieri1, Geneva Gehring, Catherine Minichino, and Shaadi F. Elswaifi Department of Microbiology, Infectious, and Emerging Diseases, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, Virginia, USA 24060 ABSTRACT Currently, nanoparticles are synthesized and used at an unprecedented rate for industrial, medical, and research applications. The use of cerium oxide nanoparticles (CeONP) and yttrium oxide nanoparticles (YtONP) results in their spread as contaminants into the environment. Once in the environment, CeONP and YtONP can be taken up by organisms in the food chain where they may pose a public health risk. In this study we determine whether Acanthamoeba castellanii and Daphnia magna uptake CeONP or YtONP from their environment and thereby play a role in the transmission of the nanoparticles. Using electron microscopy, organisms exposed to the nanoparticles were examined. Our results indicate that the nanoparticles are associated with cell and organelle membranes. These findings have implications for the health risks associated with environmental contamination by CeONP and YtONP. INTRODUCTION In this study we determine whether protists and crustaceans play a role in the transfer of cerium oxide nanoparticles (CeONP) and yttrium oxide nanoparticles (YtONP) from the environment to other organisms within the aquatic food chain. Acanthamoeba castellanii, a common protist, and Daphnia magna, a planktonic crustacean, are important components in many aquatic ecosystems. Because acanthamoebae, such as A. castellanni, are aggressive feeders they consume inorganic and organic compounds from their environment, thereby serving as a link by transferring normally unavailable inorganic components to the food chain (Weekers et al.
    [Show full text]
  • The Role of Yttrium and Other Minor Elements in the Garnet Group1
    THE ROLE OF YTTRIUM AND OTHER MINOR ELEMENTS IN THE GARNET GROUP1 Howeno W. Jlnlo2 Assrnacr Several minor and trace elements, notably yttrium, scandium and zinc, are very common in garnets. The frequent occurrence of several of these in particular varieties of garnet suggests isomorphism. Yttrium, heretofore considered to be a rare constituent of garnets, is very prevalent in spessartites.It has been found to occur in concentrations of greater than 2 per cent YzOr in a few manganese-rich garnets. The frequent association of yttrium and manganese in spessartites suggests that ions of Y+3 with an ionic radius of 1.06 A have replaced ions of Mn+2 having an ionic radius of 0 91 A, the radii being those of Goldschmidt. The substitution scheme is Y+3AI+3 for Mn+2Si+a. Scandium is most abun- dant in pyropes, and Sc+3with an ionic radius of 0.83 A may substitute for ions of divalent Mg (0.78 A) or possibly for divalent Fe (0.83 A) if enough almandite is present. Zinc is a common trace element in manganese, iron and magnesium-rich garnets and ions of divalent Zn (O.83 A; .rruy proxy for those of divalent iron. Other trace constituents detected in gar- nets inciude, Ga, Ti, Cr, Na, Li, Dy, Gd, Ho, Yb, Er, La, Ce, Nd, Pr, Sr, F, V, B, Be, Ge, Sn, Pb, Cu and Nb. Their hypothetical isomorphous relations to the major constituents are discussed. Included in the data are 7 new quantitative yttria determinations, visuai spectroscopic analyses of more than 70 garnets, and spectrographic analyses of 2 yttria precipitates obtained from spessartites.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Interface Reactions During Oxygen Plasma Assisted Chemical Vapor Deposition of Yttrium Oxide on Silicon
    Interface Reactions During Oxygen Plasma (109 eV) and yttrium concentration is below the detection Assisted Chemical Vapor Deposition of Yttrium limit of the instrument (~10 atomic percent for yttrium), Oxide on Silicon which is consistent with a more SiO2-like structure, with possibly some Y incorporation. Region 3 shows a lighter D. Niu, R. W. Ashcraft, S. Stemmer#, G. N. Parsons contrast in the ADF image as compared to region 2, and Department of Chemical Engineering, North Carolina the Si L-edge peak shifts slightly from 109 eV to a lower State University, Raleigh, NC 27695 energy loss of 108.7 eV. Another feature at 116 eV also #Department of Mechanical Engineering and Materials becomes more distinct. These spectral signatures clearly Science, Rice University, Houston, TX 70005 indicate a more yttrium-rich structure mixed with Si-O in region 3 of this film. Introduction The data presented above shows that during The continuous scaling of complementary metal- plasma assisted CVD of Y2O3 based dielectrics, the initial oxide-semiconductor (CMOS) devices requires an deposited layers will mix and react with the substrate equivalent of a sub-1 nm silicon dioxide for gate silicon to form a thin metal silicate or silicon oxide interface structure. Further deposition results in a film dielectrics. Several metal oxides, including Al2O3, Y2O3, with composition closer to Y2O3. Pre-nitridation of the La2O3, HfO2, and ZrO2 that are potentially stable in contact with silicon, have been under investigation to silicon surface impedes the reaction with the substrate, promoting the Y2O3 structure. More XPS, TEM/EELS, replace SiO2.
    [Show full text]
  • Thermal Atomic Layer Deposition of Yttrium Oxide Films and Their Properties in Anticorrosion and Water Repellent Coating Applications
    coatings Article Thermal Atomic Layer Deposition of Yttrium Oxide Films and Their Properties in Anticorrosion and Water Repellent Coating Applications Christian Dussarrat 1,*, Nicolas Blasco 2, Wontae Noh 3, Jooho Lee 3, Jamie Greer 1, Takashi Teramoto 1, Sunao Kamimura 1, Nicolas Gosset 1 and Takashi Ono 1 1 Air Liquide Laboratories, Tokyo Innovation Campus, 2-2 Hikarinooka, Yokosuka, Kanagawa 239-0847, Japan; [email protected] (J.G.); [email protected] (T.T.); [email protected] (S.K.); [email protected] (N.G.); [email protected] (T.O.) 2 Air Liquide Advanced Materials, 3121 Route 22 East, Branch Estates, Suite 200, Branchburg, NJ 08876, USA; [email protected] 3 Air Liquide Laboratories Korea, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul 03722, Korea; [email protected] (W.N.); [email protected] (J.L.) * Correspondence: [email protected] Abstract: The thermal atomic layer deposition (ThALD) of yttrium oxide (Y2O3) was developed using i the newly designed, liquid precursor, Y(EtCp)2( Pr2-amd), as the yttrium source in combination with different oxygen sources, such as ozone, water and even molecular oxygen. Saturation was observed ◦ for the growth of the Y2O3 films within an ALD window of 300 to 450 C and a growth per cycle Citation: Dussarrat, C.; Blasco, N.; (GPC) up to 1.1 Å. The resulting Y2O3 films possess a smooth and crystalline structure, while avoiding Noh, W.; Lee, J.; Greer, J.; Teramoto, any carbon and nitrogen contamination, as observed by X-ray photoelectron spectroscopy (XPS). T.; Kamimura, S.; Gosset, N.; Ono, T.
    [Show full text]
  • 10 CFR Ch. I (1–1–12 Edition) Pt. 110, App. M
    Pt. 110, App. M 10 CFR Ch. I (1–1–12 Edition) Tellurium 125m (Te Thallium 202 (Tl 202) Xenon 131m (Xe Yttrium 91 (Y 91) 125m) Thallium 204 (Tl 204) 131m) Yttrium 92 (Y 92) Tellurium 127m (Te Thulium 170 (Tm 170) Xenon 133 (Xe 133) Yttrium 93 (Y 93) 127m) Thulium 171 (Tm 171) Xenon 135 (Xe 135) Zinc 65 (Zn 65) Tellurium 127 (Te 127) Tin 113 (Sn 113) Ytterbium 175 (Yb Zinc 69m (Zn 69m) Tellurium 129m (Te Tin 123 (Sn 123) 175) Zinc 69 (Zn 69) 129m) Tin 125 (Sn 125) Yttrium 87 (Y 87) Zirconium 93 (Zr 93) Tellurium 129 (Te 129) Tin 126 (Sn 126) Yttrium 88 (Y 88) Zirconium 95 (Zr 95) Tellurium 131m (Te Titanium 44 (Ti 44) Yttrium 90 (Y 90) Zirconium 97 (Zr 97) 131m) Tritium (H3) [58 FR 13005, Mar. 9, 1993, as amended at 59 Tellurium 132 (Te 132) Tungsten 181 (W 181) FR 48998, Sept. 26, 1994. Redesignated and Terbium 160 (Tb 160) Tungsten 185 (W 185) amended at 61 FR 35603, 35607, July 8, 1996; 65 Thallium 200 (Tl 200) Tungsten 187 (W 187) FR 70292, Nov. 22, 2000; 71 FR 20339, Apr. 20, Thallium 201 (Tl 201) Vanadium 48 (V 48) 2006; 75 FR 44093, July 28, 2010] APPENDIX M TO PART 110—CATEGORIZATION OF NUCLEAR MATERIAL d [From IAEA INFCIRC/225, Rev. 1] Category Material Form I II III e 1. Plutonium a ......... Unirradiated b ......................................... 2 kg or more Less than 2 kg but more 500 g or less. than 500 g. 2.
    [Show full text]
  • Alkali Or Alkaline -Earth Metals
    28.05 28.05 - Alkali or alkaline-earth metals; rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed; mercury. - Alkali or alkaline-earth metals : 2805.11 - - Sodium 2805.12 - - Calcium 2805.19 - - Other 2805.30 - Rare-earth metals, scandium and yttrium whether or not intermixed or interalloyed 2805.40 - Mercury (A) ALKALI METALS The five alkali metals are soft and rather light. They decompose cold water; they deteriorate in air, forming hydroxides. (1) Lithium. This is the lightest (specific gravity 0.54) and hardest of the group. It is kept in mineral oil or inert gases. Lithium helps to improve the qualities of metals, and is used in various alloys (e.g., anti-friction alloys). Because of its great affinity for other elements, it is also used, inter alia, to obtain other metals in the pure state. (2) Sodium. A solid (specific gravity 0.97) with a metallic lustre, readily tarnishing after cutting. It is preserved in mineral oil or in airtight welded tins. Sodium is obtained by electrolysing molten sodium chloride or sodium hydroxide. It is used in the manufacture of sodium peroxide (“ dioxide ”), sodium cyanide, sodamide, etc., the indigo industry, the manufacture of explosives (chemical primers and fuses), the polymerisation of butadiene, anti-friction alloys, or titanium or zirconium metallurgy. The heading excludes sodium amalgam (heading 28.53). (3) Potassium. A silvery-white metal (specific gravity 0.85), which can be cut with an ordinary knife. It is preserved in mineral oil or in sealed ampoules. Potassium is used for the preparation of certain photoelectric cells, and in anti-friction alloys.
    [Show full text]
  • Periodic Table P J STEWART / SCIENCE PHOTO LIBRARY PHOTO SCIENCE / STEWART J P
    Periodic table P J STEWART / SCIENCE PHOTO LIBRARY PHOTO SCIENCE / STEWART J P 46 | Chemistry World | March 2009 www.chemistryworld.org Periodic change The periodic table, cherished by generations of chemists, has steadily evolved over time. Eric Scerri is among those now calling for drastic change The periodic table has become recurrences as vertical columns or something of a style icon while In short groups. remaining indispensable to chemists. In its original form The notion of chemical reactivity Over the years the table has had the periodic table was is something of a vague one. To make to change to accommodate new relatively simple. Over this idea more precise, the periodic elements. But some scientists the years, extra elements table pioneers focused on the propose giving the table a makeover have been added and the maximum valence of each element while others call for drastic changes layout of the transition and looked for similarities among to its core structure. elements altered these quantities (see Mendeleev’s More than 1000 periodic systems Some call for drastic table, p48). have been published since the table rearrangements, The method works very well for Russian chemist Dimitri Mendeleev perhaps placing hydrogen the elements up to atomic weight developed the mature periodic with the halogens. 55 (manganese) after which point system – the most fundamental A new block may be it starts to fall apart. Although natural system of classification needed when chemists there seems to be a repetition in the ever devised. (Not to mention the can make elements in highest valence of aluminium and hundreds if not thousands of new the g-block, starting at scandium (3), silicon and titanium systems that have appeared since the element 121 (4), phosphorus and vanadium (5), advent of the internet.) and chlorine and manganese (7), Such a proliferation prompts this is not the case with potassium questions as to whether some tables and iron.
    [Show full text]
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]