Elliptical Galaxies: Structure, Stellar Content, and Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Elliptical Galaxies: Structure, Stellar Content, and Evolution Elliptical Galaxies: Structure, Stellar Content, and Evolution Thesis by Michael Andrew Pahre In Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1998 (Submitted February 3, 1998) ii c 1998 ° Michael Andrew Pahre All Rights Reserved iii Abstract A near{infrared imaging survey of 341 nearby early{type galaxies, combined with optical imaging and spectroscopic data from the literature, are used to construct the global scaling relations for this population of galaxies. These data demonstrate a number of important features of the early{type galaxy sequence: (1) the slope of the Fundamental Plane (FP) correlations systematically increases with wavelength; (2) the slope of these FP correlations deviates from the virial expectation at all wavelengths, implying a breakdown of either or both of the assumptions of constant mass{to{light ratio and homology; (3) the intrinsic scatter of the FP correlations is small but resolved at all wavelengths, implying a small cosmic scatter of early{type galaxy properties at any position in the galaxy sequence and contradicting any model in which various stellar populations parameters \conspire" with each other to keep the correlations thin at optical wavelengths; (4) there is no correla- tion among residuals of the metallicity{independent near{infrared FP and the metallicity{ sensitive Mg2{σ0 relation, implying that both age and metallicity variations contribute to the cosmic scatter of both correlations; and (5) the e®ective radii systematically decrease with increasing wavelength, fully consistent with the general presence of stellar populations gradients in early{type galaxies. A comprehensive and self{consistent model is described which simultaneously explains these and other global properties of the early{type galaxy sequence. This model demonstrates that age, metallicity, deviations from a dynamically homologous family, and populations gradients are all contributing to the form of the global scaling relations; the latter two e®ects are the least constrained by the observations and model, respectively. Additional constraints on the role of age in the global scaling relations is obtained by observing early{type galaxies at higher redshifts. This has been studied using three approaches: color evolution, evolution of the slope and intercept of the K{band FP cor- relations, and evolution of the absorption line strengths. The galaxies in each cluster are identi¯ed in a systematic way using two color (three bandpass) imaging|sampling ap- proximately the U, V , and I bandpasses in the rest frame|to eliminate late{type cluster member and general ¯eld interloper galaxies. This method is > 90% e®ective in identifying iv early{type galaxies at the target cluster redshift. Weak color evolution in rest{frame (U V ) has been detected in 26 rich clusters of ¡ 0 galaxies. The bluing trend in color is 0:05 0:03 mag at z = 0:2, 0:12 0:04 mag at z = 0:4, § § and 0:23 0:05 mag at z = 0:54. Using stellar population synthesis models from the » § literature, this color evolution is fully consistent with the galaxy population as a whole having formed at 1 < zf < 5. The FP correlations are studied for 128 galaxies in eight rich clusters at 0:1 < z < 0:6 using moderate dispersion spectroscopy (110 of the measurements are new) and imaging in the near{infrared K{band. These data more than quadruple the data in the literature which can be used to study the FP at high redshift. The near{infrared FP is constructed at high redshifts for the ¯rst time. The intercept of the FP on the surface brightness axis is observed to dim with redshift, as expected for the Tolman signal in an expanding world model. A small amount of luminosity evolution ¢K 2:5 log(1+z) mag is detected on top ¼ ¡ of the Tolman signal, which is consistent with the passive evolution of a stellar population that formed at high redshift. The slope of the near{infrared FP is observed to flatten with redshift, implying that the least luminous galaxies are evolving faster than the luminous galaxies. This is strong evidence that low luminosity ellipticals have a stellar content that is up to a factor of two times younger than high luminosity ellipticals, but age spreads much larger than this appear to be excluded, and age spreads somewhat smaller than this are still allowed depending on the choice of nearby galaxy sample used in the comparison. The absorption line strengths of the galaxies are observed to evolve slowly with redshift: the Mg and Fe indices weaken while the H¯ index strengthens. The latter e®ect in 2 h i G particular is another strong indication that the mean age of the stellar populations in early{type galaxies formed at redshifts 3 < zf < 5. All of these properties are moderately consistent with the models derived above based on the samples of nearby galaxies, implying that age is an important physical parameter underlying the global scaling relations for early{type galaxies. v Acknowledgments For a thesis like this one, in which a large quantity of data is collected from many sources, it is di±cult to fully acknowledge every person who has made a signi¯cant contribution along the way towards this ¯nal product. Professor George Djorgovski provided timely advice, wonderful encouragement, marvelous amounts of money for traveling to meetings and observing runs, tall back scratcher drinks on the coast of Hawaii, large quantities of powdered drugs from Colombia (the dark brown variety), observing time galore, and many a not{so{gentle shove to ¯nish some of the many projects we started. Above all, he showed patience in allowing me to run amok designing the various surveys reported here. Many thanks also go to that special woman for her moderating influence. I have spent many a night, cloudy and clear, shooting the breeze and sharing a mug of java with the night assistants of the Palomar and Las Campanas Observatories and the Observing Assistants of the Keck Observatories. The e±cient professionalism of the sta®s of these observatories has made the collection of all those ExaByte tapes proceed smoothly and resulted in beautiful data. The cooks of Palomar and Las Campanas Observatories are thanked for making even a cloudy run pleasurable. The directors of these observatories, and the Time Allocation Committees, have my highest gratitude for granting large blocks of observing time to pursue this thesis project. I pray that in the end they will ¯nd the product well worth the considerable investment. The year spent among the Santa Barbarians of Carnegie building a near{infrared camera was memorable due to their collective enthusiasm and remarkable scienti¯c insights. I now hold an even greater respect for the wide{ranging abilities possessed by the instrumentation teams at OCIW, and wish them great luck on their Magellanic expedition. It was a joy learning ¯rst{hand from Drs. Eric Persson, David Murphy, and Anand Sivaramakrishnan the right way to build an instrument. Professor Jeremy Mould deserves special appreciation for getting me started in infrared observing and surface brightness fluctuations, and for his super{human patience and persis- tence in our continued collaborations. Many of the things I know about elliptical galaxies stem directly from the untold numbers of conversations I have had over the years with Dr. vi Reinaldo de Carvalho. I have also learned a great deal through collaborations, or exten- sive discussions, with many other members of the Caltech astronomy community: Profes- sors Roger Blandford, Judy Cohen, Shri Kulkarni, Keith Matthews, Mark Metzger, Gerry Neugebauer, Tom Soifer, and Chuck Steidel; post{doctoral researchers John Blakeslee, Chris Clemens, Laura Ferrarese, and Ian Smail; and graduate students Chris Fassnacht, John Gizis, David Hogg, and James Larkin. Laura Ferrarese also read an early version of several chapters of this thesis and provided insightful comments. Many o±ce mates have shown patience with the ever{expanding masses of papers, folders, and tapes which occupy the surfaces of my desks. Martin Shepherd has proved to be a highly valuable source for all sorts of \nawk{ing." Finally, my thesis committee|George Djorgovski (chair), Roger Blandford, Andrew Lange, Eric Persson, Steve Shectman, and Chuck Steidel|have shown great en- couragement and o®ered excellent advice, comments, and six unique perspectives on this ambitious project. My family has shown great support and encouragement not only while I have spun deeper and faster into this black hole, but also all along my various routes which eventually led to Caltech. And Suzanne, the most complicated and fascinating person I have ever had the pleasure to know, to you I owe gratitude for your patience with my crazy work and travel habits, your unbridled enthusiasm for science and me, your excellent proofreading ability, and your constant love and a®ection. Ah yes, and many thanks to the support from Mieza Ekyii, Nyame Bekyereh, and Ko¯ Mieza. vii Contents Abstract iii Acknowledgments v 1 Introduction 1 1.1 The Standard Paradigm for Elliptical Galaxies . 1 1.2 The Fundamental Plane Correlations . 2 1.3 Outline of Thesis . 4 References . 5 2 Near{Infrared Photometry of Early{Type Galaxies in the Local Uni- verse: Global Photometric Parameters 7 2.1 Introduction . 8 2.2 Description of the Near{Infrared Imaging Survey . 11 2.3 Observations and Data Reduction . 17 2.3.1 Palomar 60{inch Telescope Data . 17 2.3.2 Las Campanas 1.0 m Swope Telescope Data . 18 2.3.3 Las Campanas 2.5 m du Pont Telescope Data . 19 2.3.4 Data Reduction . 19 2.3.5 Photometric Calibration . 20 2.4 Surface Photometry . 23 2.5 Seeing Corrections . 25 2.6 Measurement of Global Photometric Parameters .
Recommended publications
  • Science Goals and Selection Criteria
    University of Groningen The ATLAS(3D) project Cappellari, Michele; Emsellem, Eric; Krajnovic, Davor; McDermid, Richard M.; Scott, Nicholas; Kleijn, G. A. Verdoes; Young, Lisa M.; Alatalo, Katherine; Bacon, R.; Blitz, Leo Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1111/j.1365-2966.2010.18174.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Cappellari, M., Emsellem, E., Krajnovic, D., McDermid, R. M., Scott, N., Kleijn, G. A. V., Young, L. M., Alatalo, K., Bacon, R., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P-A., Khochfar, S., Kuntschner, H., ... Weijmans, A-M. (2011). The ATLAS(3D) project: I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria. Monthly Notices of the Royal Astronomical Society, 413(2), 813-836. https://doi.org/10.1111/j.1365- 2966.2010.18174.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
    [Show full text]
  • 198 7Apj. . .312L. .11J the Astrophysical Journal, 312:L11-L15
    .11J The Astrophysical Journal, 312:L11-L15,1987 January 1 .312L. © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 7ApJ. 198 INTERSTELLAR DUST IN SHAPLEY-AMES ELLIPTICAL GALAXIES M. Jura and D. W. Kim Department of Astronomy, University of California, Los Angeles AND G. R. Knapp and P. Guhathakurta Princeton University Observatory Received 1986 August 11; accepted 1986 September 30 ABSTRACT We have co-added the IRAS survey data at the positions of the brightest elliptical galaxies in the Revised Shapley-Ames Catalog to increase the sensitivity over that of the IRAS Point Source Catalog. More than half of 7 8 the galaxies (with Bj< \\ mag) are detected at 100 /xm with flux levels indicating, typically, 10 or 10 M0 of cold interstellar matter. The presence of cold gas in ellipticals thus appears to be the rule rather than the exception. Subject headings: galaxies: general — infrared: sources I. INTRODUCTION infrared emission from the elliptical galaxy in the line of sight. The traditional view of early-type galaxies is that they are Our criteria for a real detection are as follows: essentially free of interstellar matter. However, with advances 1. The optical position of the galaxy and the position of the in instrumental sensitivity, it has become possible to observe IRAS source agree to better than V. (The agreement is usually 21 cm emission (Knapp, Turner, and Cunniffe 1985; Wardle much better than T.) and Knapp 1986), optical dust patches (Sadler and Gerhard 2. The flux is at least 3 times the r.m.s. noise.
    [Show full text]
  • Arxiv:Astro-Ph/0304318V1 16 Apr 2003
    The Globular Cluster Luminosity Function: New Progress in Understanding an Old Distance Indicator Tom Richtler Astronomy Group, Departamento de F´ısica, Universidad de Concepci´on, Casilla 160-C, Concepci´on, Chile Abstract. I review the Globular Cluster Luminosity Function (GCLF) with emphasis on recent observational data and theoretical progress. As is well known, the turn-over magnitude (TOM) is a good distance indicator for early-type galaxies within the limits set by data quality and sufficient number of objects. A comparison with distances derived from surface brightness fluctuations with the available TOMs in the V-band reveals, however, many discrepant cases. These cases often violate the condition that the TOM should only be used as a distance indicator in old globular cluster systems. The existence of intermediate age-populations in early-type galaxies likely is the cause of many of these discrepancies. The connection between the luminosity functions of young and old cluster systems is discussed on the basis of modelling the dynamical evolution of cluster systems. Finally, I briefly present the current ideas of why such a universal structure as the GCLF exists. 1 Introduction: What is the Globular Cluster Luminosity Function? Since the era of Shapley, who first explored the size of the Galaxy, the distances to globular clusters often set landmarks in establishing first the galactic, then the extragalactic distance scale. Among the methods which have been developed to determine the distances of early-type galaxies, the usage of globular clusters is one of the oldest, if not the oldest. Baum [5] first compared the brightness of the brightest globular clusters in M87 to those of M31.
    [Show full text]
  • H I Deficiency in Groups : What Can We Learn from Eridanus ?
    Bull. Astr. Soc. India (2004) 32, 239{245 H i de¯ciency in groups : what can we learn from Eridanus ? A. Omar¤y Raman Research Institute, Sadashivanagar, Bangalore 560 080, India Received 14 July 2004; accepted 24 August 2004 Abstract. The H i content of the Eridanus group of galaxies is studied using the GMRT observations and the HIPASS data. A signi¯cant H i de¯ciency up to a factor of 2 ¡ 3 is observed in galaxies in the Eridanus group. The de¯ciency is found to be directly correlated with the projected galaxy density and inversely correlated with the line-of-sight radial velocity. It is suggested that the H i de¯ciency is due to tidal interactions. An important implication is that signi¯cant evolution of galaxies can take place in a group environment. Keywords : galaxies: ISM { galaxies: interactions { galaxies: kinematics and dynamics { galaxies: evolution { galaxies: clusters: individual: Eridanus group { radio lines: galaxies 1. Introduction Spiral galaxies in the cores of clusters are known to be H i de¯cient compared to their ¯eld counterparts (Davies and Lewis 1973, Giovanelli and Haynes 1985, Cayatte et al. 1990, Bravo-Alfaro et al. 2000). Several gas-removal mechanisms have been proposed to explain the H i de¯ciency in cluster galaxies. There are convincing results from both the simulations and the observations that ram-pressure stripping can be active in galaxies which have crossed the high ICM (Intra Cluster Medium) density region in the cores of clusters (Vollmer et al. 2001, van Gorkom 2003). However, it is not clear that all H i de¯cient galaxies have crossed the core.
    [Show full text]
  • The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric
    TheSBFSurveyofGalaxyDistances.I. Sample Selection, Photometric Calibration, and the Hubble Constant1 John L. Tonry2 and John P. Blakeslee2 Physics Dept. Room 6-204, MIT, Cambridge, MA 02139; Edward A. Ajhar2 Kitt Peak National Observatory, National Optical Astronomy Observatories, P.O. Box 26732 Tucson, AZ 85726; Alan Dressler Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101 ABSTRACT We describe a program of surface brightness fluctuation (SBF) measurements for determining galaxy distances. This paper presents the photometric calibration of our sample and of SBF in general. Basing our zero point on observations of Cepheid variable stars we find that the absolute SBF magnitude in the Kron-Cousins I band correlates well with the mean (V −I)0 color of a galaxy according to M I =(−1.74 ± 0.07) + (4.5 ± 0.25) [(V −I)0 − 1.15] for 1.0 < (V −I) < 1.3. This agrees well with theoretical estimates from stellar popula- tion models. Comparisons between SBF distances and a variety of other estimators, including Cepheid variable stars, the Planetary Nebula Luminosity Function (PNLF), Tully-Fisher (TF), Dn−σ, SNII, and SNIa, demonstrate that the calibration of SBF is universally valid and that SBF error estimates are accurate. The zero point given by Cepheids, PNLF, TF (both calibrated using Cepheids), and SNII is in units of Mpc; the zero point given by TF (referenced to a distant frame), Dn−σ, and SNIa is in terms of a Hubble expan- sion velocity expressed in km/s. Tying together these two zero points yields a Hubble constant of H0 =81±6 km/s/Mpc.
    [Show full text]
  • Lecture 6: Galaxy Dynamics (Basic) Elliptical Galaxy Dynamics
    Lecture 6: Galaxy Dynamics (Basic) • Basic dynamics of galaxies – Ellipticals, kinematically hot random orbit systems – Spirals, kinematically cool rotating system • Key relations: – The fundamental plane of ellipticals/bulges – The Faber-Jackson relation for ellipticals/bulges – The Tully-Fisher for spirals disks • Using FJ and TF to calculate distances – The extragalactic distance ladder – Examples 1 Elliptical galaxy dynamics • Ellipticals are triaxial spheroids • No rotation, no flattened plane • Typically we can measure a velocity dispersion, σ – I.e., the integrated motions of the stars • Dynamics analogous to a gravitational bound cloud of gas (I.e., an isothermal sphere). • I.e., dp GM(r)ρ(r) HYDROSTATIC − = EQUILIBRIUM dr r2 Check Wikipedia “Hydrostatic PRESSURE FORCE GRAVITATIONAL FORCE Equilibrium” to see PER UNIT VOLUME PER UNIT VOLUME deriiation. € 2 1 Elliptical galaxy dynamics • For an isothermal sphere gas pressure is given by: 2 Reminder from p = ρ(r)σ Thermodynamics: P=nRT/V=ρT, 1 E=(3/2)kT=(1/2)mv^2 ρ(r) ∝ r2 σ 2 GM(r) 2 ⇒ 3 ∝ 4 2σ r r r M(r) = G M(r) ∝σ 2r € 3 € Elliptical galaxy dynamics • As E/S0s are centrally concentrated if σ is measured over sufficient area M(r)=>M, I.e., Total Mass ∝σ 2r • σ is measured from either: – Radial velocity distributions from individual stellar spectra – From line widths€ in integrated galaxy spectra [See Galactic Astronomy, Binney & Merrifield for details on how these are measured in practice] 4 2 Elliptical galaxy dynamices • We have three measureable quantities: – L = luminosity (or magnitude) – Re = effective or half-light radius – σ = velocity dispersion • From these we can derive Σο the central surface brightness (nb: one of these four is redundant as its calculable from the others.) • How are these related observationally and theoretically ? x y • I.e., what does: L ∝ Σ o σ ν look like ? Σο Log logL THE FUNDAMENTAL PLANE € Logσ 5 Fundamental Plane Theory 2 (I.e., stars behaving as if isothermal sphere) IF σν ∝ M Re 2 Surf.
    [Show full text]
  • Isolated Elliptical Galaxies in the Local Universe
    A&A 588, A79 (2016) Astronomy DOI: 10.1051/0004-6361/201527844 & c ESO 2016 Astrophysics Isolated elliptical galaxies in the local Universe I. Lacerna1,2,3, H. M. Hernández-Toledo4 , V. Avila-Reese4, J. Abonza-Sane4, and A. del Olmo5 1 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Santiago, Chile e-mail: [email protected] 2 Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Santiago, Chile 3 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 4 Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F., Mexico 5 Instituto de Astrofísica de Andalucía IAA – CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain Received 26 November 2015 / Accepted 6 January 2016 ABSTRACT Context. We have studied a sample of 89 very isolated, elliptical galaxies at z < 0.08 and compared their properties with elliptical galaxies located in a high-density environment such as the Coma supercluster. Aims. Our aim is to probe the role of environment on the morphological transformation and quenching of elliptical galaxies as a function of mass. In addition, we elucidate the nature of a particular set of blue and star-forming isolated ellipticals identified here. Methods. We studied physical properties of ellipticals, such as color, specific star formation rate, galaxy size, and stellar age, as a function of stellar mass and environment based on SDSS data. We analyzed the blue and star-forming isolated ellipticals in more detail, through photometric characterization using GALFIT, and infer their star formation history using STARLIGHT.
    [Show full text]
  • Chapter 1 the PHYSICS of CLUSTER MERGERS
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server To appear in Merging Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G. Giovannini (Dordrecht: Kluwer), in press (2001) Chapter 1 THE PHYSICS OF CLUSTER MERGERS Craig L. Sarazin Department of Astronomy University of Virginia [email protected] Abstract Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Some of the basic physical proper- ties of mergers will be discussed, with an emphasis on simple analytic arguments rather than numerical simulations. Semi-analytic estimates of merger rates are reviewed, and a simple treatment of the kinematics of binary mergers is given. Mergers drive shocks into the intracluster medium, and these shocks heat the gas and should also accelerate non- thermal relativistic particles. X-ray observations of shocks can be used to determine the geometry and kinematics of the merger. Many clus- ters contain cooling flow cores; the hydrodynamical interactions of these cores with the hotter, less dense gas during mergers are discussed. As a result of particle acceleration in shocks, clusters of galaxies should con- tain very large populations of relativistic electrons and ions. Electrons 2 with Lorentz factors γ 300 (energies E = γmec 150 MeV) are expected to be particularly∼ common. Observations and∼ models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these mergers are described.
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Spatially Resolved Spectroscopy of Coma Cluster Early–Type Galaxies
    ASTRONOMY & ASTROPHYSICS FEBRUARY I 2000, PAGE 449 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 141, 449–468 (2000) Spatially resolved spectroscopy of Coma cluster early–type galaxies I. The database ? D. Mehlert1,2,??,???,????, R.P. Saglia1,R.Bender1,andG.Wegner3 1 Universit¨atssternwarte M¨unchen, 81679 M¨unchen, Germany 2 Present address: Landessternwarte Heidelberg, 69117 Heidelberg, Germany 3 Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528, U.S.A. Received March 8; accepted September 30, 1999 Abstract. We present long slit spectra for a magnitude Key words: galaxies: elliptical and lenticular, cD; limited sample of 35 E and S0 galaxies of the Coma cluster. kinematics and dynamics; stellar content; abundances; The high quality of the data allowed us to derive spatially formation resolved spectra for a substantial sample of Coma galaxies for the first time. From these spectra we obtained rota- tion curves, the velocity dispersion profiles and the H3 and H4 coefficients of the Hermite decomposition of the 1. Introduction line of sight velocity distribution. Moreover, we derive the radial line index profiles of Mg, Fe and Hβ line indices This is the first of a series of papers aiming at investi- out to R ≈ 1re − 3re with high signal-to-noise ratio. We gating the stellar populations, the radial distribution and describe the galaxy sample, the observations and data re- the dynamics of early-type galaxies as a function of the duction, and present the spectroscopic database. Ground- environmental density. Spanning about 4 decades in den- based photometry for a subsample of 8 galaxies is also sity, the Coma cluster is the ideal place to perform such a presented.
    [Show full text]
  • GMRT 610 Mhz Observations of Galaxy Clusters in the ACT Equatorial Sample
    MNRAS 000,1{26 (2018) Preprint 20 March 2019 Compiled using MNRAS LATEX style file v3.0 GMRT 610 MHz observations of galaxy clusters in the ACT equatorial sample Kenda Knowles,1? Andrew J. Baker,2 J. Richard Bond,3 Patricio A. Gallardo,4 Neeraj Gupta,5 Matt Hilton,1 John P. Hughes,2 Huib Intema,6 Carlos H. L´opez- Caraballo,7;8 Kavilan Moodley,1 Benjamin L. Schmitt,9 Jonathan Sievers,10 Crist´obal Sif´on,4;11 Edward Wollack,12 1Astrophysics & Cosmology Research Unit, School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban, 3690, South Africa 2Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA 3Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON, M5S 3H8, Canada 4Department of Physics, Cornell University, Ithaca, NY USA 5IUCAA, Post Bag 4, Ganeshkhind, Pune 411007, India 6Leiden Observatory, Leiden University, PO Box 9513, NL2300 RA Leiden, Netherlands 7Instituto de Astrof´ısica and Centro de Astro-Ingenier´ıa, Facultad de F´ısica, Pontificia Universidad Cat´olica de Chile, Av. Vicu~na Mackenna 4860, 7820436 Macul, Santiago, Chile 8Departamento de Matem´aticas, Universidad de La Serena, Av. Juan Cisternas 1200, La Serena, Chile 9Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA 10Astrophysics & Cosmology Research Unit, School of Chemistry & Physics, University of KwaZulu-Natal, Durban, 3690, South Africa 11Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA 12NASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA Accepted XXX.
    [Show full text]