Evaluation and Prediction of Corn Stover Biomass and Composition from Commercially Available Corn Hybrids Ty Jason Barten Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation and Prediction of Corn Stover Biomass and Composition from Commercially Available Corn Hybrids Ty Jason Barten Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Evaluation and prediction of corn stover biomass and composition from commercially available corn hybrids Ty Jason Barten Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Barten, Ty Jason, "Evaluation and prediction of corn stover biomass and composition from commercially available corn hybrids" (2013). Graduate Theses and Dissertations. 13347. https://lib.dr.iastate.edu/etd/13347 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Evaluation and prediction of corn stover biomass and composition from commercially available corn hybrids by Ty Jason Barten A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Crop Production and Physiology Program of Study Committee: Kenneth Moore, Major Professor Emily Heaton Allen Knapp Kendall Lamkey Fernando Miguez Iowa State University Ames, Iowa 2013 Copyright © Ty Jason Barten, 2013. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES ........................................................................................................ iv LIST OF TABLES .......................................................................................................... vi NOMENCLATURE ....................................................................................................... vii ACKNOWLEDGEMENTS ............................................................................................. viii ABSTRACT .................................................................................................................. x CHAPTER 1 REVIEW OF LITERATURE ....................................................................... 1 Introduction ........................................................................................................ 1 Composition of Corn Stover ............................................................................... 4 Collection and Fractionation ............................................................................... 8 Sustainable Collection of Corn Stover ................................................................ 9 Allometry ....................................................................................................... 17 Harvest Index ..................................................................................................... 24 References ...................................................................................................... 32 CHAPTER 2 VARIATION IN BIOMASS YIELD AND CHEMICAL COMPOSITION OF CORN STOVER .............................................................................. 37 Abstract ........................................................................................................ 37 Introduction ........................................................................................................ 38 Materials and Methods ....................................................................................... 40 Results ........................................................................................................ 45 Discussion ........................................................................................................ 51 Conclusions ........................................................................................................ 53 References ........................................................................................................ 54 iii Page CHAPTER 3 UTILITY OF HARVEST INDEX TO PREDICT STOVER BIOMASS IN CORN HYBRIDS ............................................................................................. 63 Abstract ........................................................................................................ 63 Introduction ........................................................................................................ 64 Materials and Methods ....................................................................................... 71 Results and Discussion ........................................................................................ 73 Conclusions ........................................................................................................ 77 References ........................................................................................................ 80 CHAPTER 4 DEVELOPMENT OF AN ALLOMETRIC MODEL TO QUANTIFY CORN STOVER BIOMASS ......................................................................... 86 Abstract ........................................................................................................ 86 Introduction ........................................................................................................ 87 Materials and Methods ....................................................................................... 92 Results and Discussion ........................................................................................ 97 Conclusions ........................................................................................................ 103 References ........................................................................................................ 106 CHAPTER 5 SUMMARY AND CONCLUSIONS .................................................... 121 Summary ............................................................................................................ 121 Conclusions ........................................................................................................ 122 References ......................................................................................................... 126 APPENDIX A Chapter II Supporting Data ................................................................ 127 APPENDIX B Chapter IV Supporting Data .............................................................. 142 iv LIST OF FIGURES Page Figure 2-1 Fractional masses of all stover samples collected across all locations just before grain harvest in 2008 and 2009. .................... 59 Figure 2-2 Moisture of plant fractions across all locations and hybrids just before grain harvest. ....................................................................... 60 Figure 2-3 Fiber and ash composition distribution of plant fractions before grain harvest .................................................................................... 61 Figure 2-4 Elemental macro-nutrient concentration of stover fractions on a dry matter basis ............................................................................. 62 Figure 3-1 Harvest Index by plant population density and year ..................... 82 Figure 3-2 Harvest index by yield level attained in each plot by planting density in 2011 ................................................................................ 83 Figure 3-3 Harvest index by yield level attained in each plot by planting density in 2012 ................................................................................ 84 Figure 3-4 Prediction of stover biomass using a static harvest index of 0.52 kg kg-1 and grain mass from plots sampled in 2011 and 2012 ........ 85 Figure 4-1 Fractional stover masses for the 2011 and 2012 allometric model data set ........................................................................................... 109 Figure 4-2 Actual total stover (kg ha-1) DMB vs. predicted (kg ha-1) from the three predictive MLR for each fraction (stalk, cob, husk) evaluated in the model data set. .................................................... 110 Figure 4-3 Actual stalk mass (kg ha-1) vs. predicted for the model data set .... 111 Figure 4-4 Actual vs. predicted cob mass (kg ha-1) from model data set ........ 112 Figure 4-5 Actual vs. predicted husk mass (kg ha-1) from model data set. ...... 113 v Figure 4-6 Actual total stover weight (kg ha-1) vs. predicted for the validation data set ........................................................................................... 114 Figure 4-7 Actual stalk fraction weight (kg ha-1) vs. predicted for the validation data set. .......................................................................... 115 Figure 4-8 Actual cob weight (kg ha-1) vs. predicted for the validation data set. ........................................................................................... 116 Figure 4-9 Actual husk weight (kg ha-1) vs. predicted for the validation data set ............................................................................................ 117 Figure 4-10 Plot of model data set for single plant OD stalk biomass vs. calculated volume .......................................................................... 118 vi LIST OF TABLES Page Table 2-1 Descriptive table of entries sampled by year and the subsequent data analysis .................................................................................. 57 Table 2-2 Summary statistics for dry matter of stover fractions and mean concentration values for moisture,
Recommended publications
  • Races of Maize in Bolivia
    RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E. David H. Timothy Efraín DÍaz B. U. J. Grant in collaboration with G. Edward Nicholson Edgar Anderson William L. Brown NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 747 Funds were provided for publication by a contract between the National Academythis of Sciences -National Research Council and The Institute of Inter-American Affairs of the International Cooperation Administration. The grant was made the of the Committee on Preservation of Indigenousfor Strainswork of Maize, under the Agricultural Board, a part of the Division of Biology and Agriculture of the National Academy of Sciences - National Research Council. RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E., David H. Timothy, Efraín Díaz B., and U. J. Grant in collaboration with G. Edward Nicholson Calle, Edgar Anderson, and William L. Brown Publication 747 NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1960 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES- NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Claud L. Horn Paul C. Mangelsdorf William L. Brown Merle T. Jenkins G. H. Stringfield C. O. Erlanson George F. Sprague Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS -NRC Publication 453 I957 Price $1.50 RACES OF MAIZE IN COLOMBIA M. Roberts, U. J. Grant, Ricardo Ramírez E., L. W. H. Hatheway, and D. L. Smith in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 510 1957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E.
    [Show full text]
  • Striga Hermonthica) GROWTH in ACID SOILS of KAKAMEGA AND
    EFFECTS OF LIME AND INORGANIC FERTILIZERS ON MAIZE YIELD AND STRIGA (Striga hermonthica) GROWTH IN ACID SOILS OF KAKAMEGA AND SIAYA COUNTIES, KENYA DAVID MBAKAYA A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN SOIL SCIENCE SCHOOL OF AGRICULTURE AND BIOTECHNOLOGY UNIVERSITY OF ELDORET, KENYA 2015 ii DECLARATION Declaration by the Candidate This thesis is my original work and has not been submitted for any academic award in any institution; and shall not be reproduced in part or full, or in any format without prior written permission from the author and/or University of Eldoret. Mbakaya David Signature ……………..… Date………….…. AGR/D.PHIL/05/09 Declaration by Supervisors This thesis has been submitted with our approval as University supervisors. Prof. John Robert Okalebo Signature ……………..… Date………….. University of Eldoret, Kenya Dr. Cornelius Serrem Signature ……………..… Date………….… University of Eldoret, Kenya Dr. George Ayaga Signature ……………..… Date………….…. Kenya Agricultural and Livestock Research Organization iii DEDICATION This Thesis is dedicated to Linet Nanjala Kisiangani, Rose Mukasia Mungahu and my children Diana Nasimiyu, Faith Nekesa, Defin Nelima, Glory Neema, Asaph Sipha and Abigail Afua for their encouragement, patience and understanding. The thesis is further dedicated to my surviving brother; Namukholi Mbakaya and sisters Ruth Werengekha and Perita Khasoa for their encouragement. It is also dedicated to my dear late father and mother Kepha Muse and Dina Namasindakusi respectively, brothers Luther Khaemba, Hebron Mbakaya and Francis Waswa, sister Sarah Nakhanu and maternal uncle Sikuku Wanakhoba, who passed on before enjoying the fruits of my achievement. To God is all the glory forever.
    [Show full text]
  • Table of Contents
    Table of Contents Foreword . 2 Introduction. 3 Industrial Uses of Refined Corn Products . 7 Industrial Markets for Starch and Corn-derived Chemicals . 11 The Enzyme Advantage . 15 Plastics from Corn—The Vision Becomes Reality . 19 Renewable Resources Bring Sustainability to DuPont’s Newest Polymer Platform . 22 Corn Industry Statistics Shipments of Products of the Corn Refining Industry - 2000 . 3 Member Company Products . 5 Corn for Grain: Yield and Production . 14 Corn: Food and Industrial Uses . 16 U.S. Per Capita Sweetener Consumption . 18 World Corn Production, Consumption and Stocks . 21 Corn: Supply and Disappearance . 23 Exports of Products from Corn . 24 2001 Corn Annual Foreword The 2001 Corn Annual focuses on industrial uses and markets for refined corn products. Of the tradi- tional products of the industry—corn starch, sweeteners, oil and feedstuffs—starch has been the leader in industrial applications. In several industrial sectors, the use of starch is well established, but development of new uses and the extension of existing applications continue. Applications for sweeteners are rooted in food manufacturing, but advances in processing technology have opened several opportunities. By exploring the uses of starch in the established sectors of paper, adhesives and textiles, we hope to convey a better understanding of how starch can advance the production process. The review is also intended to provide an appreciation for product characteristics attributable to starch. An examination of the current and potential industrial markets for corn starch and corn-derived Charles F. Conner chemicals shows promising growth for the corn wet milling industry. This market analysis is President intended to provide insight to the dynamic of the relationship between supplier and consumer Corn Refiners as well as identify the factors that will influence growth.
    [Show full text]
  • Download and Print the Local Producers Guide (PDF)
    Southwest Minnesota Local Food Guide WORKING TOGETHER TO BUILD HEALTH IN THE ECONOMY, ENVIRONMENT, AND PEOPLE OF THE SOUTHWEST MINNESOTA FOODSHED. ACKNOWLEDGMENTS This book was compiled to encourage and enable health-wise and ecologically-smart purchasing decisions in our local SW Minnesota food system. We want people to eat well. It was compiled to honor, encourage, and make visible those brave and committed souls who work hands-on with the natural systems to make available to our whole community the health-enhancing food that can be grown right in our own richly-blessed biome. We are lucky to have you here. We also honor those whose work is already in progress to make it convenient for our communities and our children to choose the foods that will help make them healthy and happy. Special thanks to those who have formed up Farmers’ Markets in their towns, and thanks to the city governments and regular customers who support them. And huge Thanks to those School Food Service Directors who stand at the ready to buy and serve locally sourced food to our children when- ever they can. You are improving the future of our food culture with every nutrient-dense food-choice you present. Special thanks to Land Stewardship Project for leading the way over the years, showing us steps toward collaboration as a tool in establishing better local food systems. Thanks to Dakota Rural Action for leading by example, developing an area producers directory, getting that catalog on the internet for ease of ordering, and by willingly sharing their information and experience.
    [Show full text]
  • Root-Hair Endophyte Stacking in Finger Millet Creates a Physicochemical Barrier to Trap the Fungal Pathogen Fusarium Graminearum
    UC Davis UC Davis Previously Published Works Title Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Permalink https://escholarship.org/uc/item/7b87c4z1 Journal Nature microbiology, 1(12) ISSN 2058-5276 Authors Mousa, Walaa K Shearer, Charles Limay-Rios, Victor et al. Publication Date 2016-09-26 DOI 10.1038/nmicrobiol.2016.167 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES PUBLISHED: 26 SEPTEMBER 2016 | ARTICLE NUMBER: 16167 | DOI: 10.1038/NMICROBIOL.2016.167 Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum Walaa K. Mousa1,2, Charles Shearer1, Victor Limay-Rios3, Cassie L. Ettinger4,JonathanA.Eisen4 and Manish N. Raizada1* The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host–endophyte– pathogen co-evolution.
    [Show full text]
  • Biosecurity Preparedness Needed for FMD by Dr
    Preparation key to Mundt’s Excellence in Agriculture award By Donna Sullivan, Editor I moved here to Kansas crease the availability of In a time when meet- I got connected with the broadband internet. “If ings have been canceled Pratt County Farm Bureau the sky was the limit and or presented virtually due and the collegiate chap- I had all the resources, I to the COVID-19 pandem- ter,” she said. Her commu- would deploy broadband ic, the 102nd American nity involvement includes to every home in Ameri- Farm Bureau Federation helping with 4-H, FFA, the ca,” she said. “Issues like convention held January collegiate Farm Bureau that drive me more than 10-13 was no exception. chapter at Pratt County recognition. When I think Farmers, ranchers and in- Community College and of the opportunities we dustry professionals still serving on the Chamber of miss on our farm and what met to discuss issues im- Commerce Board. rural America could gain portant to agriculture, it “One of the benefits of if they had that connection was just from computers the competition, whether – people deserve that the in their homes and offices you win or not, is it re- same as water and elec- rather than the San Diego ally does make you think tricity, to level the playing Convention Center as orig- about, how am I making field for rural communi- inally planned. a contribution?” she re- ties.” Contests were held via lated. “What is the true A lifetime of hard work Zoom as well, one of which impact I am trying to make and a whole lot of prepa- was the Excellence in here? How can I tell my ration put Mundt in the Agriculture competition, story and how can I be position to compete for which recognizes young more effective?” and win the Excellence Farm Bureau members While awards are nice, in Agriculture Award, who are active in their it’s the actual impact of but she deeply respects communities and avid sup- her work that Mundt most the work being done by porters of agriculture, but values.
    [Show full text]
  • Adoption of Maize and Wheat Technologies in Eastern Africa: a Synthesis of the Findings of 22 Case Studies
    ISSN: 0258-8587 E C O N O M I C S W O R K I N G P A P E R 0 3 - 0 1 Adoption of Maize and Wheat Technologies in Eastern Africa: A Synthesis of the Findings of 22 Case Studies CHERYL DOSS, WILFRED MWANGI, HUGO VERKUIJL, AND HUGO DE GROOTE Apartado Postal 6-641, 06600 México, D.F., México Worldwide Web site: www.cimmyt.org E C O N O M I C S Working Paper 03-01 Adoption of Maize and Wheat Technologies in Eastern Africa: A Synthesis of the Findings of 22 Case Studies Cheryl Doss, Wilfred Mwangi, Hugo Verkuijl, and Hugo de Groote* * International Maize and Wheat Improvement Center (CIMMYT), Apartado Postal 6-641, 06600 Mexico, D.F., Mexico. The views expressed in this paper are the authors’ and do not necessarily reflect the views of CIMMYT. 34 CIMMYT® (www.cimmyt.org) is an internationally funded, nonprofit, scientific research and training organization. Headquartered in Mexico, CIMMYT works with agricultural research institutions worldwide to improve the productivity, profitability, and sustainability of maize and wheat systems for poor farmers in developing countries. It is one of 16 food and environmental organizations known as the Future Harvest Centers. Located around the world, the Future Harvest Centers conduct research in partnership with farmers, scientists, and policymakers to help alleviate poverty and increase food security while protecting natural resources. The centers are supported by the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org), whose members include nearly 60 countries, private foundations, and regional and international organizations.
    [Show full text]
  • Evaluating the Environmental Impact of Corn Stover Collection for Biofuels Production Thesis Presented in Partial Fulfillment O
    Evaluating the Environmental Impact of Corn Stover Collection for Biofuels Production Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University. By Asmita Khanal, B.E. Environmental Science Graduate Program The Ohio State University 2018 Master’s Examination Committee: Dr. Ajay Shah, Advisor Dr. Harold Keener Dr. Frederick Michel Dr. Shauna Brummet Copyright by Asmita Khanal 2018 Abstract Corn stover is the most readily available lignocellulosic feedstock for cellulosic biofuel production in the Midwestern U.S. Biofuels produced from corn stover could offset the environmental impact of fossil fuel combustion. Corn stover harvest for biofuels production removes potentially recyclable nutrients and carbon, increases the vulnerability of the soil to soil erosion, and produces emissions during harvest and collection due to operation and manufacture of the machinery, thus challenging the sustainability of the process. The main objective of this research was to evaluate the environmental impact of corn stover removal for biofuel production by first determining physical and compositional attributes of the corn stover in terms of dry matter, structural carbohydrates, lignin and nutrients, and then quantifying the environmental impact of corn stover collection for biofuel production. In 2016 and 2017, stover fractions below and above ear-level, and cobs contributed 42-56%, 31-38% and 13-18% to the total non-grain aboveground dry matter, respectively. Based on this dry matter contribution of the different fractions, three different corn stover removal scenarios were established: 1) removal of cobs, 2) removal of stover above ear level excluding cobs, and 3) removal of stover above half way between ground and ear level excluding cobs, to analyze the environmental impact in terms of greenhouse gases emissions in comparison to the base case scenario, i.e., no stover removal.
    [Show full text]
  • 47 Section 3 Maize (Zea Mays Subsp. Mays)
    SECTION 3 MAIZE (ZEA MAYS SUBSP. MAYS) 1. General Information Maize, or corn, is a member of the Maydeae tribe of the grass family, Poaceae. It is a robust monoecious annual plant, which requires the help of man to disperse its seeds for propagation and survival. Corn is the most efficient plant for capturing the energy of the sun and converting it into food, it has a great plasticity adapting to extreme and different conditions of humidity, sunlight, altitude, and temperature. It can only be crossed experimentally with the genus Tripsacum, however member species of its own genus (teosinte) easily hybridise with it under natural conditions. This document describes the particular condition of maize and its wild relatives, and the interactions between open-pollinated varieties and teosinte. It refers to the importance of preservation of native germplasm and it focuses on the singular conditions in its centre of origin and diversity. Several biological and socio-economic factors are considered important in the cultivation of maize and its diversity; therefore these are described as well. A. Use as a crop plant In industrialised countries maize is used for two purposes: 1) to feed animals, directly in the form of grain and forage or sold to the feed industry; and 2) as raw material for extractive industries. "In most industrialised countries, maize has little significance as human food" (Morris, 1998; Galinat, 1988; Shaw, 1988). In the European Union (EU) maize is used as feed as well as raw material for industrial products (Tsaftaris, 1995). Thus, maize breeders in the United States and the EU focus on agronomic traits for its use in the animal feed industry, and on a number of industrial traits such as: high fructose corn syrup, fuel alcohol, starch, glucose, and dextrose (Tsaftaris, 1995).
    [Show full text]
  • Designing and Engineering a New Biocomposite Material from Distillers' Grains and Bioplastics
    Designing and Engineering a New Biocomposite Material from Distillers’ Grains and Bioplastics by Nima Zarrinbakhsh A Thesis Presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Engineering Guelph, Ontario, Canada © Nima Zarrinbakhsh, May, 2014 ABSTRACT DESIGNING AND ENGINEERING A NEW BIOCOMPOSITE MATERIAL FROM DISTILLERS’ GRAINS AND BIOPLASTICS Nima Zarrinbakhsh Co-Advisors: University of Guelph, 2014 Dr. Manjusri Misra Dr. Amar K. Mohanty In recent years, the expansion of the corn ethanol industry has generated surplus amounts of solid coproducts mainly in the form of dried distillers’ grains with solubles (DDGS). In order to help economic viability and sustainability of the industry, research is being conducted to find new, more profitable applications for this coproduct besides its traditional usage as animal feed. In the present project, the capabilities of DDGS are evaluated for using as a filler and/or reinforcement in producing green biocomposites with a number of bioplastics. The bioplastics used here are partially originated from renewable resources with end-life biodegradability in compost conditions. The focus of this research is to design and engineer material formulations with balanced performance. Extrusion and injection molding techniques have been employed to produce the biocomposites and the performance of the produced materials was evaluated through several mechanical, thermomechanical and physical properties. The discussions are augmented with thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results are conclusive in that DDGS is a better filler for polymeric biocomposites when it undergoes a water treatment before processing with polymer melts.
    [Show full text]
  • An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011 Thomas Jenkins University of Arkansas, Fayetteville
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks@UARK University of Arkansas, Fayetteville ScholarWorks@UARK Biological and Agricultural Engineering Biological and Agricultural Engineering Undergraduate Honors Theses 5-2013 An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011 Thomas Jenkins University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/baeguht Recommended Citation Jenkins, Thomas, "An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011" (2013). Biological and Agricultural Engineering Undergraduate Honors Theses. 1. http://scholarworks.uark.edu/baeguht/1 This Thesis is brought to you for free and open access by the Biological and Agricultural Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Biological and Agricultural Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011 An Undergraduate Honors College Thesis in the Biological and Agricultural Engineering Department College of Engineering University of Arkansas Fayetteville, AR by Thomas Jenkins Faculty Mentor: Dr. Danielle Carrier April 26, 2013 1 2 Abstract The purpose of this research is to explore the possibility of siting a biorefinery that produces cellulosic ethanol in the Delta region of Arkansas, which is the main agricultural area of the state. Four major crops that the state of Arkansas produces on a yearly basis that could potentially be used for cellulosic ethanol production are: corn, rice, sorghum, and soybeans.
    [Show full text]
  • Source of the Soybean N Credit in Maize Production
    Plant and Soil 236: 175–184, 2001. 175 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Source of the soybean N credit in maize production L.E. Gentry1,F.E.Below2,3,M.B.David1 &J.A.Bergerou2 1Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 South Goodwin, Urbana, IL 6180, U.S.A. 2Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A. 3Corresponding author∗ Received 16 January 2001. Accepted in revised form 9 July 2001 2001 Key words: corn, crop rotation, maize, mineralization, residual nitrogen, soybean nitrogen credit Abstract Nitrogen response trials throughout the United States Corn Belt show that economic optimum rates of N fertiliza- tion are usually less for maize (Zea mays L.) following soybean (Glycine max L.) than for maize following maize; however, the cause of this rotation effect is not fully understood. The objective of this study was to investigate the source of the apparent N contribution from soybean to maize (soybean N credit) by comparing soil N mineralization rates in field plots of unfertilized maize that had either nodulated soybean, non-nodulated soybean, or maize as the previous crop. Crop yields, plant N accumulation, soil inorganic N, and net soil mineralization were measured. Both grain yield (6.3 vs. 2.8 Mg ha−1) and above-ground N accumulation (97 vs. 71 kg ha−1) were greatly increased when maize followed nodulated soybean compared with maize following maize. A partial benefit to yield and N accumulation was also observed for maize following non-nodulated soybean. Cumulative net soil N mineralization following nodulated soybean, non-nodulated soybean, and maize was 112, 92 and 79 kg N ha−1, respectively.
    [Show full text]