Freecad Spreadsheet to Points
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Leader in Advanced .Dwg Technology
October 17 2017 TEIGHA® DRAWINGS The leader in advanced .dwg technology www.opendesign.com Copyright © 2017 Open Design Alliance, All Rights Reserved BACKGROUND Teigha Drawings is a stand-alone independent SDK available for developers working with the .dwg, .dxf, and .dgn file formats. It was developed by Open Design Alliance (ODA), a technology consortium that has been providing interoperability tools for the engineering software industry since 1998. BUSINESS OVERVIEW INTRODUCTION ODA has a long history of experience with the .dwg file format, dating back to 1998. Our software has kept the .dwg file format open and universally accessible for the past 20 years. Today, in addition to providing interopera- bility, we are leveraging our vast experience with .dwg to make it a tool of choice for modern application development. INDUSTRY-PROVEN TECHNOLOGY Teigha Drawings has been powering thousands of mission critical engi- neering applications for more than a decade. It is a mature, high-quality and trusted solution for building CAD applications. ACCELERATE TIME-TO-MARKET In addition to turn-key support for .dwg and .dgn files, Teigha Drawings includes components for a variety of other common engineering tasks including version control, visualization and publishing. Using Teigha Drawings as a base, you can build more sophisticated applications in less time, using fewer resources. ATTRACTIVE LICENSING Teigha Drawings is offered under a fixed fee license with no royalties for cost-effective deployment. PRODUCT PORTFOLIO SUPPORTED FILE VERSIONS .dwg/.dxf -
Openscad User Manual (PDF)
OpenSCAD User Manual Contents 1 Introduction 1.1 Additional Resources 1.2 History 2 The OpenSCAD User Manual 3 The OpenSCAD Language Reference 4 Work in progress 5 Contents 6 Chapter 1 -- First Steps 6.1 Compiling and rendering our first model 6.2 See also 6.3 See also 6.3.1 There is no semicolon following the translate command 6.3.2 See Also 6.3.3 See Also 6.4 CGAL surfaces 6.5 CGAL grid only 6.6 The OpenCSG view 6.7 The Thrown Together View 6.8 See also 6.9 References 7 Chapter 2 -- The OpenSCAD User Interface 7.1 User Interface 7.1.1 Viewing area 7.1.2 Console window 7.1.3 Text editor 7.2 Interactive modification of the numerical value 7.3 View navigation 7.4 View setup 7.4.1 Render modes 7.4.1.1 OpenCSG (F9) 7.4.1.1.1 Implementation Details 7.4.1.2 CGAL (Surfaces and Grid, F10 and F11) 7.4.1.2.1 Implementation Details 7.4.2 View options 7.4.2.1 Show Edges (Ctrl+1) 7.4.2.2 Show Axes (Ctrl+2) 7.4.2.3 Show Crosshairs (Ctrl+3) 7.4.3 Animation 7.4.4 View alignment 7.5 Dodecahedron 7.6 Icosahedron 7.7 Half-pyramid 7.8 Bounding Box 7.9 Linear Extrude extended use examples 7.9.1 Linear Extrude with Scale as an interpolated function 7.9.2 Linear Extrude with Twist as an interpolated function 7.9.3 Linear Extrude with Twist and Scale as interpolated functions 7.10 Rocket 7.11 Horns 7.12 Strandbeest 7.13 Previous 7.14 Next 7.14.1 Command line usage 7.14.2 Export options 7.14.2.1 Camera and image output 7.14.3 Constants 7.14.4 Command to build required files 7.14.5 Processing all .scad files in a folder 7.14.6 Makefile example 7.14.6.1 Automatic -
Cost Estimating and BIM Techniques for Effective Application Session
Cost Estimating and BIM Techniques for Effective Application Session - S506 Ecobuild Fall 2008 [email protected] 1 Today’s Presenters Presenter Presenter Michael D. Dell’Isola George Aucamp, P.E., CVS, FRICS BSc. CM/PM Senior Vice President Project Manager, Faithful+Gould Inc. Faithful+Gould Inc. 2 Today’s Presentation Introduction Definitions, background and what’s driving the move to BIM Key BIM concepts and benefits BIM and BIM related Software Integrating BIM and cost estimating and project management Project examples Estimating Scheduling Constructability Discussion 3 Background BIM is a complicated and developing subject Connecting BIM to estimating and project management appears to be rather simple – it isn’t Today’s presentation and discussion will focus on procedures, methodology and business processes Technology is important but it is (or should be) a follower not a leader 4 Defining Building Information Modeling (BIM) Per NIBS A Building Information Model (BIM) is a digital representation of physical and functional characteristics of a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle from inception onward. 5 Why is BIM different from business as usual? BIM represents the shift away from analog/paper processes to digital processes for design, construction and operation. It uses model-based technology linked to an integrated project database. BIM means actually improving the process and not just doing the same things in a new way BIM is not just the electronic transfer of two dimensional documents; it is an intelligent, parametric, object oriented model-based approach. -
Metadefender Core V4.12.2
MetaDefender Core v4.12.2 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Scan Files with Metadefender Core 21 2. Installing or Upgrading Metadefender Core 22 2.1. Recommended System Requirements 22 System Requirements For Server 22 Browser Requirements for the Metadefender Core Management Console 24 2.2. Installing Metadefender 25 Installation 25 Installation notes 25 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 27 2.3. Upgrading MetaDefender Core 27 Upgrading from MetaDefender Core 3.x 27 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 28 2.4.1. Activating Metadefender Licenses 28 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2. -
Building Information Modeling (BIM) Standard & Guide
Building Information Modeling (BIM) Standard & Guide Version 1 – December 2014 No portion of this work may be reproduced without the express written permission of the copyright holders. All rights reserved by Florida International University. ` FIU BIM Specification ‐ Final 120814 Table of Contents INTRODUCTION ............................................................................................................................................. 4 Intent: ........................................................................................................................................................ 4 BIM Goals: ................................................................................................................................................. 4 BIM Uses: .................................................................................................................................................. 5 Capital planning support: ...................................................................................................................... 6 Pre‐Design and Programming ............................................................................................................... 6 Site Conditions ‐ Existing Conditions and New Construction ............................................................... 6 Architectural Model ‐ Spatial and Material Design Models .................................................................. 7 Space and Program Validation ............................................................................................................. -
Online Help Startpage
Online_Help_Startpage Online Help Startpage Welcome to the FreeCAD on-line help This document has been automatically created from the contents of the official FreeCAD wiki documentation, which can be read online at http://apps.sourceforge.net/mediawiki/free-cad/index.php?title=Main_Page . Since the wiki is actively maintained and continuously developed by the FreeCAD community of developers and users, you may find that the online version contains more or newer information than this document. But neverthless, we hope you will find here all information you need. In case you have questions you can't find answers for in this document, have a look on the FreeCAD forum, where you can maybe find your question answered, or someone able to help you. How to use This document is divided into several sections: introduction, usage, scripting and development, the last three address specifically the three broad categories of users of FreeCAD: end-users, who simply want to use the program, power-users, who are interested by the scripting capabilities of FreeCAD and would like to customize some of its aspects, and developers, who consider FreeCAD as a base for developing their own applications. If you are comletely new to FreeCAD, we suggest you to start simply from the introduction. Contribute As you may have experienced sometimes, programmers are really bad help writers! For them it is all completely clear because they made it that way. Therefore it's vital that experienced users help us to write and revise the documentation. Yes, we mean you! How, you ask? Just go to the Wiki at http://apps.sourceforge.net/mediawiki/free-cad/index.php in the User section. -
Microstation Powerdraft® Drafting Software for Your Most Demanding Projects
PRODUCT DATA SHEET CONNECT Edition MicroStation PowerDraft® Drafting Software for Your Most Demanding Projects Design and Document Quickly and Accurately With MicroStation PowerDraft, you have the power to design, document, and detail projects of any size or complexity. Whether you are an architect, engineer, constructor, or GIS professional, you can use MicroStation PowerDraft as a companion to any modeling or CAD design application. More than just computer-aided-drafting software, MicroStation PowerDraft enables you to develop and produce precise and rich physical and electronic deliverables easily and reliably. You can develop and document 2D CAD designs with an unmatched range of powerful, intelligent drafting and constraints tools. Unlike other technical drawing software, MicroStation PowerDraft enables you to produce polished drawings, schedules, and reports directly from 3D and BIM models. You can also automatically annotate and build reports based on object properties and take Use and precisely incorporate design data in nearly any format. models further by producing intelligent 3D PDFs. Incorporate Referenced Design Content Integrated Modeling and Documentation Workfl ows View and work with design information from others in real time using live The CONNECT Edition provides a common environment for comprehensive project referencing of 2D/3D DGN, DWG, and large image fi les, refreshed on demand. delivery and connects users, projects, and your enterprise. With the CONNECT You can even natively reference PDF fi les into your designs. Edition, you now have a personal portal to access learning, communities, Integrate Point Clouds and project information. You can also share personal fi les including i-models and Easily incorporate a wide range and scale of point-cloud data into the design PDFs directly from your desktop with other users, or stage them for easy access environment. -
Use of Building Information Modeling Technology in the Integration of the Handover Process and Facilities Management
USE OF BUILDING INFORMATION MODELING TECHNOLOGY IN THE INTEGRATION OF THE HANDOVER PROCESS AND FACILITIES MANAGEMENT by Sergio O. Alvarez-Romero A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering August, 2014 APPROVED: Guillermo Salazar, PhD, Major Advisor Leonard Albano, PhD, Committee Member Alfredo Di Mauro, AIA, Committee Member Laura Handler, LEED AP, Tocci Building Companies, Committee Member Fredrick Hart, PhD, Committee Member William Spratt, MSc FM, Committee Member John Tocci, CEO Tocci Building Companies, Tahar El-Korchi, PhD, Department Head Committee Member Abstract The operation and maintenance of a constructed facility takes place after the construction is finished. It is usually the longest phase in the lifecycle of the facility and the one that substantially contributes to its lifecycle cost. To efficiently manage the operation and maintenance of a facility, the staff in charge needs reliable and timely information to support decision making throughout the facility’s lifecycle. The use of Building Information Modeling (BIM) is gradually but steadily changing the way constructed facilities are designed and built. As a result of its use a significant amount of coordinated information is generated during this process and stored in the digital model. However, once the project is completed the owner does not necessarily receive full benefits from the model for future operation and maintenance of the facility. This research explores the information that in the context of educational facilities has value to the owner/operator and that can be delivered at the end of the construction stage through a BIM-enabled digital handover process. -
The Building Information Model in Facilities
THE BUILDING INFORMATION MODEL IN FACILITIES MANAGEMENT by Ronald O. Méndez A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Civil Engineering May 2006 APPROVED: _____________________________________________ Prof. Guillermo Salazar, Thesis Advisor _____________________________________________ Prof. Fabio Carrera, Committee Member _____________________________________________ Mr. John Miller, Committee Member Abstract The construction industry’s traditional resistance to incorporate change has prevented benefits from technological advancements to accrue. One area in which technology shows potential to benefit the industry is in addressing the existing communication gaps between the designer, builder, and owner. This gap is more evident in the operation and maintenance of a building. At project completion, an owner also receives information of the building. This information is comprised of as-built drawings, operation and maintenance manuals, warranties, and other documents. However, there is additional and valuable information for the owner generated throughout the design and construction process that goes unrecorded or is not passed unto the owner at project completion. The Building Information Model (BIM) is a digital collection of well coordinated information about the design and construction of a building in the form of an integrated database, where information is generated as the digital model is produced. The intent of the research -
Construction Operations Building Information Exchange (COBIE)
coordination view information exchange (cvie) E. William East, PE, PhD buildingSMART Alliance Project Coordinator 6‐Aug‐08 Contracted Information Exchange Demo 1 state of practice CAD(D) didn’t happen overnight… • 1982 first version AutoCAD • 1985 first version MicroStation • 1990 Intergraph, Bentley, and Autodesk sales nearing $100m (ref: Hooghouse, Jeff (2008) SAME Joint Engineer Training Conference, Minneapolis, MN) 6‐Aug‐08 Contracted Information Exchange Demo 2 state of practice Architects “have gone from just exploring (BIM) to using it on a majority of their projects – a tipping point liked reached.” Engineers “½ of engineers using BIM are using it for interference detection.” Contractors “expected to reach a tipping point in 2009” (ref: McGraww‐Hill (2007) “Smart Market Report on BIM” 6‐‐AugAug‐08‐08 Contracted Information Exchange Demo 33 for civil structures as well Pump Station (ref: USACE, Vicksburg District) Mitre Gate (ref: USACE, Huntsville District) Howard Hansen Fish Passage Facility (ref: USACE) 6‐‐AugAug‐08‐08 Contracted Information Exchange Demo 44 practical improvements? Initial use of BIM results in: “better coordination of documents, schedules, specs ‐ less errors/change orders” (ref: Pete Moriarty, IAI TAP presentation Feb‐2008) Project team: • “identified 590 conflicts • issues resolved prior to installation • additional cost avoided • enabled owner scope revisions” (ref: Michael Kenig, IAI TAP presentation Feb‐2008) 6‐‐AugAug‐08‐08 Contracted Information Exchange Demo 55 just like getting a new pair of glasses… which is better? A or B (ref: http://www.cfa.ilstu.edu/normal_editions/bramson_drawing.jpg) (ref: http://www.cadpipe.com/hvac/hvacColChk.html) 6‐Aug‐08 Contracted Information Exchange Demo 6 measurable goals? “to eliminate all construction‐ related change orders due to design‐related coordination issues. -
Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers. -
Openscad User Manual/Print Version Table of Contents Introduction First
OpenSCAD User Manual/Print version Table of Contents 1. Introduction 2. First Steps 3. The OpenSCAD User Interface 4. The OpenSCAD Language 1. General 2. Mathematical Operators 3. Mathematical Functions 4. String Functions 5. Primitive Solids 6. Transformations 7. Conditional and Iterator Functions 8. CSG Modelling 9. Modifier Characters 10. Modules 11. Include Statement 12. Other Language Feature 5. Using the 2D Subsystem 1. 2D Primitives 2. 3D to 2D Projection 3. 2D to 2D Extrusion 4. DXF Extrusion 5. Other 2D formats 6. STL Import and Export 1. STL Import 2. STL Export 7. Commented Example Projects 8. Using OpenSCAD in a command line environment 9. Building OpenSCAD from Sources 1. Building on Linux/UNIX 2. Cross-compiling for Windows on Linux or Mac OS X 3. Building on Windows 4. Building on Mac OS X 10. Libraries 11. Glossary 12. Index Introduction OpenSCAD is a software for creating solid 3D CAD objects. It is free software (http://www.gnu.org/philosophy/free-sw.html) and available for GNU/Linux (http://www.gnu.org/) , MS Windows and Apple OS X. Unlike most free software for creating 3D models (such as the well-known application Blender (http://www.blender.org/) ), OpenSCAD does not focus on the artistic aspects of 3D modelling, but instead focuses on the CAD aspects. So it might be the application you are looking for when you are planning to create 3D models of machine parts, but probably is not what you are looking for when you are more interested in creating computer- animated movies. OpenSCAD is not an interactive modeller.