Cardiac Surgery
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Clinical Excellence in Cardiology
Clinical Excellence in Cardiology Roy C. Ziegelstein, MD* A recent study identified 7 domains of clinical excellence on the basis of interviews with “clinically excellent” physicians at academic institutions in the United States: (1) commu- nication and interpersonal skills, (2) professionalism and humanism, (3) diagnostic acu- men, (4) skillful negotiation of the health care system, (5) knowledge, (6) taking a scholarly approach to clinical practice, and (7) having passion for clinical medicine. What constitutes clinical excellence in cardiology has not previously been defined. The author discusses clinical excellence in cardiology using the framework of these 7 domains and also considers the additional domain of clinical experience. Specific aspects of the domains of clinical excellence that are of greatest relevance to cardiology are highlighted. In conclusion, this discussion characterizes what constitutes clinical excellence in cardiology and should stimulate additional discussion of the topic and an examination of how the domains of clinical excellence in cardiology are related to specific patient outcomes. © 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;108:607–611) On the basis of interviews with 24 academic physicians and clinical excellence has not been clearly demonstrated. deemed “clinically excellent,” Christmas et al1 identified 7 For example, the compliance of hospitals with performance domains of clinical excellence relevant to all disciplines in measures is not associated with improved heart failure out- medicine: (1) communication and interpersonal skills, (2) comes.10,11 The speed with which an interventional cardi- professionalism and humanism, (3) diagnostic acumen, (4) ologist achieves reperfusion of the culprit vessel, the so- skillful negotiation of the health care system, (5) knowl- called door-to-balloon time, is an important performance edge, (6) taking a scholarly approach to clinical practice, measure in the treatment of patients with acute ST-segment and (7) having passion for clinical medicine. -
Differential Diagnosis of Pulmonic Stenosis by Means of Intracardiac Phonocardiography
Differential Diagnosis of Pulmonic Stenosis by Means of Intracardiac Phonocardiography Tadashi KAMBE, M.D., Tadayuki KATO, M.D., Norio HIBI, M.D., Yoichi FUKUI, M.D., Takemi ARAKAWA, M.D., Kinya NISHIMURA,M.D., Hiroshi TATEMATSU,M.D., Arata MIWA, M.D., Hisao TADA, M.D., and Nobuo SAKAMOTO,M.D. SUMMARY The purpose of the present paper is to describe the origin of the systolic murmur in pulmonic stenosis and to discuss the diagnostic pos- sibilities of intracardiac phonocardiography. Right heart catheterization was carried out with the aid of a double- lumen A.E.L. phonocatheter on 48 pulmonic stenosis patients with or without associated heart lesions. The diagnosis was confirmed by heart catheterization and angiocardiography in all cases and in 38 of them, by surgical intervention. Simultaneous phonocardiograms were recorded with intracardiac pressure tracings. In valvular pulmonic stenosis, the maximum ejection systolic murmur was localized in the pulmonary artery above the pulmonic valve and well transmitted to both right and left pulmonary arteries, the superior vena cava, and right and left atria. The maximal intensity of the ejection systolic murmur in infundibular stenosis was found in the outflow tract of right ventricle. The contractility of the infundibulum greatly contributes to the formation of the ejection systolic murmur in the outflow tract of right ventricle. In tetralogy of Fallot, the major systolic murmur is caused by the pulmonic stenosis, whereas the high ventricular septal defect is not responsible for it. In pulmonary branch stenosis, the sys- tolic murmur was recorded distally to the site of stenosis. Intracardiac phonocardiography has proved useful for the dif- ferential diagnosis of various types of pulmonic stenosis. -
Anemia in Heart Failure - from Guidelines to Controversies and Challenges
52 Education Anemia in heart failure - from guidelines to controversies and challenges Oana Sîrbu1,*, Mariana Floria1,*, Petru Dascalita*, Alexandra Stoica1,*, Paula Adascalitei, Victorita Sorodoc1,*, Laurentiu Sorodoc1,* *Grigore T. Popa University of Medicine and Pharmacy; Iasi-Romania 1Sf. Spiridon Emergency Hospital; Iasi-Romania ABSTRACT Anemia associated with heart failure is a frequent condition, which may lead to heart function deterioration by the activation of neuro-hormonal mechanisms. Therefore, a vicious circle is present in the relationship of heart failure and anemia. The consequence is reflected upon the pa- tients’ survival, quality of life, and hospital readmissions. Anemia and iron deficiency should be correctly diagnosed and treated in patients with heart failure. The etiology is multifactorial but certainly not fully understood. There is data suggesting that the following factors can cause ane- mia alone or in combination: iron deficiency, inflammation, erythropoietin levels, prescribed medication, hemodilution, and medullar dysfunc- tion. There is data suggesting the association among iron deficiency, inflammation, erythropoietin levels, prescribed medication, hemodilution, and medullar dysfunction. The main pathophysiologic mechanisms, with the strongest evidence-based medicine data, are iron deficiency and inflammation. In clinical practice, the etiology of anemia needs thorough evaluation for determining the best possible therapeutic course. In this context, we must correctly treat the patients’ diseases; according with the current guidelines we have now only one intravenous iron drug. This paper is focused on data about anemia in heart failure, from prevalence to optimal treatment, controversies, and challenges. (Anatol J Cardiol 2018; 20: 52-9) Keywords: anemia, heart failure, intravenous iron, ferric carboxymaltose, quality of life Introduction g/dL in men) (2). -
Training in Nuclear Cardiology
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL.65,NO.17,2015 ª 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 0735-1097/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jacc.2015.03.019 TRAINING STATEMENT COCATS 4 Task Force 6: Training in Nuclear Cardiology Endorsed by the American Society of Nuclear Cardiology Vasken Dilsizian, MD, FACC, Chair Todd D. Miller, MD, FACC James A. Arrighi, MD, FACC* Allen J. Solomon, MD, FACC Rose S. Cohen, MD, FACC James E. Udelson, MD, FACC, FASNC 1. INTRODUCTION ACC and ASNC, and addressed their comments. The document was revised and posted for public comment 1.1. Document Development Process from December 20, 2014, to January 6, 2015. Authors 1.1.1. Writing Committee Organization addressed additional comments from the public to complete the document. The final document was The Writing Committee was selected to represent the approved by the Task Force, COCATS Steering Com- American College of Cardiology (ACC) and the Amer- mittee, and ACC Competency Management Commit- ican Society of Nuclear Cardiology (ASNC) and tee; ratified by the ACC Board of Trustees in March, included a cardiovascular training program director; a 2015; and endorsed by the ASNC. This document is nuclear cardiology training program director; early- considered current until the ACC Competency Man- career experts; highly experienced specialists in agement Committee revises or withdraws it. both academic and community-based practice set- tings; and physicians experienced in defining and applying training standards according to the 6 general 1.2. Background and Scope competency domains promulgated by the Accredita- Nuclear cardiology provides important diagnostic and tion Council for Graduate Medical Education (ACGME) prognostic information that is an essential part of the and American Board of Medical Specialties (ABMS), knowledge base required of the well-trained cardiol- and endorsed by the American Board of Internal ogist for optimal management of the cardiovascular Medicine (ABIM). -
Essentials of Cardiology Timothy C
Th e Heart SECTION IV Essentials of Cardiology Timothy C. Slesnick, Ralph Gertler, and CHAPTER 14 Wanda C. Miller-Hance Congenital Heart Disease Evaluation of the Patient with a Cardiac Murmur Incidence Basic Interpretation of the Pediatric Segmental Approach to Diagnosis Electrocardiogram Physiologic Classifi cation of Defects Essentials of Cardiac Rhythm Interpretation and Acute Arrhythmia Management in Children Acquired Heart Disease Basic Rhythms Cardiomyopathies Conduction Disorders Myocarditis Cardiac Arrhythmias Rheumatic Fever and Rheumatic Heart Disease Pacemaker Therapy in the Pediatric Age Group Infective Endocarditis Pacemaker Nomenclature Kawasaki Disease Permanent Cardiac Pacing Cardiac Tumors Diagnostic Modalities in Pediatric Cardiology Heart Failure in Children Chest Radiography Defi nition and Pathophysiology Barium Swallow Etiology and Clinical Features Echocardiography Treatment Strategies Magnetic Resonance Imaging Syndromes, Associations, and Systemic Disorders: Cardiovascular Disease and Anesthetic Implications Computed Tomography Chromosomal Syndromes Cardiac Catheterization and Angiography Gene Deletion Syndromes Considerations in the Perioperative Care of Children with Cardiovascular Disease Single-Gene Defects General Issues Associations Clinical Condition and Status of Prior Repair Other Disorders Summary Selected Vascular Anomalies and Their Implications for Anesthetic Care Aberrant Subclavian Arteries Persistent Left Superior Vena Cava to Coronary Sinus Communication Congenital Heart Disease adulthood has become the expectation for most congenital car- diovascular malformations.3 At present it is estimated that there Incidence are more than a million adults with CHD in the United States, Estimates of the incidence of congenital heart disease (CHD) surpassing the number of children similarly aff ected for the fi rst range from 0.3% to 1.2% in live neonates.1 Th is represents the time in history. -
Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters
sensors Article Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters Charles Carlson 1,* , Vanessa-Rose Turpin 2, Ahmad Suliman 1 , Carl Ade 2, Steve Warren 1 and David E. Thompson 1 1 Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA; [email protected] (A.S.); [email protected] (S.W.); [email protected] (D.E.T.) 2 Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; [email protected] (V.-R.T.); [email protected] (C.A.) * Correspondence: [email protected] Abstract: Background: The goal of this work was to create a sharable dataset of heart-driven signals, including ballistocardiograms (BCGs) and time-aligned electrocardiograms (ECGs), photoplethysmo- grams (PPGs), and blood pressure waveforms. Methods: A custom, bed-based ballistocardiographic system is described in detail. Affiliated cardiopulmonary signals are acquired using a GE Datex CardioCap 5 patient monitor (which collects ECG and PPG data) and a Finapres Medical Systems Finometer PRO (which provides continuous reconstructed brachial artery pressure waveforms and derived cardiovascular parameters). Results: Data were collected from 40 participants, 4 of whom had been or were currently diagnosed with a heart condition at the time they enrolled in the study. An investigation revealed that features extracted from a BCG could be used to track changes in systolic blood pressure (Pearson correlation coefficient of 0.54 +/− 0.15), dP/dtmax (Pearson correlation coefficient of 0.51 +/− 0.18), and stroke volume (Pearson correlation coefficient of 0.54 +/− 0.17). Conclusion: A collection of synchronized, heart-driven signals, including BCGs, ECGs, PPGs, and blood pressure waveforms, was acquired and made publicly available. -
Cardiac Amyloidosis and Surgery. What Do We Know About Rare
Cardiac amyloidosis and surgery. What do we know about rare diseases? Carlos Mestres1 and Mathias van Hemelrijck2 1University Hospital Zurich 2UniversitatsSpital Zurich May 3, 2021 Commentary to JOCS-2020-RA-1888 JOCS-2020-RA-1888 Cardiac amyloidosis in non-transplant cardiac surgery Cardiac amyloidosis and surgery. What do we know about rare diseases? Running Title: Cardiac amyloidosis and cardiac surgery Carlos { A. Mestres MD PhD FETCS1, 2, Mathias Van Hemelrijck MD1 1 - Clinic of Cardiac Surgery, University Hospital Zurich,¨ Zurich¨ (Switzerland) 2 - Department of Cardiothoracic Surgery, The University of the Free State, Bloemfontein, (South Africa) Word count (All): 1173 Word count (Text): 774 Key words : Cardiac amyloidosis, cardiac surgery, rare disease Correspondence: Carlos A. Mestres, MD, PhD, FETCS Clinic for Cardiac Surgery University Hospital Zurich,¨ R¨amistrasse 100 CH 8091 Zurich¨ (Switzerland) Email: [email protected] Rare diseases are serious, chronic and potentialy lethal. The European Union (EU) definition of a rare disease is one that affects fewer than 5 in 10,000 people (1). In the EU, these rare diseases are estimated to affect up to 8% of the roughly 500 million population (2). In the United States, a rare disease is defined as a condition affecting fewer than 200,000 people in the US (3). This a definition created by Congress in the Orphan Drug Act of 1983 (4). Therefore, the estimates for the US are that 25-30 million people are affected by a rare disease. There are more than 6000 rare diseases and 80% are genetic disorders diagnosed during childhood. Despite all community efforts, there are still a lack of an universal definition of rare diseases. -
Heart Valve Disease: Mitral and Tricuspid Valves
Heart Valve Disease: Mitral and Tricuspid Valves Heart anatomy The heart has two sides, separated by an inner wall called the septum. The right side of the heart pumps blood to the lungs to pick up oxygen. The left side of the heart receives the oxygen- rich blood from the lungs and pumps it to the body. The heart has four chambers and four valves that regulate blood flow. The upper chambers are called the left and right atria, and the lower chambers are called the left and right ventricles. The mitral valve is located on the left side of the heart, between the left atrium and the left ventricle. This valve has two leaflets that allow blood to flow from the lungs to the heart. The tricuspid valve is located on the right side of the heart, between the right atrium and the right ventricle. This valve has three leaflets and its function is to Cardiac Surgery-MATRIx Program -1- prevent blood from leaking back into the right atrium. What is heart valve disease? In heart valve disease, one or more of the valves in your heart does not open or close properly. Heart valve problems may include: • Regurgitation (also called insufficiency)- In this condition, the valve leaflets don't close properly, causing blood to leak backward in your heart. • Stenosis- In valve stenosis, your valve leaflets become thick or stiff, and do not open wide enough. This reduces blood flow through the valve. Blausen.com staff-Own work, CC BY 3.0 Mitral valve disease The most common problems affecting the mitral valve are the inability for the valve to completely open (stenosis) or close (regurgitation). -
Cocats 4 (Pdf)
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL. 65, NO. 17, 2015 ª 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 0735-1097/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jacc.2015.03.017 TRAINING STATEMENT ACC 2015 Core Cardiovascular Training Statement (COCATS 4) (Revision of COCATS 3) A Report of the ACC Competency Management Committee Task Force Introduction/Steering Committee Task Force 3: Training in Electrocardiography, Members Jonathan L. Halperin, MD, FACC Ambulatory Electrocardiography, and Exercise Testing (and Society Eric S. Williams, MD, MACC Gary J. Balady, MD, FACC, Chair Representation) Valentin Fuster, MD, PHD, MACC Vincent J. Bufalino, MD, FACC Martha Gulati, MD, MS, FACC Task Force 1: Training in Ambulatory, Jeffrey T. Kuvin, MD, FACC Consultative, and Longitudinal Cardiovascular Care Lisa A. Mendes, MD, FACC Valentin Fuster, MD, PHD, MACC, Co-Chair Joseph L. Schuller, MD Jonathan L. Halperin, MD, FACC, Co-Chair Eric S. Williams, MD, MACC, Co-Chair Task Force 4: Training in Multimodality Imaging Nancy R. Cho, MD, FACC Jagat Narula, MD, PHD, MACC, Chair William F. Iobst, MD* Y.S. Chandrashekhar, MD, FACC Debabrata Mukherjee, MD, FACC Vasken Dilsizian, MD, FACC Prashant Vaishnava, MD Mario J. Garcia, MD, FACC Christopher M. Kramer, MD, FACC Task Force 2: Training in Preventive Shaista Malik, MD, PHD, FACC Cardiovascular Medicine Thomas Ryan, MD, FACC Sidney C. Smith, JR, MD, FACC, Chair Soma Sen, MBBS, FACC Vera Bittner, MD, FACC Joseph C. Wu, MD, PHD, FACC J. Michael Gaziano, MD, FACC John C. Giacomini, MD, FACC Quinn R. Pack, MD Donna M. -
Cardiac Surgery a Guide for Patients and Their Families Welcome to the Johns Hopkins Hospital
HEART AND VASCULAR INSTITUTE Cardiac Surgery A guide for patients and their families Welcome to The Johns Hopkins Hospital We are providing this book to you and your family to guide you through your surgical experience at the Johns Hopkins Heart and Vascular Institute. The physicians, nurses and other health care team members strive to provide you with the safest and best medical care possible. Please do not hesitate to ask your surgeon, nurse or other health care team member any questions before, during and after your operation. The booklet consists of two major sections. The first section informs you about the surgery and preparing for the hospital stay. The second section prepares you for the recovery period after surgery in the hospital and at home. TABLE OF CONTENTS Welcome to Johns Hopkins Cardiac Surgery 1 The Function of the Heart 2 Who’s Taking Care of You 3 Heart Surgery 4 Preparation for Surgery 5 Preoperative Testing and Surgical Consultation 7 The Morning of Surgery 9 After Surgery 10 Going Home After Cardiac Surgery 19 How We Help with Appointments and 24 Other Arrangements for Out-of-Town Patients Appendix 25 Looking back, it was the choice of my life. It’s not easy to put your heart in someone else’s hands. But for me, the choice was clear: I trusted it to Hopkins. My Heart. My Choice Patient Lou Grasmick, Founder & CEO, Louis J. Grasmick Lumber Company, Inc. Welcome to Johns Hopkins Cardiac Surgery The Johns Hopkins Hospital has a distinguished history of advancements in the treat- ment of cardiovascular diseases in adults and children, beginning with the Blalock-Taussig shunt in 1944. -
Cover Title Is Vesta Std Regular 48/52 with 45Pt After. 2020 Facility And
2020 Facility and Physician Cover title is Vesta Billing Guide Std Regular 48/52 Surgicalwith Heart Valve45pt Therapy after. Cover subtitle is Vesta Std Regular 18/22. Surgical Valve Repair and Replacement Procedures Physician Billing Codes Clinicians use Current Procedural Terminology (CPT)1 codes to bill for procedures and services. Each CPT code is assigned unique Relative Value Units (RVUs), which are used to determine payment by the Centers for Medicare & Medicaid Services (CMS) and other payers. Some commonly billed CPT codes used to describe procedures related to Edwards Lifesciences’ Heart Valve technologies are listed below.2 This list may not be comprehensive or complete. These procedures may be subject to the CMS multiple procedure reduction rule. When applicable, a payment reduction of 50% is applied to all payment amounts except the procedure with the greatest RVUs, which is paid at 100% unless exempt by CPT instructions or payer policy. Medicare National Average CPT Code Description Physician Payment3 Facility Setting Aortic 33390 Valvuloplasty, aortic valve, open, with cardiopulmonary bypass; simple $2,018 (ie, valvotomy, debridement, debulking, and/or simple commissural resuspension) 33391 Valvuloplasty, aortic valve, open, with cardiopulmonary bypass; complex $2,398 (eg, leaflet extension, leaflet resection, leaflet reconstruction, or annuloplasty) 33405 Replacement, aortic valve, open, with cardiopulmonary bypass; with prosthetic valve other $2,373 than homograft or stentless valve 33406 Replacement, aortic valve, open, -
Anaesthesia for Cardiac Surgery Most Adult Heart Surgery in Australia and New Zealand Is Performed for Coronary Artery Disease and Heart Valve Disease
Anaesthesia for cardiac surgery Most adult heart surgery in Australia and New Zealand is performed for coronary artery disease and heart valve disease. Cardiac surgery is done under general anaesthesia, which means the patient is in a state of carefully controlled, medication-induced unconsciousness and will not respond to pain. It includes changes in breathing and circulation. In most cases, patients are admitted to hospital the day before surgery and undergo relevant investigations, such as blood tests and x-rays. Before the operation It is important that you speak to your doctor about whether you should stop eating and drinking before your anaesthetic. The anaesthetist will also need information such as: • Any recent coughs, colds or fevers. • Any previous anaesthetics or family problems with anaesthesia. • Abnormal reactions or allergies to drugs. • Any history of asthma, bronchitis, heart problems or other medical problems. • Any medications you may be taking. What to expect On the morning of the operation, patients may be given a “pre-med”, or medication to reduce anxiety; however, they will be conscious when they arrive at the operating theatre complex. All valve surgery and most coronary bypass surgery is performed on a non-beating heart. Because the body requires oxygen, which is carried by circulating blood, a machine temporarily takes over the function of the lungs and the heart to pump blood around the body. This machine is called a heart- lung machine or cardiopulmonary bypass machine. Specialist anaesthetists and cardiac perfusionists may work together to manage this machine during the operation. Some coronary artery bypass surgery is done without cardiopulmonary bypass.