Redalyc.Oral Fluphenazine Versus Placebo for Schizophrenia

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Oral Fluphenazine Versus Placebo for Schizophrenia Revista Colombiana de Psiquiatría ISSN: 0034-7450 [email protected] Asociación Colombiana de Psiquiatría Colombia El-Din Matar, Hosam; Qutayba Almerie, Muhammad; Giraldo, Ana María; Adams, Clive E. Oral fluphenazine versus placebo for schizophrenia: a Cochrane systematic review of 40 years of randomised controlled trials Revista Colombiana de Psiquiatría, vol. XXXVI, núm. 1, 2007, pp. 8-17 Asociación Colombiana de Psiquiatría Bogotá, D.C., Colombia Available in: http://www.redalyc.org/articulo.oa?id=80636102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Artículoso r i g i n a l e s Oral fluphenazine versus placebo for schizophrenia: a Cochrane systematic review of 40 years of randomised controlled trials Hosam El-Din Matar1 Muhammad Qutayba Almerie1 Ana María Giraldo2 Clive E. Adams3 Abstract: Background: Fluphenazine, one of only three antipsychotics on WHO’s list of essential drugs, has been widely available for five decades. Quantitative reviews of its effects compared with placebo are rare and out of date. Methods: We searched for all relevant randomised controlled trials comparing oral administration of fluphenazine with placebo on the Cochrane Schizo- phrenia Group’s register of trials (October 2006) and in reference lists of included studies. Data were extracted from reliably selected trials. Where possible, we calculated fixed effects relative risk (RR), the number needed to treat (NNT), and their 95% confidence intervals (CI). Results: We found over 1200 electronic records for 415 studies. Ninety papers were acqui- red; 59 were excluded and the remainder were reports of the seven trials we could include (total participants=349). Compared with placebo, in the short-term, global state outcomes for ‘not improved’ were not significantly different (n=75, 2 RCTs, RR 0.71 CI 0.5 to 1.1). There is evidence that oral fluphenazine, in the short term, increases a person’s chances of experiencing extrapyramidal effects such as akathisia (n=227, 2 RCTs, RR 3.43 CI 1.2 to 9.6, NNH 13 CI 4 to 128) and rigidity (n=227, 2 RCTs, RR 3.54 CI 1.8 to 7.1, NNH 6 CI 3 to 17). We found study attrition to be lower in the oral fluphenazine group, but data were not statistically significant (n=227, 2 RCTs, RR 0.70 CI 0.4 to 1.1). Conclusions: Fluphenazine is an imperfect treatment with surprisingly few data from trials to support its use. If acces- sible, other inexpensive drugs, less associated with adverse effects, may be a better choice for people with schizophrenia. It is time for the World Health Organisation to revise their list of essential antipsychotic drugs. Key words: Fluphenazine, schizophrenia, antipsychotics. Título: Flufenazina oral vs. placebo, en el tratamiento de la esquizofrenia. Una revisión sistemática de Cochrane de 40 años de estudios controlados aleatorizados. 1 Medical Student, Faculty of Medicine, Damascus University, Syria. 2 Medical Student, Pontificia Universidad Javeriana, Bogotá. 3 Cochrane Schizophrenia Group, Academic Unit of Psychiatry and Behavioural Sciences, University of Leeds, UK. 8 Revista Colombiana de Psiquiatría, vol. XXXVI / No. 1 / 2007 Oral fluphenazine versus placebo for schizophrenia: a Cochrane systematic review of 40 years... Resumen people with schizophrenia (1). They are generally regarded as highly Introducción: La flufenazina, uno de los tres antipsicóticos de la lista de drogas esencia- effective, especially in controlling les de la OMS, está disponible desde hace 5 symptoms such as hallucinations décadas. Las revisiones cuantitativas de sus and fixed false beliefs (delusions) efectos vs. placebo son escasas y desactuali- (2). Fluphenazine, a phenothiazine zadas. Método: Buscamos estudios controla- dos aleatorizados relevantes que compararan derivative, is one of the first drugs la administración de flufenazina oral contra to be classed as an ‘antipsychotic’. placebo, en los registros de ensayos de los Reports from 1959 and 1960 first grupos de esquizofrenia de Cochrane (oct. indicate its value in psychotic ill- 2006) y en referencias incluidas en los estu- ness (3-4) and it was approved for dios. Los estudios consistentes y confiables muestran datos de ensayos clínicos aleatori- clinical use in the USA in 1959. zados (ECA). Calculamos el RR mediante un Fluphenazine is thought to eli- modelo de efectos fijos, el número necesario cit its antipsychotic effects via inter- por tratar (NNT) y su intervalo de confianza ference with central dopaminergic de 95%. Resultados: En flufenazina vs. pla- cebo, a corto plazo, el resultado “no mejoría” pathways and blocking receptors, no fue muy diferente (n=75, 2 ECA, RR 0,71, particularly D2, in the mesolimbic IC 0,5 a 1,1). La flufenazina oral, a corto zone of the brain (5). Extrapyra- plazo, aumenta el riesgo de manifestaciones midal side effects are a result of extrapiramidales, como la acatisia (n=227, interaction with dopaminergic 2 ECA, RR 3,43, IC 1,2 a 9,6, NNT 13, IC 4 a 128) y rigidez (n=227, 2 ECA, RR 3,54, IC pathways in the basal ganglia. As 1,8 a 7,1, NNT 6, IC 3 a 17). La deserción fue fluphenazine is not specific to one más baja en el grupo de la flufenazina oral, action within the body it is known pero los datos no fueron estadísticamente to cause adverse effects ranging significativos (n=227, 2 ECA, RR 0,70 CI 0,4 a 1,1). Conclusión: La flufenazina es un from orthostatic hypotension as a tratamiento imperfecto con muy pocos datos result of its alpha adrenergic bloc- que sustenten su uso. Otras drogas de bajo king activity to anticholinergic and costo y pocos efectos adversos pueden ser extrapyramidal symptoms (tardive mejor opción para pacientes psicóticos. La dyskinesia, pseudo-parkinsonism, OMS debe revisar su lista de antipsicóticos esenciales. dystonia, dyskinesia, akathesia) (6). In addition, the use of fluphenazine Palabras clave: flufenazina, esquizofrenia, has been associated with a poten- antipsicóticos. tially fatal disturbance of blood pressure, temperature and muscle Background control (neuroleptic malignant syn- drome)(7) . Overall, the antipsychotic drugs, Fluphenazine is still commonly with their anti-dopaminergic effects, used for people with schizophre- are the mainstay treatment for nia and is given by mouth or by Revista Colombiana de Psiquiatría, vol. XXXVI / No. 1 / 2007 9 El-Din Matar H., Almerie MQ., Giraldo A., Adams C. short-acting injection. Although ridin* or mirenil*) in title, abstract we have not found precise data on and index fields in REFERENCE) or world wide use, fluphenazine, along (fluphenazin* in interventions field with only two other antipsychotics in STUDY)) (chlorpromazine and haloperidol) is This register is compiled by re- on the World Health Organization’s gular, systematic, searches of major list of essential drugs (8). In low and bibliographic databases, hand sear- middle income countries, where ches and conference proceedings. non-proprietary preparations of flu- A full description is given in the phenazine are inexpensive, it may Group’s module on the Cochrane be one of the only drug treatments Library (http://www.cochrane.org/ available. We, however, know of no contact/entities.htm#CRGLIST). In up-to-date systematic reviews of the addition, the references of all identi- absolute effects of this ‘essential’ fied studies were inspected for more antipsychotic. studies. Methods Data extraction and study appraisal All electronic records identified Inclusion criteria were independently inspected by The inclusion criteria were de- HEM and MQM, who then obtained fined and disseminated for peer re- full reports of studies of agreed rele- view within a Cochrane protocol (9). vance. We assessed the methodolo- We included articles if they reported gical quality of included trials using randomized controlled trials where criteria described in the Cochrane participants had schizophrenia or Handbook (10). These criteria are non-affective serious/chronic men- based on the evidence of a strong tal illness, and where the interven- relationship between allocation con- tions included oral administration cealment and direction of effect (11). of fluphenazine (any dose) versus Data relating to methods, partici- placebo or no treatment. pants, interventions and outcomes, were extracted and disagreement Identification of relevant trials discussed and documented. We identified relevant randomi- sed trials by searching the Cochrane Statistical methods Schizophrenia Group’s Register of trials (Oct 2006) using the phrase: Dichotomous and continuous (((fluphen* or flufen* or modec* data were not used if over half of or moditen* or eutimax* or prolixin* those randomised were not con- or siqualon* or anaten* or dapotum* tributing to the outcome due to or decazate* or decafen* or decen- early attrition from the study or tan* or fludecate* or lyogen* or lyo- non-compliance. Dichotomous data 10 Revista Colombiana de Psiquiatría, vol. XXXVI / No. 1 / 2007 Oral fluphenazine versus placebo for schizophrenia: a Cochrane systematic review of 40 years... were combined using fixed effects way as to make the outcomes unin- Relative Risk (RR) (12). Numbers telligible or impossible to use. needed to treat (NNT) (13) were also calculated and I-square tests Study quality for heterogeneity were performed All seven included studies either (14). Where less than 50% of people reported use of random allocation or were lost to follow-up at the end of a suggested it; one study reported the trial, ‘worst case’ intention-to-treat process used as the groups were analyses were undertaken by assu- matched on age, chronicity and ming that those who had left a trial severity of illness (16). Citations to early had had a poor outcome. The all included and excluded studies sensitivity of the final results to this are available in the full Cochrane assumption was tested. Continuous Review (10), otherwise the names data were excluded if derived from and dates cited in this text relate scales of unknown validity and if to Table 1.
Recommended publications
  • Characterization of Schizophrenia Adverse Drug Interactions Through a Network Approach and Drug Classification Jingchun Sun University of Nashville
    Virginia Commonwealth University VCU Scholars Compass Psychiatry Publications Dept. of Psychiatry 2013 Characterization of Schizophrenia Adverse Drug Interactions through a Network Approach and Drug Classification Jingchun Sun University of Nashville Min Zhao Vanderbilt University School of Medicine Ayman H. Fanous Virginia Commonwealth University Zhongming Zhao Virginia Commonwealth University Follow this and additional works at: http://scholarscompass.vcu.edu/psych_pubs Copyright © 2013 Jingchun Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Downloaded from http://scholarscompass.vcu.edu/psych_pubs/10 This Article is brought to you for free and open access by the Dept. of Psychiatry at VCU Scholars Compass. It has been accepted for inclusion in Psychiatry Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 458989, 10 pages http://dx.doi.org/10.1155/2013/458989 Research Article Characterization of Schizophrenia Adverse Drug Interactions through a Network Approach and Drug Classification Jingchun Sun,1,2 Min Zhao,1 Ayman H. Fanous,3,4 and Zhongming Zhao1,2,5,6 1 Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA 2 Center for Quantitative Sciences, Vanderbilt
    [Show full text]
  • Supplementary Table S1: Search Strategy for Ovid MEDLINE Electronic Database Search
    Supplementary Table S1: Search strategy for Ovid MEDLINE electronic database search Database(s): Ovid MEDLINE: Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE® 1946-Present Search Strategy: # Searches 1 exp "schizophrenia spectrum and other psychotic disorders"/ (psychotic disorder* or schizo* or psychosis or psychotic* or first episode or antipsychotic naive or 2 untreated or unmedicated).tw,kf. 3 Antipsychotic Agents/ or (antipsychotic* or neuroleptic*).tw,kf. 4 Chlorpromazine.mp. or Chlorpromazine/ 5 Chlorprothixene.mp. or Chlorprothixene/ 6 Droperidol.mp. or Droperidol/ 7 Flupentixol.mp. or Flupenthixol/ 8 Fluphenazine.mp. or Fluphenazine/ 9 Haloperidol.mp. or Haloperidol/ 10 (Levomepromazine or Methotrimeprazine).mp. or Methotrimeprazine/ 11 Loxapine.mp. or Loxapine/ 12 Mesoridazine.mp. or Mesoridazine/ 13 Molindone.mp. or Molindone/ 14 Periciazine.mp. 15 Pimozide.mp. or Pimozide/ 16 Prochlorperazine.mp. or Prochlorperazine/ 17 Promazine.mp. or Promazine/ 18 Thioproperazine.mp. 19 Thioridazine.mp. or Thioridazine/ 20 Thiothixene.mp. or Thiothixene/ 21 Trifluoperazine.mp. or Trifluoperazine/ 22 (Zuclopenthixol or Clopenthixol).mp. or Clopenthixol/ 23 (antipsychotic* adj5 (typical or first generation)).tw,kf. 24 (amisulpride or solian).mp. 25 ARIPIPRAZOLE/ or (aripiprazol or aripiprazole or abilify or OPC 14597).mp. 26 (asenapine or saphris or sycrest).mp. 27 (blonanserin or lonasen).mp. 28 Brexpiprazole.mp. 29 CLOZAPINE/ or (cloazpine or clozaril or leponex).mp. 30 (iloperidone or fanapt or fanapta).mp. 31 Lurasidone Hydrochloride/ or (lurasidone or latuda or sm 13496).mp. 32 (melperone or buronil).mp. 33 (olanzapine or zyprexa).mp. 34 Paliperidone Palmitate/ or (paliperidone or invega or r 76477).mp. 35 (perospirone or lullan).mp.
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • Zine and Some Related Phenothiazines in Reducing the Rigidity of the Decerebrate Cat and in Some Other Central Actions by Elizabeth M
    Br. J. Pharmac. Chemother. (1967), 29, 400-416. A COMPARISON OF THE EFFECTS OF CHLORPROMA- ZINE AND SOME RELATED PHENOTHIAZINES IN REDUCING THE RIGIDITY OF THE DECEREBRATE CAT AND IN SOME OTHER CENTRAL ACTIONS BY ELIZABETH M. KEARY AND D. R. MAXWELL From the Research Laboratories, May & Baker Ltd., Dagenham, Essex (Received March 2, 1967) One of the many interesting properties of chlorpromazine is its ability to reduce skeletal muscle tone in experimental animals (Dasgupta & Werner, 1955; Sheatz, 1955). Henatsch & Ingvar (1956) and Busch, Henatsch & Schulte (1960) have shown that small doses of chlorpromazine abolish the rigidity of the intercollicular decerebrate cat and reduce the discharge of -y-motoneurones. These authors also found that much larger doses of chlorpromazine were required to depress the rigidity of the decerebrate cat prepared by the ischaemic method of Pollock & Davis (1930). It was suggested that chlorpromazine had a selective depressant effect on the y- as opposed to the a-moto- neurones at a supraspinal level. Chlorpromazine has been reputed to be of some value in reducing the muscle tonus in patients with spasticity (Basmajian & Szatmari, 1955). Although the actions of chlorpromazine in reducing skeletal muscle tone and in affecting spinal reflexes have been extensively studied, little is known about the activity of related phenothiazine derivatives in this context. It thus appeared interesting to compare chlorpromazine with some related phenothiazine derivatives for their ability to reduce rigidity of the intercollicular decerebrate cat with the object of seeing to what extent there was correlation between activity in reducing skeletal muscle tone and other pharmacological actions.
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Behaviour Management in Dementia Where Do Antipsychotics Fit?
    Behaviour Management in Dementia Where Do Antipsychotics Fit? October 2011 Reprinted February 2012 Guidelines/Reviews Background Issues What do we know about the benefits and Dementia Behavioural and psychological symptoms of risks of psychotropic meds in BPSD? 2006 CCCDTD3 : http://www.cccdtd.ca/ dementia (BPSD) create a significant caregiver o Evidence for psychotropic use is limited and Tx Mild‐Mod 2008: challenge. Key symptoms include aggression, all classes have limited efficacy and serious http://www.cmaj.ca/content/17 1 agitation, psychosis and mood disorders. adverse event (SAE) concerns. (See Table 3) 9/10/1019.full.pdf+html 5 Tx Severe Alzheimer’s 2008: For an overview see BPSD chart (Page 4). http://www.cmaj.ca/content/17 Table 1: Common BPSD Neuropsychiatric symptoms 2 9/12/1279.full.pdf+html agitation* resistive emotional Where do Antipsychotics (APs) Fit? NICE (UK) 2006: apathy wandering lability AP effectiveness in BPSD is modest & their role http://www.nice.org.uk/nicemedia aggression*, intrusiveness paranoid 11,12,13,14 6 /live/10998/30318/30318.pdf verbal/physical repetitive behaviours is limited due to SAEs. See CATIE-AD Trial Summary. APs, both typical (e.g. haloperidol) & atypical Other Reviews calling out, behaviours psychosis*, o (risperidone , olanzapine & Cognitive Impairment: screaming vocalizations hallucinations Risperdal Zyprexa http://www.rxfacts.org/professi hostility hoarding /delusions quetiapine Seroquel), have been studied in BPSD. onals/CognitiveImpairment.php sexual dis‐ nocturnal o Placebo response rates often ~40%, reflecting inhibition restlessness high rates of spontaneous resolution & the Pt/Caregiver Resources *symptoms with some evidence for benefit of antipsychotics 15 value of psychosocial input in such trials.
    [Show full text]
  • EFFECT of SOME PSYCHOACTIVE AGENTS on PENTOBARBITONE Promethazine, Imipramine A~ ANAESTHESIA in RATS Presented in Table 1
    Volume 17 Number 4 SHORT COMMUNICATION The mean anaesthetic I administration prolonged the time was reduced after ha EFFECT OF SOME PSYCHOACTIVE AGENTS ON PENTOBARBITONE promethazine, imipramine a~ ANAESTHESIA IN RATS presented in Table 1. TABLEI: Influence of RAJE DRA K. RAINA Drugs (mg/kg., i.p.) Department of Pharmacology, Government Medical College, Srinagar Summary: Several psycho-active agents we-re investigated fo'r their influence on pentobarbitone Control (Saline 2 ml/kg) anaesthesia time in rats. It was found that prior administration of haloperido.l, methaqualone Methylcellulose (2%) in ormal s and triflupromazine reduced the duration of anaesthesia. An increase in durati~n was noted Promethazine (l0.0 mg) after diazepam. The probable mechanism has been discussed. Chlorpromazine (5.0 IIIg) Triflupromazine (10.0 mg) Key words: pentobarbitone anaesthesia psychoactive agents Thioproperazine (10.0 mg) Haloperidol (10.0 IIIg) INTRODUCTION Methaqualone (15.0 mg) Diazepam (10.0 mg.) Kato and Chiesara (7) reported that many centrally active agents may produce tolerance to Imipramine (10.0 mg) barbiturates as a result of induction of liver microsomal enzymes involved in drug metabolism Haloperidol and promethazine have also been reported to influence the enzyme activity (6). As there is lack of information concerning the effect of various psycho-active agents on metabolic The results obtained mechanisms, it was thought of interest to study the influence of some of the commonly used after pretreatment with agents on pantobarbitone anaesthetic time and if possible to attempt to correlate the data servations made by Kato ar obtained with the results on enzyme activity reported in the literature.
    [Show full text]
  • ORIGINAL ARTICLE Pharmacotherapy of Schizophrenia: the American Current Status Winston W Shen
    ORIGINAL ARTICLE Pharmacotherapy of Schizophrenia: The American Current Status Winston W Shen Department of Psychiatry and Human Behavior, Saint Louis University School of Medicine, St Louis, MO, USA (Receivedfor publicationon August22, 1994) Abstract. This is a review paper covering the American current status of pharmacotherapy of schizo phrenia. The author lists all available antipsychotic agents on the market in the United States and describes the American prescribing pattern of antipsychotic agents. This includes a brief history of antipsychotic use in America, acute treatment and chronic maintenance with antipsychotic drugs, the recent advent of atypical antipsychotic agents, and management of antipsychotic-induced side-effects. The characteristics of prescribing American antipsychotics in America are described, and they are then compared with Japanese prescribing practices. The author also makes brief remarks about the uncovered issues in antipsychotic pharmacotherapy and about atypical antipsychotic agents in the context of the future pharmaceutical development. (Keio J Med 43 (4): 192-200, December 1994) Key words: antipsychotics, atypical antipsychotics, psychopharmacology, American prescribing pattern, schizophrenia Introduction Available Antipsychotic Agents on the US Market This paper is a brief review which deals with research Table 1 is a list of antipsychotic agents which are findings, clinical issues and strategies in the pharmaco commonly prescribed in the US. The numbers of potency logical treatments for "Schizophrenia and Other Psy equivalent dose in mg listed in Table 1 are from various chotic Disorders" as one of new 15 DSM-IV Axis I sources and are often inconsistent. Promazine and reser diagnostic categories.1 The diagnoses (and their codes) pine are available in America but are omitted from include schizophrenia (395.xx, 5 types), schizophreniform the list due to their inferior antipsychotic effects.
    [Show full text]
  • Special Article: One Resident's Perspective on a Different Style of Psychopharmacological Practice
    Jefferson Journal of Psychiatry Volume 8 Issue 1 Article 4 January 1990 Special Article: One Resident's Perspective on a Different Style of Psychopharmacological Practice Michael Amiel, M.D. North Florida Evaluation / Treatment Center, Gainsville Florida Docteur J.P. Blayac Hospital St. Charles, Montpellier Cedex, France Follow this and additional works at: https://jdc.jefferson.edu/jeffjpsychiatry Part of the Psychiatry Commons Let us know how access to this document benefits ouy Recommended Citation Amiel, M.D., Michael and Blayac, Docteur J.P. (1990) "Special Article: One Resident's Perspective on a Different Style of Psychopharmacological Practice," Jefferson Journal of Psychiatry: Vol. 8 : Iss. 1 , Article 4. DOI: https://doi.org/10.29046/JJP.008.1.001 Available at: https://jdc.jefferson.edu/jeffjpsychiatry/vol8/iss1/4 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Jefferson Journal of Psychiatry by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Special Article: One Resident's Perspective on a Different Style ofPsychopharmacological Practice Michael Arniel, M.D . DocteurJ.P. Blayac This article provides a comparison of psychopharmacological practices in the u.s.and France.
    [Show full text]
  • Electronic Search Strategies
    Appendix 1: electronic search strategies The following search strategy will be applied in PubMed: ("Antipsychotic Agents"[Mesh] OR acepromazine OR acetophenazine OR amisulpride OR aripiprazole OR asenapine OR benperidol OR bromperidol OR butaperazine OR Chlorpromazine OR chlorproethazine OR chlorprothixene OR clopenthixol OR clotiapine OR clozapine OR cyamemazine OR dixyrazine OR droperidol OR fluanisone OR flupentixol OR fluphenazine OR fluspirilene OR haloperidol OR iloperidone OR levomepromazine OR levosulpiride OR loxapine OR lurasidone OR melperone OR mesoridazine OR molindone OR moperone OR mosapramine OR olanzapine OR oxypertine OR paliperidone OR penfluridol OR perazine OR periciazine OR perphenazine OR pimozide OR pipamperone OR pipotiazine OR prochlorperazine OR promazine OR prothipendyl OR quetiapine OR remoxipride OR risperidone OR sertindole OR sulpiride OR sultopride OR tiapride OR thiopropazate OR thioproperazine OR thioridazine OR tiotixene OR trifluoperazine OR trifluperidol OR triflupromazine OR veralipride OR ziprasidone OR zotepine OR zuclopenthixol ) AND ("Randomized Controlled Trial"[ptyp] OR "Controlled Clinical Trial"[ptyp] OR "Multicenter Study"[ptyp] OR "randomized"[tiab] OR "randomised"[tiab] OR "placebo"[tiab] OR "randomly"[tiab] OR "trial"[tiab] OR controlled[ti] OR randomized controlled trials[mh] OR random allocation[mh] OR double-blind method[mh] OR single-blind method[mh] OR "Clinical Trial"[Ptyp] OR "Clinical Trials as Topic"[Mesh]) AND (((Schizo*[tiab] OR Psychosis[tiab] OR psychoses[tiab] OR psychotic[tiab] OR disturbed[tiab] OR paranoid[tiab] OR paranoia[tiab]) AND ((Child*[ti] OR Paediatric[ti] OR Pediatric[ti] OR Juvenile[ti] OR Youth[ti] OR Young[ti] OR Adolesc*[ti] OR Teenage*[ti] OR early*[ti] OR kids[ti] OR infant*[ti] OR toddler*[ti] OR boys[ti] OR girls[ti] OR "Child"[Mesh]) OR "Infant"[Mesh])) OR ("Schizophrenia, Childhood"[Mesh])).
    [Show full text]
  • When GWAS Meets the Connectivity Map: Drug Repositioning for Seven Psychiatric
    bioRxiv preprint doi: https://doi.org/10.1101/096503; this version posted December 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. When GWAS meets the Connectivity Map: drug repositioning for seven psychiatric disorders Hon-Cheong So1,2*, Carlos K.L. Chau1, Wan-To Chiu3, Kin-Sang Ho3, Cho-Pong Lo3, Stephanie Ho-Yue Yim4 and Pak C. Sham5,6,7,8 1School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 2KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology and The Chinese University of Hong Kong 3Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 4Univeristy of Exeter Medical School, United Kingdom 5Department of Psychiatry, University of Hong Kong, Pokfulam, Hong Kong 6Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong 7State Key Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Pokfulam, Hong Kong 8Centre for Reproduction, Development and Growth, University of Hong Kong, Pokfulam, Hong Kong *Correspondence to: Hon-Cheong So, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Email: [email protected] (Submitted to bioRxiv on 23 Dec 2016) 1 bioRxiv preprint doi: https://doi.org/10.1101/096503; this version posted December 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Our knowledge of disease genetics has advanced rapidly during the past decade, with the advent of high-throughput genotyping technologies such as genome-wide association studies (GWAS).
    [Show full text]