Linear Algebra and its Applications 418 (2006) 468–479 www.elsevier.com/locate/laa Generalized inverses of an invertible infinite matrix over a finite field C.R. Saranya a, K.C. Sivakumar b,∗ a Department of Mathematics, College of Engineering, Guindy, Chennai 600 025, India b Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India Received 17 August 2005; accepted 21 February 2006 Available online 21 April 2006 Submitted by M. Neumann Abstract In this paper we show that, contrary to finite matrices with entries taken from finite field, an invertible infinite matrix could have generalized inverses that are different from classical inverses. © 2006 Elsevier Inc. All rights reserved. AMS classification: Primary 15A09 Keywords: Moore–Penrose inverse; Group inverse; Matrices over finite fields; Infinite matrices 1. Introduction Let A be a finite matrix. Recall that a matrix X is called the Moore–Penrose inverse of A if it satisfies the following Penrose equations: AXA = A; XAX = X, (AX)T = AX; (XA)T = XA. Such an X will be denoted by A†. The group inverse (if it exists) of a finite square matrix A denoted by A# is the unique solution of the equations AXA = A; XAX = X; XA = AX. ∗ Corresponding author. E-mail address:
[email protected] (K.C. Sivakumar). 0024-3795/$ - see front matter ( 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2006.02.023 C.R. Saranya, K.C. Sivakumar / Linear Algebra and its Applications 418 (2006) 468–479 469 It is well known that the group inverse of A exists iff the range space R(A) of A and the null space N(A) of A are complementary.