<<

Girls Doing : A Case Study of Science in All- Female Middle Grade Classrooms

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation Faller, Susan Elisabeth. 2014. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms. Doctoral dissertation, Harvard Graduate School of Education.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13383547

Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA

GirlsDoingScience: ACaseStudyofScienceLiteracyinAllFemaleMiddleGradeClassrooms SusanElisabethFaller NonieLesaux CatherineSnow C.PatrickProctor AThesisPresentedtotheFaculty oftheGraduateSchoolofEducationofHarvardUniversity inPartialFulfillmentoftheRequirements fortheDegreeofDoctorofEducation 2014

2014 SusanElisabethFaller AllRightsReserved i

ThisthesisisdedicatedtoMs.MarshandalloftheLyonAcademystudents.

Watchingyouteach,learn,andgrowhasbeenaprivilege. ii

Acknowledgements

ItiswithdeepestgratitudethatIacknowledgethegenerouscontributionsofmany

othersthatmadethisworkpossible.

ThankyoutoMs.MarshandalloftheLyonAcademygirls.Ifirmlybelievewhat

Itoldyou.Youaretheexpertsonyourownlearning.Thankyouforsharingyour

expertisewithme.

Thankyoutomycommittee,NonieLesaux,CatherineSnow,andPatrickProctor.

Youhaveallgivengenerouslyofyourtimeoverthecourseofseveralyears.Iappreciate

theclose,thetoughquestions,andtheencouragement.Alongtheway,youhave

eachcontributedimportantinsightsandmyworkisundoubtedlystrongerforthis.

Thankyoutomycolleagues,includingthemembersofNonieLesaux’sLanguage

DiversityandLiteracyGroup.Youhavelistenedpatientlytomyideas,

meticulouslyediteddrafts,andofferedfreshperspectives.Iwouldparticularlyliketo

thankJenniferWallaceJacoby,ChristinaDobbs,EmilyPhillipsGallowayandSky

Marietta.Inadditiontoallofthepreviouslymentionedduties,yourencouragementhas

madeallthedifference.

Thankyoutomymother,SusanGroganFaller,andmotherinlaw,Gayathri

Arakere.Thisthesiswouldnotexistifyouhadnotcometovisit(andtotherescue!)and

keptEamonhappywhileIwroteandrewrotethesechapters.Thankyoualsoto“Uncle”

RobSchubforbeingthebestpinchhitter/emergencysitterever.

Thankyoutomysisters,MauraandJulieFaller.Youalwaysknowwhenlaughter

willdothetrick. iii

Thankyoutomyhusband,AkshayAhuja.Throughmanychallenges,youhave neverwaveredinyoursupport.YoufoundextratimewheretherewasnonesothatIwas abletoworkonthisthesis.Thankyouforallofthesacrificesyouhavemade.Icouldnot askforabetterpartnerinlife’sjourney.

Andfinallythankyoutoourson,EamonKennethAhuja.Youand(the beginningsof)thisthesisarrivedonthesceneataboutthesametime.Yourcuriosity inspiresme.Yourlaughterbringsmejoy.And,man,canyoudance!

iv

TableofContents ThesisAbstract...... vi

ChapterI:ThesisIntroduction...... 1

References...... 12

ChapterII:Study1

Literacy Practices and Text Genres in Girls’ Middle Grade Science Classrooms

Abstract...... 17

Introduction...... 19

BackgroundLiterature:LiteracyinScience...... 21

PresentStudy...... 27

StudyDesignandMethods...... 28

Findings...... 34

Discussion...... 40

References...... 47

TablesandFigures...... 51

ChapterIII:Study2

Shaping Girls’ Science Identity: Exploring the Role of Classroom Experiences and

Popular Images

Abstract...... 64

Introduction...... 66

TheoreticalFramework...... 67

StudyDesignandMethods...... 74

Findings...... 80 v

Discussion...... 96

LimitationsandDirectionsforFutureResearch...... 99

References...... 102

TablesandFigures...... 107

Appendix:MappingofQuestionsfromStudentInterviewProtocoltoThree

FacetsofScienceIdentity...... 113

ChapterIV:Study3

Who Does Science?: Science Attitudes and Identity among Middle Grade Students at a

Small All-Girls’ School

Abstract...... 115

Introduction...... 117

TheoreticalandEmpiricalPerspectivesonScienceIdentity...... 119

StudyDesignandMethods...... 126

Findings...... 132

Discussion...... 152

ImplicationsforPractice...... 157

LimitationsandDirectionsforFutureResearch...... 159

References...... 161

TablesandFigures...... 166

AppendixA:FullStudentInterviewProtocol...... 169

AppendixB:FullStudentSurvey...... 181

Vita...... 190 vi

ThesisAbstract Inthefaceoflowadolescentliteracyrates(NCES,2012),concernsaboutthe

nation’sprospectsofremainingcompetitiveinscienceand(Hill,Corbett,&

St.Rose,2010),apersistentgendergapinscience(NCES,2012;Reilly,2012),andthe

continuedrolloutofcollegeandcareerreadystandards,thereisaneedtofocuson

adolescentgirls’scienceliteracy.Suchscienceliteracyinvolvesnotonlygeneral

knowledgeaboutscience,butalsotheabilitytoengageintheadvancedreadingand

practicesfundamentaltodoingscience(Norris&Phillips,2003).Inthisthesis,I presentthreearticleswithfindingsthatrespondtothisneed.Theyaretheresultsofa

multiplecaseembedded(Yin,2009)studythatIconductedoverthecourseof7months

infourscienceclassrooms(grades5through8;50students)taughtbyasingleteacherin

asmallallfemalemiddleschool.Icollectedindepthdatafocusedonscienceliteracy

frommultiplesources,including(a)fieldnotes(Emerson,Fretz&Shaw,2011),(b)

videorecordedclassroom(102classes,113hours,recordedon29days),(c)

asurveyofallstudents,(d)semistructuredinterviewswiththesubsampleof12focal

students(rangingfrom18to37minutes)and(e)photographsofclassroomartifactsand

studentwork.

Inthefirstarticle,Iprovideawindowintostandardliteracypracticesinscience

classroomsbyexaminingthereadingandwritinggenrestowhichstudentsareexposed.

Inthesecondarticle,Iexaminehowateacher’slanguageandinstructionalpractices

withinherclassrooms,andpopularimagesofsciencefromtheworldbeyondtheir

classroomsmightshapeadolescentgirls’scienceidentities.Finally,inthethirdarticle,I

exploredifferentaspectsofscienceidentityusingthewordsofthreecasestudystudents. vii

Takentogether,thesestudiesfillgapsintheliteraturebyinvestigatingscienceliteracyin anunderstudiedcontext,allfemaleclassrooms.Inaddition,theygivevoicetoagroup oftenunderrepresentedinstudiesofscience(i.e.,primarilynonwhitegirlsfromworking classfamilies,manyofwhomspeakEnglishasasecondlanguage.)Thusthisthesis providesnewinsightsforresearchersaswellasteachersinterestedinscienceliteracyand persistentgapsinscienceachievement. 1

Chapter1:Introduction

Educatorsareincreasinglyaskedtofosteradvancedliteracyin all adolescents, preparingacitizenryreadytoengageinmeaningfulwayswiththe21stcenturydemands forknowledgeproductionandtransformation(CarnegieCouncilonAdvancing

AdolescentLiteracy,2010).Moreover,somehighlightthespecialplaceofscience literacy,arguingthatthestrengthoftheU.S.economyreliesonourabilitytoprepare leadersinthefieldsofscience,technology,engineering,and(STEM)(Hill,

Corbett,&St.Rose,2010).Yet,theresultsoftheNationalAssessmentofEducation

Progress(NAEP)indicatethatmostadolescentslacktheadvancedreading,writing,and scienceskillsnecessaryforknowledgeproductionandtransformation(NationalCenter forEducation(NCES),2012).Moreover,inthespecificcaseofscience,only

32%of8thgradersperformatorabovetheproficientlevelandamere2%reachthe advancedlevel(NCES,2012).Evenmoretroublingisthesmallbutpersistentgendergap inscienceachievementfavoringmales(NCES,2012;Reilly,2012),alongwiththe underrepresentationoffemalesinSTEMprofessions(Hill,Corbett,&St.Rose,2010).

Whilefemalehighschoolstudentsnowearnmathandsciencecreditsatthesamerateas malesandreceiveslightlyhighergradesinthesecourses(NCES,2007),femalesstilllag farbehindmalesinareassuchasthepursuitofSTEMdegreesandrepresentationin

STEMworkplaces(Hill,Corbett,&St.Rose,2010).Takentogether,thesefindings indicatethatsocialandculturalmechanismsotherthanbroadpatternsofaccessinfluence females’viewsofscienceliteracyandwhetherornottheypursueSTEMfieldsbeyond highschool. 2

Thedisciplinaryliteracyperspectiveprovidesapromisingframeworkfor understandingthesesocialandculturalmechanisms.Fromthisperspective,reading, writing,andorallanguagecanbeunderstoodassocialpracticesthatvaryacrossdifferent contexts,cultures,andacademicdisciplines.Advancedliteracyinvolvesmuchmorethan decodingandunderstandingprint;italsoincludescomingtounderstandandparticipate indisciplinespecificnormsofpractice,conventionalwaysofinteractingand communicating(includingreadingandwriting),aswellasrepresenting,defending,and challengingknowledge(Moje,2008).Forexample,afrequentlycitednormofpracticein thecaseofscienceistheconventionofsupportingallclaimswithparticulartypesof evidence,oftenempiricalevidencefrom.Suchevidencemaybemarkedly differentfromtheevidencestudentsareexpectedtoprovidewhensupportinghistorical ormathematicalclaims.Therefore,advancedliteracyrequiresthatstudentslearntotake onthedifferingidentitiesofmembersofeachdisciplinarycommunityandengageinthe literacyandlanguageactivitiesvaluedbythatdiscipline(Shanahan&Shanahan,2008).

Currently,inductionintodisciplinespecificliteracypracticesisimplicitinmost

contentareaclassrooms.However,thecontinuedrolloutofnewrigorouscollegeand

careerreadystandards,suchasthe Common Core State Standards for English Language

Arts and Literacy in /Social Studies, Science, and Technical Subjects (CCSS;

CommonCoreStateStandardsInitiative,2010)islikelytoresultingreaternumbersof

contentareateachersbeingaskedtotakeamoreactiveandexplicitroleinteachingtheir

studentshowtoread,write,andcommunicateindisciplinespecificways.Giventhis

context,thereisapressingneedtodevelopadeeperunderstandingofthecurrentliteracy practices,includingthewaysinwhichstudents’disciplinaryidentitiesareshaped,in 3 scienceclassroomsinordertoidentifypromisingareastofocuson.Thisissueis especiallycriticalforstudentswhohavetraditionallybeenunderrepresentedinthe discipline.

Inthisthesis,Ibegintoaddresstheseneedsthroughthreerelatedstudiesof scienceliteracyamongadolescentgirls( n= 50)attheMaryLyonAcademyforGirls 1

(LyonAcademy),asmallallfemalemiddleschoolthatlargelyservesstudentsfrom

workingclassbackgroundsandstudentsofcolor.Becauseitisasmallschool,allscience

classesaretaughtbyasingleteacher,Ms.Marsh.Inthefirststudy,Iusedquantitative

andqualitativeanalysisofobservationaldatatodocumentthereadingandwriting practicesandtextgenresfoundinMs.Marsh’sclassroomstoprovideinsightintoscience literacypractices.Thesecondandthirdstudiesthenfocusonscienceidentity.Inthe secondstudy,Iusedqualitativeanalysisofclassroomobservationsandinterviewswitha subsampleof12focalstudentstoexaminethewaysinwhichadolescentgirls’viewsof scienceidentitywereshapedbytwoprimaryfactors:theirteacher’slanguageand instructionalpracticeswithintheirclassrooms,andpopularimagesofsciencefromthe worldbeyondtheirclassrooms.Finally,inthethirdstudy,Iusedquantitativeanalysisof surveydatafromallstudentsandqualitativeanalysisofinterviewdatafromthreecase studystudentstoexploretheLyonAcademystudents’constructionsofscienceidentityin moredepth.

Inthefollowingsectionsofthischapter,Ibrieflyreviewthebackgroundliterature thathashelpedtoshapemythesis.Ithensuggestunansweredquestionsthatmyresearch beginstoaddress.Next,Iprovideabriefoverviewofthethreestudiescontainedinmy thesis.Iendwithasectionoutliningsomeoftheimplicationsofmywork. 1Allnamesarepseudonyms. 4

WhatDoWeKnowaboutLiteracyinScience?

LiteracyisFundamentaltoDoingScience

Readingandwritingtextsthatconformtodisciplinespecificnormsare fundamentalaspectsof“doingscience.”Whiledefinitionsofscienceliteracysometimes focusonageneralsenseofknowledgeabilityinscienceratherthanreadingandwriting,

NorrisandPhillips(2003)arguethatinsodoingtheyfailtoaddressaconstituentelement ofscienceliteracy.Infact,intheirview,readingandwritingarefundamentaltoscience:

[R]eadingandwritingdonotstandonlyinafunctionalrelationshipwithrespect

toscience,assimplytoolsforthestorageandtransmissionofscience.Rather,the

relationshipisaconstitutiveone,whereinreadingandwritingareconstitutive

partsofscience.Constitutiverelationshipsdefinenecessitiesbecausethe

constituentsareessentialelementsofthewhole.Removeaconstituent,andthe

wholegoeswithit.Throwawaythecoverandkeepthecontents,andyoustill

haveabook;throwawaythecontentsandkeepthecover,andyounolongerhave

abook(p.226).

Putanotherway,onecannotparticipatefullyintheinvestigatoryaspectsofscience withouthavingadvancedliteracyskills,suchastheabilitytointerpretdataarrays, understandprecisedisciplinespecificvocabulary,readcritically,andwritediscipline appropriateexplanations(Conley,2008;Norris&Phillips,2003;Osborne,2002ascited inGreenleafetal.,2010p.649).

LiteracyisOftenNeglectedinSchoolScience

Traditionally,scienceteachershavepaidlittleattentiontoteachingreadingor writing(Wellington&Osborne,2001).Thebestavailableevidenceonreadingand 5 writinginstructionintypicalscienceclassroomsindicatesthatitoccursinfrequentlyin middleandhighschoolclassroomsintheUS(Applebee&Langer,2009,2011;Fisher,

2009; Kiuhara,Graham&Hawken,2009).Althoughmoreempiricalevidenceisneeded, availableresearchsuggeststhatreadinginscienceisdominatedbytextbooks(Weiss,

Pasley,Smith,Banilower,&Heck,2003).Moreover,andparticularlyrelevantinlightof thedemandsofcollegeandcareerreadystandards,studentsappeartohaveveryfew opportunitiestowriteextendedtextsinscience( Applebee&Langer,2009,2011;

Kiuharaetal.,2009),includingthosewithinanalyticgenres( Lawrence,Phillips

Galloway,Yim,&Lin,2014).NorrisandPhillips(2003)suggestthatthislackof attentiontoliteracyisduetotheperceptionamongscienceeducatorsthattheirstudents shouldbeabletocomprehendtextsaslongastheycandecodethem.

IdentitiesMatter

AsHeathandStreet(2008)pointout,amajortaskfromtheadolescent’spointof viewislearningthatdifferentdisciplinesrequirethem“toswitchwritingstylesand genresbetweenonesettingandanother,todeployarepertoireofliteracypractices appropriatetoeachsetting,andtohandlethesocialmeaningsandidentitiesthateach evokes”(p.105).Fromthisperspective,scienceidentity—beingrecognizedasthe“kind of”personwhodoesscience”(Gee,2001)—isafundamentalaspectofscienceliteracy.

Agrowingbodyofliteratureexaminesscienceidentityamongyoungpeople,and especiallytheinterplayofgender,socialclass,ethnicityandidentity(e.g.,Archeretal.,

2010;Archeretal.,2012;Carlone,HaunFrank,&Webb,2011;Carlone,Scott,&

Lowder,2014;Wong,2012).Thisliteratureindicatesthatbeliefsaboutscienceidentity mightbeanimportantexplanatoryfactorinconsideringthepersistent 6 underrepresentationofcertaingroupsinscience.Inparticular,whetherornotstudents viewscienceasbeingforpeople“likethem”appearstobeanimportantfactor(Archeret al.,2012;Archeretal.,2013;Wong,2012).Suchbeliefsappeartobeshapedbyboth classroomexperiences( Carlone,HaunFrank,&Webb,2011; Carlone,Scott,&Lowder,

2014;Lemke,1990;Moje,1995)andpopulardiscourses(ASPIRES,2013;Archeretal,

2013;Wong,2012)andimages(Barman,1997;Chambers,1983;Reveles,2009).

WhatDoWeStillNeedtoKnow?

Throughmyliteraturereview,Iidentifiedseveralareasforfurtherempirical

work.First,althoughwritingincontentareaclassroomsisbetterdocumentedthan

reading,thereisalackofknowledgeaboutwhatkindsoftextsstudentsarereadingand

writingintheirscienceclasses(i.e.,textgenres)andwhatactivitiestheyarebeingasked

todowiththesetexts(i.e.,literacypractices).Inparticular,moreinformationisneeded

onwhat,ifany,textsstudentsreadinscienceclassroomsbesidescoursetextbooks.Atthe

sametime,thestudiesofwritinginscienceclassroomssuggestthatstudentsarerarely

askedtowriteextendedtext.Yetitisimpossibletomeetthechallengeofcollegeand

careerreadystandards,suchastheCCSS,withoutdoingthis.Thereforethereisaneedto

focusonwhatopportunitiesstudentsaregiventowritesophisticatedinformationaltexts.

Next,theliteraturesuggeststheneedforresearchtoconsidernumericalandvisual

representationsaswellastextinordertounderstandtheliteracyworktakingplacein

scienceclassrooms.Finally,thedisciplinaryliteracyperspectivehighlightstheneedto

teachdisciplinespecificreadingandwritingpractices.Yetmuchoftheworkon

disciplinaryliteracyremainsconceptualandlittleisknownabouthow,ifatall,

adolescentsaretaughttoreadandwritelikescientists(Fang&Coatoam,2013).For 7 example,whileweknowthatexpertchemistscriticallyexaminetheplausibilityof scientificclaimswhentheyread(Shanahan,Shanahan&Misischia,2011),weknowvery littleabouthowadolescentsaretaughttoreadinthisway.Whatlittleinformationwe haveaboutstandardpracticeinmiddleandhighschoolscienceclassroomsdescribes generalschoolliteracypractices(e.g.,fillinginworksheet,copyingnotes,reading textbookindependently)ratherthananythingspecifictothedisciplineofscience.This pointstoaneedformoreresearchintowhich,ifany,literacypracticesinscience classroomsappeartobespecificto“doingscience”ratherthan“doingschool.”

Turningtoidentity,littleisknownabouthowadolescentsindifferentclassroom contextsaresocializedintodifferentviewsofscienceidentity.Specifically,althoughitis notuncommonforproposalstoaddresstheunderrepresentationofwomeninscienceto callforsinglegenderscienceclassrooms,thereisverylittleempiricalworkinvestigating howstudentsinsuchsettingsconstructscienceidentity.Second,althoughclassroom experiences(Carlone,HaunFrank,&Webb,2011; Carlone,Scott,&Lowder,2014;

Lemke,1990;Moje,1995)andpopularimagesanddiscourses(ASPIRES,2013;Archer

etal,2013;Barman,1997;Chambers,1983;Reveles,2009;Wong,2012)bothappearto playanimportantroleinshapingyoungpeople’sviewsofwhatitmeanstobethekindof personwhodoesscience,verylittleempiricalworkhasexaminedthesefactorstogether.

Inaddition,veryfewofthestudiesthatlinkclassroomexperiencestostudent

constructionsofscienceidentityhavefocusedonracial/ethnicminoritystudents,students

fromworkingclassfamilies,orstudentswhospeakEnglishasasecondlanguage.Since

thesesamegroupsareoftenunderrepresentedinthefieldofscience,thereisaneedfor

moreresearchthatconsiderstheirperspectives.Finally,thereisarelativelackof 8 empiricalworkthathasattemptedtosystematicallyexaminemultipleaspectsofscience identityusingquantitativeandqualitativemeasures,exploringhowdifferentaspectsof scienceidentitymaybeconstructeddifferentlybythesameadolescent.

ThePresentStudies

Asafirststepingeneratingtheknowledgeoutlinedintheprevioussection,I undertookaprogramofresearchattheLyonAcademy,asmallallfemalemiddleschool, largelyservingstudentsfromworkingclassbackgroundsandstudentsofcolor.Iselected theLyonAcademyasthestudysiteforseveral.First,whilemanyproposalsto addressthegendergapinsciencecallforsinglegenderscienceclassrooms,thereisvery littleempiricalworkinvestigatingsuchsettings.Second,theLyonAcademyprimarily servesstudentswhosevoicesareoftenabsentfromstudiesofsciencelearning,andwho aregenerallyunderrepresentedinthefieldofscience,namelyfemalesfromworkingclass backgrounds.Third,Iconductedseveralpreliminaryvisitstotheclassroomsbeforethe studybeganwhereIsawtheteacher,Ms.Marsh,uselanguagethatwasinterestingfrom thestandpointofdisciplinaryliteracy.Indeed,duringtheseobservations,Inotedthe teacher’sinductionofstudentsintosciencespecificwaysofgeneratingknowledge(e.g.,

“That’saclaimbyAna,butwecouldactuallytestit.What’syourevidence?”)and promotionofscientificidentities(e.g.,“Asscientists,wewantsomedataonthis.”).

Finally,Ms.Marshexpressedinterestinliteracydevelopment,buthadrelativelylittle knowledgeaboutit,indicatingthepotentialforherandherstudentstobenefitfrommy researchfindings.

Intheoverallresearchproject,Iemployedamultiplecaseembeddeddesign

(Yin,2009).Ichoseanembeddeddesignbecausemyresearchquestionsinvolvedtwo 9 unitsofanalysis,theclassroomandtheindividualstudent.Whilealloftheclassrooms werelocatedinoneschool,myresearchquestionsdidnotaskabouttheinfluenceofthe schoolasawhole.Thustheschoolservedasthecontext,whiletheclassroomwasmy unitofanalysisandtheindividualstudentwasasubunitofanalysis.Themultiplecase designallowedforcrosscasecomparisonsattheclassroomandstudentlevel.Icollected datafrommultiplesourcesoverthecourseof7monthsduringoneacademicyear, including(a)fieldnotes(Emerson,Fretz,&Shaw,2011),(b)videorecordedclassroom observations(102classes,113hours,recordedon29days),(c)photographsandverbatim copiesofliteracyartifactssuchasstudentworkandteacherwritingonthewhiteboard,

(d)asurveycompletedbyallstudentsand(e)semistructuredinterviewswitha subsampleof12focalstudents.Inthisthesis,Ipresenttheresultsofthreestudiesthat arosefrommyworkattheLyonAcademy.

Study1

Thepurposeofthefirststudywastodocumentthestandardliteracypracticesand textgenresfoundinMs.Marsh’sfourscienceclassrooms(grades68)attheLyon

Academy.Theprimarydatasourceforthisstudywasvideorecordedclassroom observations.Ialsotriangulatedthedatausingfieldnotesandphotographsofliteracy artifacts.Usingquantitativeandqualitativeanalysistechniques,Icategorizedthetext genresusedduringreadingandwritingpracticesinMs.Marsh’sclassroomsand describedhowthesetextswereusedduringclassroominstruction.Ialsoanalyzedthe similaritiesanddifferencesbetweenthe“generalschool”and“sciencespecific”literacy practicesthathappenedintheseclassrooms.

Study2 10

ThepurposeofthesecondstudywastoexaminehowLyonAcademystudents’ scienceidentitiesareshapedbytwoprimaryfactors:theirteacher’slanguageand instructionalpracticeswithintheirclassrooms,andpopularimagesofsciencefromthe worldbeyondtheirclassrooms.Theprimarydatasourcesforthisstudywerefieldnotes, videorecordedclassroomobservations,andsemistructuredinterviewswiththe subsampleof12focalstudents.Usingqualitativeanalysistechniques,Ifirstexaminedthe teacher’slanguageandinstructionalpracticestodeterminewhatopportunitiesstudents weregiventoparticipateinthecentralpracticesofscienceandtobuildascienceidentity.

Ithenexploredwhatsourcesindividualstudentsdrewoninconstructingtheirownviews ofscience.Inparticular,Iwasinterestedinunderstandingthewaysinwhichtwo factors—languageandinstructionalpracticeswithinthescienceclassroom,andpopular imagesandbeliefsaboutscienceoutsideoftheclassroom—intersecttoshapetheLyon

Academystudents’beliefsaboutscienceidentity.

Study3

ThepurposeofthethirdstudywastoexploretheLyonAcademystudents’ attitudestowardscienceandconstructionsofscienceidentityinmoredepth.Theprimary datasourcesforthisstudyweresurveyresultsfromallLyonAcademystudentsand interviewdatafromthreecasestudystudents.Inaddition,Itriangulatedthesurveyand interviewdatawithdatafromfieldnotesandvideorecordedclassroomobservations.

UsingquantitativeandqualitativeanalysistechniquesIfirstanalyzedLyonAcademy students’responsesrelatingtodifferentaspectsofscienceidentity.Ithenexploredthe variationintheirresponsesinmoredepthbydiscussingtheexperiencesandbeliefs reportedbythreecasestudystudents. 11

Conclusion

Takentogetherthefindingsfromthesethreestudieshaveseveralimportant

implicationsforteachers,instructionalleaders,andresearchersinterestedingirls’science

literacyandthepersistentunderrepresentationofwomen,andespeciallywomenofcolor,

insciencerelatedcareers.First,thefindingsshedlightonthekindsoftextLyon

Academystudentswerereadingandwritingintheirscienceclasses(i.e.,textgenres)and

whatactivitiestheywerebeingaskedtodowiththesetexts(i.e.,literacypractices).Such

informationisimportanttohelpteachers,instructionalleaders,andresearchersidentify

areastofocusonasmorecontentareateachersareaskedtomeettheambitiousliteracy

goalscontainedinmanycollegeandcareerreadystandards.Second,thefindings

revealedhowMs.Marsh’slanguageandinstructionalpracticespositionedherstudentsas

workingscientistsandgavethemaccesstovalues,activities,tools,andlanguagethatshe

indicatedwerecentraltodoingscience.Thesepromisingpracticeshaveimplicationsfor

researchersinterestedinfuturestudiesofscienceinstructionthathelpsunderrepresented

adolescentstotakeondisciplinaryidentities.Finally,thefindingsdemonstratedthe persistenceofmanylimitedandnoninclusiveviewsofwhoscientistsareandwhatthey do,evenamonggirlsattendinganallfemaleschoolwheretheirteacheractively encouragedthemtoviewthemselvesasscientistsandconstructamoreinclusiveviewof scientists.Thissuggeststheneedforscienceinstructionthatmoreactivelypromotes multiplevisionsofsciencethatdisruptlimitedandnoninclusivepopularconceptions. 12

References

Applebee,A.N.,&Langer,J.A. (2009).Whatishappeningintheteachingofwriting?.

English Journal, 98 (5),1828.

Applebee,A.N.,&Langer,J.A.(2011).Asnapshotofwritinginstructioninmiddle

schoolsandhighschools.English Journal ,100 (6),1427.

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2012).“Balancing

acts”:Elementaryschoolgirls'negotiationsoffemininity,achievement,and

science. , 96 (6),967989.doi:10.1002/sce.21031

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2013).“Notgirly,

notsexy,notglamorous”;Primaryschoolgirls’andparents’constructionsof

scienceaspirations. Pedagogy, Culture, and Society, 21 (1),171194.

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2010).“Doing”

scienceversus“being”ascientist:Examining10/11yearoldschoolchildren's

constructionsofsciencethroughthelensofidentity. Science Education, 94 (4),

617639.doi:10.1002/sce.20399

ASPIRES.(2013). Young people’s science and career aspirations, age 10-14. London:

King’sCollege.

Barman,C.R.(1997).Students’viewsofscientistsandscience. Science and Children,

35, 1823.

Carlone,H.B.,HaunFrank,J.,&Webb,A.(2011).Assessingequitybeyondknowledge

andskillsbasedoutcomes. Journal of Research in Science Teaching ,48,459–

485. 13

Carlone,H.B.,Scott,C.M.,&Lowder,C.(2014 ). Becoming(less)scientific:A

longitudinalstudyofstudents’identityworkfromelementarytomiddleschool

science. Journal of Research in Science Teaching ,doi:10.1002/tea.21150

CarnegieCouncilonAdvancingAdolescentLiteracy(2010). Time to act: An agenda for

advancing for college and career success. NewYork,NY:

CarnegieCorporationofNewYork.

Chambers,D.W.(1983).Stereotypicimagesofthescientist:Thedrawascientisttest.

Science Education, 67 (2),255265.doi:10.1002/sce.3730670213

CommonCoreStateStandardsInitiative.(2010). Common core state standards for

English language arts and literacy in history/social studies, science, and

technical subjects. Retrievedfromhttp://www.corestandards.org/readthe

standards/

Emerson,R.M.,Fretz,R.I.,&Shaw,L.L.(1995). Writing ethnographic fieldnotes .

Chicago,IL:UniversityofChicagoPress.

Fang,Z.&Coatoam,S.(2013).Disciplinaryliteracy:Whatyouwanttoknowaboutit.

Journal of Adolescent and Adult Literacy, 56 (8),627632.

Fisher,D.(2009).Theuseofinstructionaltimeinthetypicalhighschoolclassroom. The

Educational Forum , 73 (2),168176.

Gee,J.P.(2001).Identityasananalyticlensforresearchineducation. Review of

Research in Education, 25 ,99125.

Greenleaf,C.L.,Litman,C.,Hanson,T.L.,Rosen,R.,Boscardin,C.K.,Herman,

J....Jones,B.(2010)Integratingliteracyandsciencein:Teachingand 14

learningimpactsofreadingapprenticeshipprofessionaldevelopment. American

Educational Research Journal, 48 (3),647717.

Heath,S.B.,&Street,B.V.(2008). On ethnography: Approaches to language and

literacy research .NewYork:TeachersCollegePress.

Hill,C.,Corbett,C.&St.Rose,A.(2010). Why so few?: technology,

engineering, and mathematics. Washington,DC:AAUW.

Kiuhara,S.A.,Graham,S.,&Hawken,L.S.(2009).Teachingwritingtohighschool

students:Anationalsurvey. Journal of Educational Psychology ,101 (1),136160.

Lawrence,J.F.,PhillipsGalloway,E.,Yim,S.&Lin,A.(2014).Learningtowritein

middleschool?:Insightsintoadolescentwriters’instructionalexperiencesacross

contentareas. Journal of Adolescent and Adult Literacy, 57 (2),151161.

Lemke,J.L.(1990). Talking science: Language, learning, and values .Norwood,N.J.:

Ablex.

Moje,E.B.(1995).Talkingaboutscience:Aninterpretationoftheeffectsofteachertalk

inahighschoolscienceclassroom. Journal of Research in Science Teaching,

32 (4),349371.

Moje,E.B.(2008).Foregroundingthedisciplinesinsecondaryliteracyteachingand

learning:Acallforchange. Journal of Adolescent and Adult Literacy, 52 (2),96–

107.

NationalCenterforEducationStatistics.(2007). The nation’s report card: America’s

high school graduates: Results from the 2005 NAEP high school transcript study ,

byC.Shettle,S.Roey,J.Mordica,R.Perkins,C. Nord,J.Teodorovic,J.Brown, 15

M.Lyons,C.Averett,&D.Kastberg.(NCES2007467).Washington,DC:

GovernmentPrintingOffice.

NationalCenterforEducationStatistics.(2012). The nation’s report card: Science 2011

(NCES2012–465).Washington,DC:InstituteofEducation,US

DepartmentofEducation.

Norris,S.P.,&Phillips,L.M.(2003).Howliteracyinitsfundamentalsenseiscentralto

scientificliteracy. Science Education , 87 ,224–240.

Reilly,D.(2012).Gender,culture,andsextypedcognitiveabilities. PLoS ONE 7 (7):

e39904.doi:10.1371/journal.pone.0039904

Reveles,J.M.(2009).Academicidentityandscientificliteracy.InK.R.Bruna&K.

Gomez(Eds.), The work of language in multicultural classrooms: Talking

science, writing science (pp.93114).NewYork:Routledge.

Shanahan,T.,&Shanahan,C.(2008).Teachingdisciplinaryliteracytoadolescents:

Rethinkingcontentarealiteracy. Harvard Educational Review, 78 (1),4059.

Shanahan,T.,&Shanahan,C.(2012).Whatisdisciplinaryliteracyandwhydoesit

matter? Topics in Language Disorders, 32 (1),7–18.

Shanahan,C.,Shanahan,T.,&Misischia,C.(2011).Analysisofexpertreadersinthree

disciplines:History,mathematics,and. Journal of Literacy Research,

43 (3),393429.

Weiss,I.R.,Pasley,J.D.,Smith,P.S.,Banilower,E.R.,&Heck,D.J.(2003). Looking

inside the classroom: A study of K-12 mathematics and science education in the

United States. ChapelHill,NC:HorizonResearch. 16

Wellington,J.,&Osborne,J.(2001).Languageandliteracyinscienceeducation.

Buckingham,UK:OpenUniversityPress.

Wong,B.(2012).Identifyingwithscience:Acasestudyoftwo13yearold‘high

achievingworkingclass’BritishAsiangirls. International Journal of Science

Education, 34 (1),4365.doi:10.1080/09500693.2010.551671

Yin,R.K.(2009). Case study research design and methods (4thed).ThousandOaks,

CA:SagePublications.

17

Chapter2:Study1

LiteracyPracticesandTextGenresinGirls’MiddleGradeScienceClassrooms

Abstract

Inthefaceoflowadolescentliteracyrates(NCES,2012),concernsaboutthenation’s prospectsofremainingcompetitiveinscienceandtechnology(Hill,Corbett,&St.Rose,

2010),apersistentgendergapinscience(Hill,Corbett,&St.Rose,2010;NCES,2012;

Reilly,2012),andthecontinuedrolloutofthe Common Core State Standards for English

Language Arts and Literacy in History/Social Studies, Science, and Technical Subjects

(CCSS;NationalGovernorsAssociationCenterforBestPractices&CouncilofChief

StateSchoolOfficers,2010),thereisaneedtofocusonadolescentgirls’scienceliteracy.

Suchscienceliteracyinvolvesnotonlygeneralknowledgeaboutscience,butalsothe abilitytoengageintheadvancedreadingandwritingpracticesfundamentaltodoing science(Norris&Phillips,2003).Whileitisclearthatexpertscientistsusetextbefore, during,andaftertheinquiryprocess(Yoreetal.,2004),muchlessisknownaboutthe literacypracticesandtextgenresusedinscienceclassrooms.Thepurposeofthisarticle istodocumentthecurrentliteracypracticesandtextgenresfoundinthefourscience classrooms(grades68)ofonescienceteacheratasmallallfemaleschool.Overthe courseof7months,Iobservedtheregularlyscheduledscienceclasseson1to2daysper week.Duringtheseobservations, Icollectedindepthdatafocusedonreadingandwriting inthesescienceclassesfrommultiplesources,including(a)fieldnotes(Emerson,Fretz,

&Shaw,2011),(b)videorecordedclassroomobservations(102classes,113hours, recordedon29days),and(c)photographsandverbatimcopiesofliteracyartifactssuch

18 asstudentworkandteacherwritingonthewhiteboard.Tenminuteintervalsfromeach werecodedforliteracypracticesandtextgenresused.Findingsindicatethat studentsreadandwroteawidevarietyofgenres,butwerefarmorelikelytoreadthan writethetypeofsophisticatednonfictionprivilegedbythe Common Core Standards .

Moreover,overtwothirdsofliteracypracticeswereclassifiedas“generalschool” practicesratherthansciencespecificliteracypractices.Themajorityofthescience specificliteracypracticesinvolvedgenresthatwerecategorizedasnumbersandvisual representations.Thesefindingshighlighttheimportanceofgenresbeyondtexttoscience instruction,whilealsosuggestingthatscienceteachersmayneedsupportinorderto integratetextintotheirdisciplinespecificliteracyteaching.

19

Introduction

ItistimeforMs.Marsh’s 25thgradescienceclassattheallfemaleMaryLyon

AcademyforGirls(LyonAcademy).Afterbriefinstructions,Ms.Marshgathersher fifteenstudentsaroundatableatthebackoftheclassroomtoguidetheminjointly constructingachartdisplayingtheresultsofahandsontestingthe toleranceoffourdifferentplanttypes.Ms.MarshcallsonMandywhovolunteersthe vocabularyterm“optimumcondition”todescribethesituationwhenaplantis“atitsvery best”andMs.Marshaddsthephrasetoakeysheiscreatingbelowthechart.Whenshe finishes,Ms.Marshlooksupandasksherstudents,“What’smissing?”Shecontinues,

“Asscientists,wewanttobespecific,wewanttouseevidence,andwewanttoreally communicateourthinking...Because,asscientists,itdoesn’tmatterwhatwefindout unlesswecanshareitwithpeople.”

Asthisexampleillustrates,Ms.Marshbelievesthatspecificwaysof communicating—reading,writing,andspeaking—areattheheartofherdiscipline.Her affirmationoftheimportanceofcommunicating“asscientists”issignificantinlightof thecollegeandcareerreadystandards,suchasthe Common Core State Standards for

English Language Arts and Literacy in History/Social Studies, Science, and Technical

Subjects (CCSS;NationalGovernorsAssociationCenterforBestPractices&Councilof

ChiefStateSchoolOfficers(NGACenters&CCSSO),2010),whichrenewthecallfor alleducatorsacrossacademicdisciplinestotakeresponsibilityfortheirstudents’literacy development.However,whilestandardssuchastheCCSSoutlineanambitiousvisionof whatitmightmeantoreadandwriteaccordingtodisciplinarynorms—“asscientists”— littleisknownaboutthecurrentliteracypracticesfoundinclassroomslikeMs.Marsh’s. 2allnamesarepseudonyms

20

Inparticular,thereisalackofknowledgeaboutwhatkindsoftextsstudentsarereading andwritingintheirscienceclasses(i.e.,textgenres)andwhatactivitiestheyarebeing askedtodowiththesetexts(i.e.,literacypractices).Althoughtheterm“genre”hasbeen defineddifferentlybydifferentdisciplines,hereIuseittorefertoconventionalwaysof organizingtextfordifferentpurposeswithinthescienceclassroom(e.g.,labreport, diagramofaprocess).Suchinformationaboutcurrentliteracypracticesisimportantto helpteachers,instructionalleaders,andresearchersidentifyareastofocusonasmore contentareateachersareaskedtomeettheambitiousliteracygoalscontainedinmany collegeandcareerreadystandards.

Asafirststepindevelopingsuchknowledge,thisarticlereportsontheresultsof acasestudyoftheliteracypracticesandtextgenresfoundinMs.Marsh’sfourmiddle gradescienceclassroomsattheallfemaleLyonAcademy.Ms.Marshistypicalofmany otherskilledandcaringcontentareateachersinthatshehasexpressedinterestinand concernwithherstudents’literacydevelopment,buthasnoformalbackgroundor traininginliteracy.I,ontheotherhand,amaresearcherconcernedwithadolescent literacyandaformerteacherofreadingtoadults,butdonothaveMs.Marsh’sexpertise insciencecontent.LikeMs.Marsh,Ibelievethatspecificwaysofreadingandwriting areattheheartofeveryacademicdiscipline.However,Ibelievethateducatorsand researchershaveyettodevelopacommonunderstandingofwhatitmeansto communicateindisciplinespecificwayswithincontentareaclassrooms.Thusmy intentionwasthatmycollaborationwithMs.Marshwoulddrawonourcollective knowledgeandexperiencestoyieldnewinsightsintothecurrentstateofliteracyin

21 scienceclassrooms.Specifically,thisexploratorystudywasguidedbythreeresearch questions:

1. Whatarethetextgenresusedinthereadingandwritingpracticesinthefour

scienceclassrooms?Howarethetextsusedinliteracypractices?

2. Whatarethesimilaritiesanddifferencesbetweensciencespecificandgeneral

schoolliteracypracticesthatoccurredintheseclassrooms?

3. Dothetextgenresandliteracypracticesvaryacrosstheclassroomsthatuse

differentcurricula(e.g.,5thand6thgradesvs.7thand8thgrades)?

Inthefollowingsections,Ireviewthebackgroundliteraturethathashelpedshapethis

study.Ithenpresentmyfindingsandconcludewithadiscussionofthesefindingsframed

inthecontextofarichvisionofliteracyinscienceclassrooms.

BackgroundLiterature:LiteracyinScience

Althoughtheideathatallcontentareateachersareteachersofliteracyisnotnew,

earlier—andlargelyunsuccessful—incarnationsof“contentarealiteracy”emphasized

generalcognitivestrategiesthoughttobeapplicableacrossdisciplinarycontexts

(Shanahan&Shanahan,2012).Incontrast,manyofthenewcollegeandcareerready

standards,suchastheCCSS,reflectabeliefintheimportanceofdisciplinespecific

reading,writing,andlanguagepractices.Accordingtothisperspective,teaching

disciplinespecificliteracypracticesisnotanaddontothecurriculum,butanintegral partofhelpingstudentstoacquiredisciplinaryknowledge.RelevanttoMs.Marsh’s

classroom,thisviewisalsoexpressedinthe Next Generation Science Standards ,which assertinAppendix M: Connections to the Common Core State Standards for Literacy in

Science and Technical Subjects ,“Literacyskillsarecriticaltobuildingknowledgein

22 science”(NGSSLeadStates,2013b,p.1).Ofcourse,suchstatementsraisethequestions ofwhichliteracyskills(i.e.,whichliteracypracticesdealingwithwhichtextgenres)are especiallyrelevanttoscienceandwhetherthosedisciplinespecificliteracyskillsare presentinscienceclassrooms.

Whiletheextantresearchdoesnotfullyaddressthisquestion,inthesectionsthat follow,Ibrieflydiscusstworelevantbodiesofliterature.First,Ireviewarobustbodyof literaturerelatedtoliteracyamongexpertscientists.Ithendiscussthesmallbodyof literaturethathasattemptedtoshedlightonthecurrentstateofliteracyinstructionin middleandhighschoolscienceclassrooms,endingbysuggestingsomeimportant unansweredquestions.

WhatDoWeKnowaboutLiteracyAmongExpertScientists?

Drawingonyearsofresearchattendingtolanguage,semiotics,andscience education,Lemke(2004)providedthefollowingdescriptionofwhatanethnographer studyingliteracyamongworkingscientistsmightobserve:

Backsofenvelopeswithincompletesketches,isolatedwords,afewlinesof

mathematicalsymbols,somearrowsandquestionmarks.Meticulousnotebooks

fullofdates,columns,headings,andnumbers.Shelvesoftextbooks,treatises,

andhandbooks.Pilesofoffprints,preprints,reprints,andprintouts.People

talkingwhileusingawhiteboardlikethebackofanenvelope.Peopleentering

numbersinnotebookswhileadjustingdialsandtiltingtheirheadsatfunny

angles.Peoplesittingsilentlyatcomputerscreensfilledwithnumbers,graphs,

andbizarrevisualdisplays,makinglittlenotesonpadsofpaper.Andonceina

greatwhile,someonesittingatakeyboardandcreatingcompletesentencesof

23

English,neatlyarrangedintoparagraphs,andseparatedbylinesofmathematical

symbolsortablesofnumbersorgraphsofcrookedlinesordiagramsofapparatus

ormoreunusualvisualdisplays(p.33).

Iwouldliketohighlightthreepointsillustratedbythisdescriptionthathavealsoreceived

supportinotherliterature.

First,literacyisanintegralpartofscience,usedthroughouttheinquiryprocess.In

fact,NorrisandPhillips(2003)arguethatreadingandwritingshouldnotbeviewedas

functionaltoolsthatcanbeusedfordoingscience,butasnecessaryconstitutivepartsof

science.Inotherwords,scienceascurrentlypracticed,couldnotexistwithoutreading

andwriting(Norris&Phillips,2003;Osborne,2002).

Second,sciencerequiresmultiple.Fullparticipationinsciencerequires

commandofnotonlythenarrowsenseoftextthatliteracyeducatorstendtofocuson,but

alsothelanguageofmathematicsandmultiplevisualrepresentations(Lemke,2004).

Scientifictextswithinandoutsideoftheclassroomroutinelyintegrateawidearrayof

differentelementsincludingabstracts,sectionheadings,figures,tables,diagrams,maps,

drawings,photographs,referencelistsandendnotes(Lee&Spratley,2010).Experienced

readersinscienceusestructuralelementssuchasheadingstomakestrategicchoicesin

theirreadingandrecognizethatmanyofthetextelementspresent“alternativeformsof

overlappinginformationthathastobetranslatedandcompared”(Shanahan,Shanahan,&

Misischia,2011,p.406).

Third,someofthetextgenresintegraltoscienceareusedinthemomentandcan beproducedquickly,suchasaninformalsketchbrieflyshowntoacolleague,while

othersarecomplexextendedpiecesthatrequiremultiplerevisionsandaremeantfora

24 broaderandmoreremovedaudience,suchasjournalarticles.Itisthelattercategorythat ishighlightedbytheCCSS,whichemphasizereadingandwritingextended

“sophisticatednonfiction”includingtextsthatfollowdisciplinespecificconventionsfor makingandprovidinginformationorexplanations(NGACenter&CCSSO,

2010,p.60).However,itmaywellbethatreadingandwritingawiderarrayofgenresis importantinscienceclassroomsbothbecausetheyareintegraltodoingscienceandfor pedagogicalreasonsasteachersscaffoldtheirstudents’constructionofsophisticated nonfictiontexts.

WhatDoWeKnowaboutLiteracyinScienceClassrooms?

Asmallbodyofliteraturedescribestypicalreadingandwritinginstructionin middleandhighschoolcontentareaclassrooms.Tomyknowledge,fivesuchstudies, usingdiversedatacollectionmethodsandinstrumentssuchasobservations,surveys,and interviews,includedescriptionsofthefrequencyofreadingandwritingactivitiesorthe genresfoundinscienceclassrooms(Applebee&Langer,2009,2011;Fisher,2009;

Kiuharaetal.,2009; Lawrence,PhillipsGalloway,Yim&Lin,2014 ).Anadditional studyoftheinstructionalpracticesofscienceandmathematicsteachersalsoshedslight onliteracyinstruction,althoughitwasnotanexplicitfocusofthestudy(Weiss,Pasley,

Smith,Banilower,&Heck,2003).Ofthesesixstudies,fourareconcernedwithwriting incontentareaclassrooms( Applebee&Langer,2009,2011; Kiuharaetal.,2009;

Lawrenceetal.,2014 ).

Ingeneral,thesestudiesindicatethatreadingandwritinginstructionoccurs infrequentlyinmiddleandhighschoolscienceclassrooms (Applebee&Langer,2009,

2011;Fisher,2009; Kiuharaetal.,2009).Forexample,Fisher(2009)observedthree

25

“average”10thgradestudentsatasuburbanschoolinalloftheirclassroomsfor3full dayseach.Heclassifiedtheactivitiesheobservedintosevenbroadcategoriesand documentedthetimespentoneach.Acrossthe15classroomsheobserved,listening activitiessuchasteacherlectureorwatchingafilmaccountedforthemostinstructional time(48%),whilereading(6%)andwriting(2%)accountedfortheleast.Thewriting focusedstudiescorroboratethislowestimateofwritingopportunities,especiallyrelated toextendedtext( Applebee&Langer,2009,2011; Kiuharaetal.,2009).Forexample,a nationallyrepresentativesampleofscienceteachersestimatedthat duringa9week gradingperiodtheyaskstudentstowrite3.5assignmentsofapageorless,1.5 assignmentsofonetotwopages,and.5assignmentsofthreepagesormore(Applebee&

Langer,2011).

Additionally,fourstudiesshedlightonthetextgenresstudentsreadandwritein scienceclassrooms(Applebee&Langer,2011; Kiuharaetal.,2009; Lawrenceetal.,

2014;Weissetal.,2003 ).WhilenostudythatIamawareofhassystematically

documentedthetypesoftextsreadinscienceclass,evidencesuggeststhattextbooks predominate.Forexample,Weissandcolleagues(2003)conductedclassroom

observationsandinterviewswithanationallyrepresentativesampleofscienceand

mathematicsteachers.Whenteacherswereaskedaboutwhatinfluencedthecontentof

whattheytaught,textbookswerecitedinalmosthalfthelessons;onlydistrictandstate

standardswerecitedmorefrequently(Weissetal.,2003).Textbooksalsoappear

throughouttheteachers’discussionsoftheirinstructionalchoices(Weissetal.,2003).

Manystudents,andparticularlytheunderrepresentedstudentsoffocusinthisstudy,are

likelytoexperiencedifficultycomprehendingthesetextbooks.Inthefirstplace,the

26 registeremployedischaracterizedbycomplexsyntax,suchastheuseofembedded clauses,andspecializedtechnicalvocabulary,bothofwhichdifferinsignificantways fromeverydaylanguage(Lee&Spratley,2010).Moreover,asubstantialbodyof researchhasdocumentedotherchallengingaspectsoftextbookssuchasassumed backgroundknowledgethatstudentsdonothave,lowlevelcognitivequestionswithin thetext,problematicvisualrepresentations,andtheunderrepresentationoffemalesand ethnicminoritiesinillustrations(Forareview,seeKamil,2010).

Turningtowriting,adifferentpictureemerges.Incontrasttothecomplex informationaltextsstudentsareaskedtoread,theyarelargelyaskedtowritesingle wordsorshortanswers(Applebee&Langer,2011; Kiuharaetal.,2009 ).Forexample,

ApplebeeandLanger(2011)collected8,542writingassignmentsfromthefourcore

contentareaclassesof138studentsattendingschoolswithareputationforexcellent

writinginstruction.Themajorityoftheseassignments(81%)consistedof“fillinthe blankandshortanswerexercises,andcopyingofinformationdirectlyfromtheteacher’s presentation,”activitiestheauthorsdescribedas“writingwithoutcomposing”(p.15).

Thesefindingsarecorroboratedbyteachers’ownreportsoffrequentlyassignedgenres.

Worksheetsandshortanswerresponsesaretheonlygenresthatmorethanhalfofscience teachersreportedassigningonceaweekormore( Kiuharaetal.,2009 ).Finally,

Lawrenceandcolleagues(2013)examinedthegenresfoundinthecontentarea

notebooksofasampleofstudentsfromonesmallschool.Theyfoundsixgenresinthe

sciencenotebooks,whichIlistinorderoftheirfrequency:writtenexplanation(35.7%),

27 shortanswer(26.2%),notesfromtextbookorclass(21.4%),computations(7.1%), journal(2.4%),andgraphicrepresentation(2.4%) 3.

Takentogether,thesebodiesofliteraturehighlightseveralareasthathave

influencedthedesignandanalysisofthepresentstudy.First,itisclearthatthewriting

thathappensincontentareaclassroomsisbetterdocumentedthanreading.More

informationisneededonwhat,ifany,textgenresbesidesthecoursetextbookstudents

read.Second,Lemke’s(2004)descriptionoftheliteracypracticesofaworkingscientist

suggeststhatatextcentricframeworkmightbetoonarrowtocapturethefullextentof

whatitmeanstobescientificallyliterate.ThisviewissupportedbyLawrenceand

colleagues’(2014)findingthatcomputationsandgraphicrepresentationsaccountedfor

almost10%ofthewritingfoundinstudents’sciencenotebooks.Third,studiesofwriting

inscienceclassroomssuggestthatstudentsarerarelyaskedtowriteextendedtext.Yetit

isimpossibletomeetthechallengeofcollegeandcareerreadystandardswithoutdoing

this.Thereforethereisaneedtofocusonwhatopportunitiesstudentsaregiventowrite

sophisticatednonfictiontexts.Finally,thedisciplinaryliteracyperspectivehighlightsthe

needtoteachdisciplinespecificreadingandwritingpractices.Yetmuchofwhatis

describedintheextantliteratureappearstobegeneralschoolliteracypractices(e.g.,

fillinginworksheet,copyingnotes,readingtextbookindependently)ratherthanpractices

specifictothedisciplineofscience.Thispointstoaneedformoreresearchintowhich,if

any,literacypracticesinscienceclassroomsappeartobespecificto“doingscience”

ratherthan“doingschool.”

PresentStudy

3Theremaining4.8%ofnotebookentrieswereclassifiedas“other.”

28

MystudybeganwiththepremisethatMs.Marshandherstudentsengagein particularliteracypracticesusingtextsofdifferentgenresinordertoaccomplishthe

workof“doingscience.”Whiletheirlocalclassroompracticesmightbeinfluencedby

someofthedisciplinarypracticesfoundinthebroaderscientificcommunity,theyarenot

identicaltothem,inpartbecauseoftheparticularknowledgeandbeliefsbroughtbyMs.

Marshandherstudentsandinpartbecauseofcompetingpressuresfoundonthelocal

level(e.g.,pressuretoachievecontentcoverageorteachernotviewingselfasa

disciplinaryexpert).Whileitisclearthatexpertscientistsuseprintedtextbefore,during,

andaftertheinquiryprocess(Yore,Hand,&Florence,2004),muchlessisknownabout

theliteracypracticesandtextgenresusedinscienceclassrooms.Thisisespeciallytrue

forthoseclassrooms,likeMs.Marsh’s,thatuseacurriculumthatprivilegeshandson

experiments.Thusthepurposeofthisarticleistodocumentthestandardliteracy practicesandtextgenresfoundinMs.Marsh’sfourscienceclassrooms.

StudyDesignandMethods

StudyDesign

Thestudyemployedamultiplecasedesign(Yin,2009)withtheclassroomasthe unitofanalysis.Whilealloftheclassroomswerelocatedinoneschool,thestudydidnot askabouttheinfluenceoftheschoolasawhole.Thustheschoolservedasthecontext.

Notably,becauseoftheschool’sarrangement,allfourclassesweretaughtbyMs.Marsh, theschool’slonescienceteacher.Thus,unlikeinacomparisonofclassroomswith differentteachers,anydifferencesinscienceliteracypracticescannotbeattributedto differencesintheteachers’background,knowledge,orbeliefs.

SchoolContext:TheLyonAcademy

29

ThestudywasconductedattheLyonAcademy,asmallnondenominational,non profit,privateschool,locatedinanurbanareainNewEngland.TheLyonAcademywas

foundedin2000toserveadolescentfemales,primarilygirlsofcolorfromthecity’s

workingclasshouseholds.Theschool’spurposewastooffergirlsfacingeconomic

hardshipan“empoweringeducationalprogram”focusedontheirintellectualand

emotionalgrowthduringtheformativeyearsofearlyadolescence(grades58).Atthe

timeofdatacollection,theLyonAcademyhadatotalenrollmentof55students.Since

theLyonAcademyisasmallschool,thereisonlyoneteacherforeachcontentarea,and

studentsworkwiththesameteacheroverthecourseof4years.

Participants

Teacher. Ms.Marsh,thescienceteacher,isawhitefemalewithaMasterofArts

inTeachingdegreefromaneliteprivateuniversity.Atthetimeofdatacollection,she

was31yearsoldandinher5thyearteachingandher4thyearattheLyonAcademy.

Becausetherewasonlyonescienceteacher,theLyonAcademyusedatwoyear(A/B)

curriculumcycle.ThecontenttaughtchangedbetweenAandByears,buteachyear’s5th

and6thgradecohortslearnedthesamecontent.Similarly,the7thand8thgradecohorts

sharedsciencecontent.Duringthedatacollectionyear,5thand6thgradestudents

studiedLifeSciencewithunitsonEnvironments,Microworlds,andLandandWater.The

7thand8thgradestudentsstudiedanEarthScienceunitonWeatherandWaterandaLife

ScienceUnitonPopulationsandEcosystems.Unlikemoretraditionalclassrooms,

instructionwasnotdrivenbyasciencetextbook,althoughtextbookswerepresentinthe

classrooms.Instead,theschoolpurchasedmembershipinacollaborativethatgavethem

accesstomaterialsfromseveralhandsonsciencecurriculaandstudentsoftenengagedin

30 handsonactivities.Duringtheseactivities,Ms.Marshwouldtypicallydemonstratesome oralloftheprocedurestothewholeclasswhilecommentingonwhatstudentsshoulddo tocompletetheactivity.Studentswouldthencompletethehandsonexperiment,usually inpairsorsmallgroups.Somehandsonactivitieslastedonlyasmallportionofthe scienceclass,whileotherscontinuedforseveralclassperiodsorevenweeks.

Students. Iinvitedall55LyonAcademystudentsingrades58toparticipatein

theclassroomobservationandsurveyportionsofthestudy.Fiftystudentsconsentedto participate.InTable1,Ipresentselectdemographiccharacteristics,bygradelevel

classroom.Inallfourclassrooms,themajorityofstudentswereidentifiedbyschool

recordsasLatina,andBlack/AfricanAmerican.Multiracialwasthenextmostprevalent

racial/ethnicdesignation.OnlyoneparticipatingstudentwasidentifiedasWhiteandone

asAsian(both7thgraders).Whilethisinformationwasnotavailablebyclassroom,inthe

overallschool,roughlyhalfofstudentscamefromahomewherealanguageotherthan

Englishwasspoken.Inaddition,ineachclassroomallornearlyallstudentswereeligible

forfreeorreducedpricelunch.Inspiteofthiseconomicneed,forseveralyears,Lyon

AcademystudentshadoutscoredtheircitywidepeersontheNewEnglandCommon

AssessmentProgram(NECAP)test.Additionally,over90%ofLyonAcademyalumnae

continuedontograduatefromhighschool4yearsafterleaving,andcloseto100%didso

within5years.

DataCollection

Overa7monthperiodduringasingleacademicyear,Iengagedinparticipant

observationattheLyonAcademyforafullschoolday1to2daysperweek.Theroleof

theresearcherasobservercanvaryfromcompleteparticipanttocompleteobserver

31

(Creswell,2009).MyrolebestfitsCreswell’s(2009)classificationof“observeras participant.”MyroleofresearcherwasknowntoallstudentsandschoolpersonnelandI remainedlargelysilent,openlytakingnoteswhilescienceinstructionwastakingplace.

Mygoalwastobeseenasaregularnonjudgmentalpresenceintheclassroom,thereto learnfrombeingattentivetoclassroomactivities.WhileIactedprimarilyasanobserver duringacademicinstruction,Iactivelyparticipatedinotheraspectsofthedailylifeofthe school.Forexample,Ms.MarshandherstudentsoccasionallybroughtinsnacksandI wouldeatandengageininformalconversationswiththerestoftheclass.Ialsochatted informallywithLyonAcademystudentsandteachersbeforeorafterclassandinthehalls andparkinglot.Inaddition,Iparticipatedwhenevertherewasaninclass“icebreaker” activity,suchassharingapieceofnewsfromtheweekend.

EachdayIvisitedtheLyonAcademy,Iobservedtheregularlyscheduledscience classes(34classesdependingonthedayoftheweek).IalsoobservedMs.Marsh’s5th grademorningadvisoryperiodandchattedinformallywithMs.Marshaboutwhatwas happeninginherclassesbeforeschoolandduringlunchtime.Icollectedindepthdata focusedonreadingandwritinginthesescienceclassesfrommultiplesources,including

(a)fieldnotes(Emerson,Fretz,&Shaw,2011),(b)videorecordedclassroomobservations

(102classes,113hours,recordedon29days),and(c)photographsandverbatimcopies ofliteracyartifactssuchasstudentworkandteacherwritingonthewhiteboard.

DataAnalysis

Datacollectionandanalysiswereoverlappinganditerativeprocesses(Dyson&

Genishi,2005;Heath&Street,2008).Afterclassroomobservations,Iwrotememosto recordemergentthemesandusethesethemestohelpguidewhatIattendedtoduring

32 futureobservations.Forexample,earlyonIidentifiedstudentnotebooknotesasan importantgenreinMs.Marsh’sclassroomandbeganrecordingthesetextsverbatimin myfieldnotes.Towardtheendofdatacollection,Ibeganthedatamanagementstrategy oftranscribing10minuteintervalsfrom30minutesintoeachclassroomobservation.

Thisdetachedselectionofdatafortranscriptionwasusedtoallowforattentionto changesovertimeandmitigateagainsttheselectionofpurelyillustrativedatathat confirmedpreconceivedideas(Heath&Street,2008).Myanalysisofthesetranscriptions indicatedthatclassesdidnotfollowastrictdailyroutine(e.g.,classalwaysbeginswith takingnotes,followedbyhandsonactivity,followedbydiscussion)andthusthe transcribedintervalspresentafairrepresentationofclassroomactivities.Iconfirmedthis conclusionbyconsulting(a)thefieldnotesfromallofmyobservationsand(b) photographsandliteracyartifactstoensurethatnofrequentlyoccurringliteracyactivities wereabsentfromthetranscribedsample.Throughoutdataanalysis,Iengagedina processofwritinganalyticmemos,buildingtheories,andreturningtothedatatoverify, reject,andrefinethesetheories.

Coding literacy practices. Afterdatacollectionandtranscriptionwerecomplete,I codedallportionsofobservationtranscriptsthatinvolvedliteracyinAtlas.tiqualitative analysissoftware.Becauseoftheimportanceofmultipleliteraciestoscience,Idefined literacybroadlytoincludevisualandmathematicalrepresentationssuchasmaps, equations,anddiagrams.Next,Iengagedinindepthcodingoftheliteracyrelated portionsofthetranscriptionsusinganinductiveopencodingapproach(Charmaz,2006;

Maxwell,2005;Corbin&Strauss,2008).Myinitialcodelistfocusedontypeofliteracy

(e.g.,readingorwriting)andbroadcategoriesforwhatstudentswerereadingorwriting

33

(e.g.,internet,instructions).DuringthenextroundofcodingIattendedtoMs.Marsh’s explicitmessagesaboutliteracyandthepurposesoftheliteracypractices.Finally,I codedliteracypracticesaccordingtowhethertheyweresciencespecificorgeneral schoolliteracypractices.Althoughthe content ofalmostalltextswasrelevanttoscience,

Iconsideredapracticetobeageneralschoolliteracypracticeiftheactivitymightbe observedinclassroomsfrommanyothercontentareas.Forexample,Iwouldconsider studentsreadingsilentlyfromatextbooktobeageneralschoolliteracypractice,although

Iwouldconsideranactivitylikeanalyzingtheadequacyofanexperimentaldesigntobe sciencespecific,evenifthedescriptionofthedesignwaspresentedinthatsame textbook.

Coding text genres. AsafinalstepinmyanalysisIfurtherrefinedthebroad categoriesIhadidentifiedforwhattextsstudentswerereadingorwritingbycodingfor textgenre.Inthisprocess,IwasguidedbyBiberandConrad’s(2009)definitionof genresaslanguage“varietiesassociatedwithparticularsituationsofuseandparticular communicativepurposes”(p.21).Fromthistheoreticalperspective,communicative purposeratherthanstructureliesattheheartofgenre:

Genresarenotfixedstructuresthatsomegreatarbiterofwritinganditsformshas

decreedlongagofromonhigh,muchasitmightseemtostudentwriters.Instead

genresarelivingtraditions—temporaryflexibleagreementsabouthowtoget

communicativejobsdone(Whitney,Ridgeman,&Masquelier,2011,p.526)

Thus,whileIconsultedotherresearchthathasattemptedtodefinetextgenresfoundin classrooms(Hoffman,Sailors,Duffy,&Beretvas,2004;Lawrenceetal.,2014),Ididnot begincodingwithasetlistofpossiblegenres.Instead,Iwasguidedprimarilyby

34 considerationsoftheapparentcommunicativepurposeofthetext.Forexample,students inMs.Marsh’sclassroomwroteseveraltypesofshortconnectedtextthatIconsideredto bedifferentgenreswhentheapparentpurposechanged(e.g.,reportingfactsyouknow vs. explainingaprocess).Finally,itshouldbenotedthatIconsideredwrittennumbersand visualrepresentationstobe“texts”whentheywerethefocusofliteracypractices.For example,studentsinMs.Marsh’sclassroomsfrequentlycreateddatatablesandcharts.

Whilethesechartscouldtheoreticallybeelementsembeddedinalongertext(e.g., laboratoryreport),intheseclassrooms,theyservedasstandaloneproducts.Therefore,I considered“DataChart/Table”tobeatextgenre.

Findings

RQ1.Whatarethetextgenresusedinthereadingandwritingpracticesinthefour scienceclassrooms?Howarethetextsusedinliteracypractices?

Iidentified31textgenresusedduring149classroomliteracypracticesinthe transcribedsampleofobservationaldata(Table2).Ofthesegenres,sevenwereclassified asrepresentingthetypeofsophisticatednonfictionfavoredbytheCCSS(e.g.,textbooks, sciencerelatedtradebooks,andserialpublications).Anadditionaltengenresconsisted ofnumbers,suchasmathematicalcomputations,andvisualrepresentations,suchas computersimulationsanddiagrams.Threegenresweretypesofshortsciencerelated connectedtextsofseveralsentencestoaparagraph,suchasshortexplanationsof processes.Theremainingtenwere“other”genressuchasletters,assessmentsor worksheets.

Studentsinthesefourclassroomswerefarmorelikelytoreadthantowrite sophisticatednonfictiontexts(Figure1).Infact,thesetypesoftextappearedinoverhalf

35 ofclassroomreadingpractices.Themostcommonlyreadgenresofthistypeincluded textbooks(12%)andinformationalpackets(12%),whichMs.Marshoftenusedasa meansofdeliveringsciencecontent.Suchtextswereusuallyreadbystudents independentlyorforhomework.AlthoughMs.Marshsometimesread(orhadstudents read)aloudportionsofthesetextsinclass,theywererarelydiscussedotherthanto providediscretefactsorsummary.Othersophisticatednonfictiontextsthatwerepresent intheclassroomsincludesciencerelatedserialpublications,experimentalprocedures,a sciencerelatedhistoricalreferencebook,notebooknotes,andtradebooks.Itisalso noteworthythatofthe31textgenresIidentified,thegreatestvarietywasusedduring classroomreadingpractices(Figure2).

TherewasslightlylessgenrevarietyamongthetextsthatMs.Marsh’sstudents wrote(Figure3).Althoughthenotesstudentscopiedfromthewhiteboardintotheir notebookswereclassifiedassophisticatednonfiction,thecontentofthenoteswas generatedbyMs.Marsh.Thusstudentsdidnothavetheopportunitytowriteany sophisticatednonfictiontextswithselfgeneratedcontent.Insteadwritingpractices tendedtofocusonstudentswritingnumbers,computationsorvisualrepresentations, whichappearedin38%ofwritingpractices.Themostfrequentlyoccurringgenresofthis broadtypewereexperimentalobservationsinwhichstudentssketchedandwroteshort observationsofwhattheysawduringahandsonexperiment(22%)anddatachartsor tablesrecordingtheresultsofsuchexperiments(9%).Afterteachermodeling,students usuallyworkedindividuallytoproducetheformerandinsmallgroupstoproducethe latter.

36

Finally,therewastheleastgenrevarietyamongliteracypracticesthatinvolved bothwritingandreadingequally(Figure4).Thegenresusedduringtheseactivities consistedalmostentirelyofgenresfallingintothe“other”categoryincludingworksheets

(57%),quizzesortests(13%)andrubrics(13%).Notsurprisingly,giventhesegenres, mostofthereadingandwritingliteracypracticesinvolvedstudentswritingwordsor shortphrasesindependentlyorwithapartner.

RQ2.Whatarethesimilaritiesanddifferencesbetweensciencespecificandgeneral schoolliteracypracticesthatoccurredintheseclassrooms?

Sixtyeightpercentoftheobservedreadingandwritingpracticeswere characterizedas“general”schoolliteracypractices,whichmightbefoundinany classroomregardlessofcontentarea.Examplesofgeneralschoolliteracypracticesthat frequentlyoccurredinMs.Marsh’sclassroomsincludestudentsindependentlyreading texts,fillinginworksheets,orcopyingnotesfromtheboard(Table3).Manyofthese practicesseemedtobedrivenbythegoalofprovidingorreviewingsciencecontent, largelythroughindependentreadingorcopyingnotebooknotes,orbythegoalof assessingstudents’abilitytoreproducethecontentthroughtestsorworksheets.Atypical exampleofatextbookreadingactivityinMs.Marsh’sclassroomfollows:

Ms.Marsh: OK.Lastthing.Takeoutyourgreenbooks.Thisisthelastthing.

Soyou’regonnahavethermometerarticle,twentytotwentyone.

OK?Andthisisanewarticlebutmostofit’sreview,andthenew

articleisrightafterthethermometerarticle...

Savannah: Dowehavetoread?

Ms.Marsh: ...It’scalled Heating the Atmosphere .

37

Savannah: Wehavetoreadthat?

Ms.Marsh: Ummhmm.

Savannah: Nowait.

Ms.Marsh: Nowit’sgonnabemostlyreview.There’sahotchocolateoneand

thatgivesyoualittlepreviewofwhatwe’regonnadoon

Thursday,buttheytalkaboutradiant.Theytalkabout

conduction.Theytalkabouthowmolecules,whathappenswhen

moleculesabsorbenergy,sothisisgonnahelpyoustudy.Thisis

review.(8thgrade;12/10/12)

Asillustratedbythisexample,Ms.Marshtreatedtextbookasawayforstudents toindependentlyacquireorreviewcontentknowledge.Inaddition,althoughawide varietyoftextgenreswereusedduringthesegeneralschoolliteracypractices(Figure5), almosthalf(44%)ofthethesepracticesusedgenres,likethetextbooksfoundinthe aboveexample,thatcanbeclassifiedassophisticatednonfiction.Thusduringgeneral schoolliteracypractices,Ms.Marsh’sstudentswereoftenexpectedtoindependently extractcontentknowledgefromthesetypesofsophisticatedtexts.

ThesciencespecificliteracypracticesfoundinMs.Marsh’sclassroomstendedto beintegratedwithhandsonscienceactivities.Examplesofthesepracticesinclude readingandcarryingoutexperimentalprocedures,recordingandsketchingobservations duringhandsonexperiments,andcreatingandinterpretingdiagrams,charts,andgraphs.

Incontrasttothegeneralschoolliteracypractices,thesciencespecificpracticesuseda narrowerrangeoftextgenres(Figure6)andthevastmajorityofthesepractices(81%) usedgenresthatwereclassifiedasnumbersandvisualrepresentations.

38

Althoughsuchconversationsoccurredinfrequently,itwasonlyduringthese sciencespecificliteracypracticesthatMs.Marshexplicitlyaddressedthenormsof communicatinginscience.Forexample,shewouldbringuplanguagenormssuchas usingthemetricsystemandprecisetechnicalvocabularyorthinkingcarefullyabouthow tointerpretthesymbolspresentindiagrams.Onanotheroccasionsheemphasizedthe normofrereadingexperimentalprocedurestoensureaccuracyincarryingthemout, explicitlylinkingthisstrategytobeingagoodscientist:

Wewanttomakesuretodoitright.So,asascientist,I’mgoingtogobackto

makesure.OK?Ialwaysgobackandreread.It’samarkofagoodreader.It’sthe

markofagoodscientist.(5thgrade;3/21/13).

ThiswasnottheonlyoccasiononwhichMs.Marshdiscussedrereadingwithher

students.However,rereadingwastheonlystrategyforaidingtextcomprehensionshe

explicitlymentionedduringmyobservations.

RQ3.Dothetextgenresandliteracypracticesvaryacrosstheclassroomsthatuse

differentcurricula(e.g.,5thand6thgradesvs.7thand8thgrades)?

InTable4,Ipresentacomparisonofthetextgenresfoundintheclassroomsthat

usedifferentcurricula.Iobservedasimilarnumberofliteracypracticesineachgroup(73 practicesin5thand6thgradeclassroomsvs.76practicesin7thand8thgrade

classrooms).However,therewerestrikingdifferencesinthetypesoftextgenresand

literacypracticesacrossthesegroups.

First,sophisticatednonfictiontextswereusedmorefrequentlyinthehigher

gradelevelclassrooms.Thesetypesoftextswereusedin38%oftheliteracypracticesin

the7thand8thgradeclassrooms,ascomparedto27%oftheliteracypracticesin5thand

39

6thgradeclassrooms.Notably,thisdifferencewasdrivenbythemorefrequentpresence oftwotextgenres,notebooknotesandthetextbook.The7thand8thgradeclassrooms usednotebooknotesduring18%oftheirliteracypractices,comparedwith8%in5thand

6thgradeclassrooms.Followingasimilarpattern,theyusedtextbooksduring8%oftheir literacypractices,comparedwith1%in5thand6thgradeclassrooms.Asdiscussedinthe overallfindings,bothofthesetextgenreswereusedasawayforstudentsto independentlyacquireorreviewcontent.

Second,althoughthetwogroupsusedgenresfocusedonnumbersandvisual representationsinasimilarpercentageofliteracypractices(30%vs.26%),therewere strikingdifferencesinthegenrespresentinthetwogroups.Theliteracypracticesinthe

7thand8thgradeclassroomsoftenusedgenresassociatedwiththelanguageof mathematics,includingcomputations,complexdiagramsofscientificprocessesthat involvedcomputations,andchemicalequations.Incontrast,Ineverobservedthese genresusedintheliteracypracticesofthe5thand6thgradeclassrooms.Instead,inthe

5thand6thgradeclassrooms,themostcommongenrefocusedonnumbersandvisual representationswastheexperimentalobservation.Duringtheseliteracypractices, studentswouldobserveanexperiment,recordingtheirobservationswithasketchand shorttext.Thisgenrewasfoundin18%ofthe5thand6thgradeliteracypractices, comparedwith3%in7thand8thgradeclassrooms.Thesedifferencesarenoteworthy, because,asdiscussedintheoverallfindings,themajorityofsciencespecificliteracy practicesintheseclassroomsusedgenresthatwereclassifiedasnumbersandvisual representations.Thus,therewerestrikingdifferencesinthesciencespecificliteracy practicesacrosstheseclassrooms.

40

Discussion

Lowadolescentliteracyrates(NCES,2012),concernsaboutthenation’s prospectsofremainingcompetitiveinscienceandtechnology(Hill,Corbett,&St.Rose,

2010),apersistentgendergapinscience(Hill,Corbett,&St.Rose,2010;NCES,2012;

Reilly,2012),andthecontinuedrolloutofnewcollegeandcareerreadystandards,all indicateapressingneedtofocusonadolescentgirls’scienceliteracy.Yetlittleisknown aboutthestandardliteracypracticesfoundinmiddleandhighschoolscienceclassrooms, andespeciallythoseservingunderrepresentedgroups.Thusthisstudywasdesignedto documentthestandardliteracypracticesandtextgenresfoundinthefourscience classroomsoftheLyonAcademy,asmallallgirlsmiddleschoolservingprimarily studentsofcolorandstudentsfromworkingclassbackgrounds.ThefindingsIpresentin thisarticleindicatethattheteacher,Ms.Marsh,likemanyothersconcernedwith adolescentliteracy,isstillgrapplingwithhowtoidentifyandteachwhatitmeansto communicate“asascientist.”Suchfindingsarenotinsignificantinlightofprevious unsuccessfulattemptstopromote“contentarealiteracy”andtheambitiousgoalsof collegeandcareerreadystandards,suchastheCCSS.Inthissection,Idiscussfourkey findingsfromthisexploratorystudy.

First,thestudyfindingsrevealedastarkdivisionbetweenthetypesoftextsthat studentsreadandthosetheywrote.Theparticipatingstudentsweregivenfarmore opportunitiestoreadthantowritethetypesofsophisticated—anddisciplinespecific— nonfictiontextgenresdescribedintheCCSS.Whileoverhalfoftheobservedreading practicesinvolvedsophisticatednonfictiontexts,only26%ofthewritingpracticesdidso

(Figure7).Moreover,theonlysophisticatedtextsthatstudentswrotewerenotebook

41 notescopieddirectlyfromthewhiteboard,anactivitythatfitsApplebeeandLanger’s

(2011)definitionof“writingwithoutcomposing.”Acrosstheacademicyear,Inever observedthestudentsbeingaskedtocomposetheirownsophisticatednonfictiontexts.

Unfortunately,previousresearchsuggeststhattheseclassroomsarenotunusualingiving studentsextremelylimitedopportunitiestodeveloptheirwritingabilities(Applebee&

Langer,2011;Kiuhara,Graham,&Hawken,2009).However,thisstudyextends previousresearchbydocumentingthereadingandwritinggenresfoundinthesame

classroom,indicatingthatstudentsmayfrequentlybeaskedtoreadavarietyof

sophisticatednonfictiontextssuchastextbooks,serialpublications,tradebooksand

informationalpackets,whilebeingaskedtowritemainlysinglewords,phrases,orshort

connectedtexts.Thisfindingis,perhaps,notsurprising.Nonetheless,fromaliteracy perspective,itdoesindicateamissedopportunitytoleveragethetextsstudentsreadas

modelsforwhattheywrite.

Inaddition,myanalysisrevealedatensionintheclassrooms—atensionbetween

generalschoolliteracypracticesaimedatefficientlytransmittingcontenttostudentsand

sciencespecificliteracypractices,whichcapturedsomelimitedaspectsofthe

disciplinaryliteracyidealbutoccurredrelativelyinfrequentlyandconcentratedona

restrictednumberoftextgenres(Figure8).Forexample,almost70%oftheliteracy practicesIobservedwereclassifiedasgeneralschoolliteracypracticesthatmightbe

foundinanyclassroom.Toanobserver,thesepracticesoftenlooklikestudents

independentlyreadingatextorfillingoutaworksheet.Thisfindingsuggeststhatthe

LyonAcademyclassroomsarenotunlikemanyothercontentareaclassroomswhere

studentsareexpectedtoworkindependentlytoextractknowledgefromsophisticated

42 nonfictiontextsbutaregivenlittleinstructionrelevanttothedisciplinespecificfeatures ofthesetextsthatmightimpedetheirunderstanding(Lee&Spratley,2010).Incontrast, thesciencespecificliteracypracticesIobservedfocusedlargelyonnumericalandvisual textgenres,indicatingtheneedforliteracyresearchersandeducatorstotakeseriouslythe contentionthatmultipleliteraciesarecrucialtotheenterpriseofscience(Lemke,2004).

Italsosuggeststhatsciencecontentareateachersmightbemorecomfortableproviding instructionrelatedtotheaspectsoforalandwrittenlanguagetheyseeasmostobviously particulartotheirdiscipline,suchasnumbers,symbols,technicalvocabulary,andvisual arrays.Giventhatoneforthefailureofcontentarealiteracymaybethegeneric natureoftherecommendationsforteachingliteracymadetocontentareateachers(Moje,

2008),identifyingandbuildingonsuchdisciplinespecificaspectsoflanguagemaybe particularlyimportanttoengagingscienceteachersinthechallengingworkthatmustbe undertakentomeetthedemandsofthenewstandards.

Furthermore,ininterpretingthisfindingrelatedtothetensionbetweengeneral schoolandsciencespecificliteracypractices,itisnotablethatthestudiedclassrooms utilizedcurriculathatpromotedhandsonactivitiesratherthanmoretraditionaltextbook basedcurricula.Giventhe Next Generation Science Standards’ emphasisnotjuston scienceandengineeringknowledge,butalsoonscienceandengineeringpractices(NGSS

LeadStates,2013a),manyscienceclassroomsarelikelytoincorporatesuchhandson activities.However,criticsofsuchanapproachhavepointedoutthatitcanleadto

“handson,mindsoff”sciencethatisdrivenbythemanipulationofmaterialstoachieve thecorrect—andofteneasilyguessed—endresultratherthanhigherorderthinkingand activeconstructionofconceptualknowledge(e.g.,Roychoudhury,1994).Infact,

43 pressureforteacherstocovercontentandforstudentstomemorizelargeamountsof informationcanrenderhandsonactivitiesaddonstothemainbusinessofacquiring contentthroughtextbookreadingandlecture(Roychoudhury,1994;Trumbull,1990).

SuchpressuresmightbeatleastpartiallyresponsibleforthedivisionIobserved betweenthemorefrequentgeneralschoolliteracypractices,whichdidseemtobe motivatedbythegoalofdeliveringorreviewingcontent,andthelessfrequentscience specificliteracypractices,whichusuallyoccurredinthecontextofhandsonactivities.

Duringsuchhandsonactivities,Iobservedstudentsrecordingnumbers,writingbrief observationsofwhattheysaw,andconstructinggraphstodisplayfindings.However,I neverobservedthemengagedinliteracypracticesthatmightpromotehigherorder thinkingsuchasgatheringinformationrelevanttotheirhandsonactivityfrommultiple sourcesorexplainingtheresultsoftheirinvestigationinwriting.Yet,ifonetakes seriouslytheideathatliteracyisfundamentaltodoingscience(Norris&Phillips,2003), separatingreadingandwritingfromhandsonactivitiesnotonlycreatesanartificial division,butalsodistortsstudents’understandingsofthenatureofscience.Whilesimply addingmorereadingandwritingtohandsonactivitieswouldnotautomaticallyresultin thehandsonandmindsonscienceenvisionedbyreformers(e.g.,Duckworth,Easley,

Hawkins,&Henriques,1990),embeddingrelevantandcarefullyselectedliteracy componentsintosuchactivitiesdoesseemtohavepromiseforactivelyengagingstudents inthetypesofreasoningandargumentationskillsthatlieattheheartofthedisciplineof science.Forexample,ConceptOrientedReadingInstruction(CORI)providesone researchsupportedexampleofwhatitmightlookliketohavescienceinstructionthat

44 emphasizesliteracywhilesimultaneouslyteachingscienceconceptsandinquiryskills

(Guthrie,Wigfield,&Klauda,2012).

Athirdfindingrelatestodifferencesintextgenresandliteracypracticesacross thetwogroupsofstudentsusingdifferentcurricula.Specifically,the7thand8thgrade studentsweremorelikelythanthe5thand6thgradestudentstoreadorwrite sophisticatednonfictiontexts(Figure9).Thislargelyconsistedofcopyingnotesfromthe whiteboardorreadingfromtextbooks.Thisdifferencemightbedevelopmentally appropriateasthesetextgenreswilllikelybeimportantinthehighschoolscienceclasses theolderstudentswillsoonattend.However,giventhechallengessuchtextspresentto manyadolescents(Lee&Spratley,2010),itshouldnotbeassumedthatatransitionto theirmorefrequentuseforindependentcontentacquisitionorreviewisunproblematic andIsawlittleevidencethatthe5thand6thgradestudentswerereceivinginstruction thatmightpreparethemforthistransition.Inaddition,thegroupcomparisonrevealed differencesinthetextgenresusedduringsciencespecificliteracypractices.Namely,7th and8thgradestudentsmorefrequentlyusedgenresinvolvingthelanguageof mathematicssuchasequationsandcomputations,while5thand6thgradestudentsmore frequentlysketchedandtooknotesduringexperimentalobservations.Thesedifferences weremostlikelydrivenbycurriculardifferences.Whereasthe7thand8thgradestudents werestudyingEarthScienceswithafocusonchemistryand,the5thand6th gradestudentswerestudyingLifeScienceswithafocusonbiology.Itis,perhaps,not surprisingtofindsomedifferencesintextgenresandliteracypracticesacrossgroupsof studentsthatdifferinbothgradelevelandcurriculumused.However,thesefindingsdo cautionagainstconceptualizingsciencespecificliteracypracticesinastaticand

45 monolithicway.Instead,itmaybemorefruitfultoconsidertheliteracypractices especiallyrelevanttodifferentsubfieldsofscienceaswellasthosethataremorecross cutting.

Finally,thestudyrevealstheroleoftextgenresbeyondsciencetextbooksin middlegradeclassrooms.Previousresearchhassuggestedthattextbooksplaya significantroleinscienceclassrooms(Weissetal.,2003).However,thereislittle researchattendingtostandardliteracypracticesintheseclassroomsand,tomy knowledge,nostudyhassystematicallydocumentedthetextgenresthatstudentsreadin science.Thepresentstudyreaffirmstheideathatthesciencetextbook,usedduring12% ofobservedreadingpractices,isindeedacentralgenre.Infact,inthestudiedclassrooms noothertextgenrewasusedmorefrequentlyandonlyinformationalpacketsappearedas often.Yet,itissignificantthat20othertextgenreswerereadinthesameclassrooms, indicatingthatsuccessinMs.Marsh’sclassroomsrequiresstudentstomasterawide varietyoftextgenresbeyondthetextbook.Overall,thisfindingsuggeststhatresearch thatfocusesonlyontextbooksmaymisrepresentthereadingdemandspresentinscience classrooms.

LimitationsandFutureResearch

Althoughthescopeofthisstudyhadadvantagesinthatitallowedfortheuseof multipleindepthcodingschemes,itwasasmallscaleexploratorycasestudy,andthusI wouldliketoacknowledgeseveralimportantlimitations.First,thefindingsIpresentin thisarticlearebasedonobservationsofscienceclassestaughtbyasingleteacheratone smallschool.ItisuncleartowhatextentMs.Marshistypicalofotherscienceteachersin themiddlegradesandthesmallallfemaleLyonAcademyiscertainlynottypicalofUS

46 middleschools.Indeed,giventhewelltrainedscienceteacher,smallclasssizes,and significantinstructionaltimedevotedtoscience,itisclearthatthisisnotaworstcase scenario.Allofthesefactorslimitgeneralizability.Thus,whilefindingsfromthisstudy raiseintriguingquestions,andseveralcorroboratetheexistingresearch,thereremainsa needforlargescaleresearchexaminingtheliteracypracticesandtextgenresacrossa representativesampleofscienceclassrooms.Inparticular,thiswouldhelptoanswerthe questionraisedbythisarticlethatfocusesontheextenttowhichgenresbeyondthe textbookplayanimportantroleinscienceclassrooms.Next,becauseofthelargeamount ofdataIcollected,Iemployedthedatamanagementstrategyoftranscribingonlya portionofthevideorecordedclassroomobservations.Iconsultedmyfieldnotesfromall

observations,photographs,andliteracyartifactstoensurethatnomajorliteracypractices

wereomittedinthetranscriptions.Still,Idonotmaketheclaimthatthisarticlecontains

anexhaustivelistofalloftheliteracypracticesandtextgenresfoundinMs.Marsh’s

classroomsanditshouldnotbeinterpretedassuch.Next,Iwasnotabletodisentangle

whetherthedifferencesIobservedbetweenthedifferentclassroomswereprimarilydue

todevelopmentaldifferencesamongthestudentsorcurriculardifferences.Future

researchshouldattendtothisissue.Finally,thisarticledoesnotcontainMs.Marsh’s perspectiveontheinstructionalchoicesshemade.EngagingteacherssuchasMs.Marsh

inconversationsabouttheirunderstandingsofdisciplinespecificwaysofcommunicating

mustbeapartofanyfutureresearchthatseekstohelpteacherslikehertotakeupthe

challengeofthenewstandardsandbecometeachersofthelanguageandliteracy practicesthatlieattheheartsoftheirdisciplines.

47

References

Applebee,A.N.,&Langer,J.A. (2009).Whatishappeningintheteachingofwriting?.

English Journal, 98 (5),1828.

Applebee,A.N.,&Langer,J.A.(2011).Asnapshotofwritinginstructioninmiddleand

highschools. English Journal, 100 (6),14–27.

Biber,D.&Conrad,S.(2009). Register, genre, and style. Cambridge:Cambridge

UniversityPress.

Cazden,C.B.(2002). Classroom discourse: The language of teaching and learning (2nd

ed.)Portsmouth,NH:Heinemann.

Charmaz,K.(2006). Constructing grounded theory: A practical guide through

qualitative analysis .ThousandOaks,CA:SagePublications.

Corbin,J.M.&Strauss,A.L.(2008). Basics of : Techniques and

procedures for developing grounded theory (3rded.).ThousandOaks,CA:Sage

Publications.

Duckworth,E.,Easley,J.,Hawkins,D.,&Henriques,A.(Eds.).(1990). Science

education: A minds-on approach for the elementary years. Hillsdale,NJ:

LawrenceErlbaumAssociates,Inc.

Dyson,A.H.,Genishi,C.,(2005). On the case: Approaches to language and literacy

research. NewYork:TeachersCollegePress.

Emerson,R.M.,Fretz,R.I.,&Shaw,L.L.(1995). Writing ethnographic fieldnotes .

Chicago:UniversityofChicagoPress.

Fisher,D.(2009).Theuseofinstructionaltimeinthetypicalhighschoolclassroom. The

Educational Forum , 73 (2),168176.

48

Guthrie,J.T.,Wigfield,A.,&Klauda,S.L.(2012). Adolescents' engagement in

academic literacy (ReportNo.7).Retrievedfrom

www.corilearning.com/researchpublications

Heath,S.B.,&Street,B.V.(2008). On ethnography: Approaches to language and

literacy research .NewYork:TeachersCollegePress.

Hoffman,J.V.,Sailors,M.,Duffy,G.R.&Beretvas,S.N.(2004).Theeffective

elementaryclassroomliteracyenvironment:ExaminingthevalidityoftheTEX

IN3observationsystem. Journal of Literacy Research, 36, 303334.

Kamil,M.(2010). Adolescent literacy and textbooks: An annotated bibliography. New

York,NY:CarnegieCorporationofNewYork.

Kiuhara,S.,Graham,S.,&Hawken,L.(2009).Teachingwritingtohighschoolstudents:

Anationalsurvey. Journal of Educational Psychology, 101 (1),136–160.

Lawrence,J.F.,PhillipsGalloway,E.,Yim,S.&Lin,A.(2014).Learningtowritein

middleschool?:Insightsintoadolescentwriters’instructionalexperiencesacross

contentareas. Journal of Adolescent and Adult Literacy, 57 (2),151161.

Lee,C.D.,Spratley,A.(2010). Reading in the disciplines: The challenges of adolescent

literacy .NewYork,NY:CarnegieCorporationofNewYork.

Lemke,J.L.(2004).Theliteraciesofscience.InE.W.Saul(Ed.), Crossing borders in

literacy and science instruction: Perspectives on theory and practice (3347).

Newark,DE:InternationalReadingAssociation.

Maxwell,J.A.,(2005). Qualitative research design: An interactive approach (2nded.).

ThousandOaks,CA:SagePublications.

49

Moje,E.B.(2008).Foregroundingthedisciplinesinsecondaryliteracyteachingand

learning:Acallforchange. Journal of Adolescent & Adult Literacy, 52 (2),96

107.

NationalGovernorsAssociationCenterforBestPractices&CouncilofChiefState

SchoolOfficers.(2010). Common Core State Standards for English language arts

and literacy in history/social studies, science, and technical subjects .Washington,

DC:Authors.Retrievedfrom

www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf

NGSSLeadStates.(2013a). Next Generation Science Standards: For States, By States.

Washington,DC:TheNationalAcademiesPress.

NGSSLeadStates.(2013b). Next Generation Science Standards: For States, By State s:

Appendix M: Connections to the Common Core State Standards for Literacy in

Science and Technical Subjects .Washington,DC:TheNationalAcademiesPress.

Norris,S.P.,&Phillips,L.M.(2003).Howliteracyinitsfundamentalsenseiscentralto

scientificliteracy. Science Education , 87 ,224–240.

Osborne,J.(2002).Sciencewithoutliteracy:Ashipwithoutasail? Cambridge Journal of

Education , 32 (2),203–218.

Roychoudhury,A.(1994).Isitmindsoffscience?:Aconcernfortheelementarygrades.

Journal of Science Teacher Education, 5 (3),8796.

Shanahan,T.,&Shanahan,C.(2012).Whatisdisciplinaryliteracyandwhydoesit

matter? Topics in Language Disorders, 32 (1),7–18.

50

Shanahan,C.,Shanahan,T.,&Misischia,C.(2011).Analysisofexpertreadersinthree

disciplines:History,mathematics,andchemistry. Journal of Literacy Research,

43 (3),393429.

Trumbull,D.J.(1990).Introduction.InE.Duckworth,J.Easley,D.Hawkins,&A.

Henriques(Eds.), Science education: A minds-on approach for the elementary

years (120) . Hillsdale,NJ:LawrenceErlbaumAssociates,Inc.

Weiss,I.R.,Pasley,J.D.,Smith,P.S.,Banilower,E.R.,&Heck,D.J.(2003). Looking

inside the classroom: A study of K-12 mathematics and science education in the

United States. ChapelHill,NC:HorizonResearch.

Whitney,A.E.,Ridgeman,M.,&Masquelier,G.(2011).Beyond“IsthisOK?”:High

schoolwritersbuildingunderstandingsofgenre . Journal of Adolescent and Adult

Literacy ,54(7),525533.

Yin,R.K.(2009). Case Study Research Design and Methods (4thed).ThousandOaks,

CA:SagePublications.

Yore,L.D.,Hand,B.M.,&Florence,M.K.(2004).Scientists'viewsofscience,models

ofwriting,andsciencewritingpractices. Journal of Research in Science

Teaching, 41 (4),338369.doi:10.1002/tea.20008

51

Table 1. Demographiccharacteristicsofstudents,bygradelevelclassroom( n=50).

Grade5 Grade6 Grade7 Grade8 (n=12) (n=17) (n=14) (n=7) Latina 75% 59% 57% 57% Black 8% 35% 29% 29% MultiRacial 17% 6% 0% 14% White 0% 0% 7% 0% Asian 0% 0% 7% 0% EligibleforFreeor ReducedPrice Lunch 92% 100% 93% 86%

52

Table 2. Definitionsandexamplesoftextgenresfoundinthescienceclassrooms.

Genre Definition Example from the Classrooms Step-by-step instructions for what should be done to carry Procedures for using wet mount Experimental out a hands-on science and well slides to look at various Procedures experiment objects under a microscope (5/6) Micrographia, a seventeenth Historical Book that has some historical century work by Robert Hooke Reference significance in the field of recording his observations of Book science objects using lenses (5/6) Teacher-provided collection of Packet of several readings Informational short texts drawn from various explaining why the earth Packet sources experiences seasons (7/8) Summary of information or concepts copied into student Notes generated by teacher and Notebook notebooks (sometimes also copied by students into their Notes contain visual representation) notebooks (all grades) Serial magazine containing science

Sophisticated Sophisticated Nonfiction Periodical such as a magazine news for a student audience (all Serial or a newspaper grades) Textbooks with a clear instructional design to be used Textbook in teaching science content Textbooks (all grades) Books that are related to science content but do not Informational books available in have a clear instructional the classroom science library (all Trade Book design grades) Temperatures added to a diagram Annotation of Numeric or text additions to a showing how land and sea breezes Diagram preexisting diagram form (7/8) Symbolic and numeric Chemical representation of a chemical Chemical equation for Equation reaction photosynthesis (7/8) Numbers entered into equation to Numeric notations with no solve for the density of an object Computation extended text (7/8) Numeric notations that Time of sunrise and sunset along Computation include a diagram as an with diagram used to calculate and Diagram integral part hours of sunlight in a day (7/8) Animated visual Computer representation of a process on Online simulation of processes of Simulation a computer convection and conduction (7/8) Numbers and Visual Representations Representations Numbers Visual and Numeric notations arrayed in a Data table or represented Data chart showing the water Chart/Table graphically tolerance of four seed types (5/6)

53

Static visual representation of Visual representation of feeding Diagram a process or concept cycle of seondary consumers (5/6) Illustration with some text in a Illustration commenting on the Editorial serial publication containing anniversary of the "Give a Hoot, Cartoon commentary Don't Pollute" campaign (7/8) Experimental Notations of what students Observation see during the course of an Short text descriptions and (Sketch and experiment containing text illustrations of what objects look Short Text) and visual representation like under a microscope (5/6) Visual representation showing physical features of an area of Map land or water Atlas map of Maine (5) Short written text of a paragraph or less written in Short Answer response to a teacher question Student answers to question to Teacher about what students know (no "What do you know about lenses Prompt claims or explanation) so far?" (5/6) Short explanation of what happens on a molecular level when cold Short Short written text explaining a milk is poured into hot chocolate Explanation concept or process (7/8) Short fictional story narrating Short Connected Text Short Connected events that resulted in a particular Short Short written text following pattern of animal tracks in the Narrative narrative format snow (5) Short text (usually a sentence Short explanations of what or less) used to name or students were doing written below explain an object, photograph, photographs of field trip to nature Caption/Label or illustration center (5/6) Instructional material designed for student use (has Game that involves rolling dice to to contain text and has to see how a molecule of water contain some element of a travels through the water cycle Game popular game, e.g., dice) (7/8) Calendar in which students Homework record their homework and List of texts to read and concepts Other Planner important school events to study for a text (all grades) Visual aid or list compiling List of characteristics of a good Instructional information used as part of caption provided by students and Aid Chart instruction recorded by Ms. Marsh (5/6) A written communication Letters thanking chaparones for intended to be delivered to a field trip to science museum and recipient outside of the recounting what students learned Letter classroom (7/8) Poem and Cinquain poem and illustration Illustration Original poem with illustration (5/6)

54

Graded assessment of student Quiz/Test learning taken in class In-class quizzes or tests (all grades) Document that outlines expectations which students Rubric used to evaluate student use to evaluate their own notebooks at the end of each Rubric work or a work of a classmate quarter (all grades) Table of List of notebook entries for List of notebook entries for each Contents each quarter quarter (all grades) Paper listing questions or tasks Worksheet where students fill in for students with space for blank terms from a reading (all Worksheet short response grades)

55

Figure 1. Comparisonofbroadtexttypesusedduringreadingpractices( n=58),writing practices( n=68),andpracticesthatinvolvedreadingandwritingequally( n=23).

100% 90% 80% 70% 60% Reading 50% Writing 40% Reading/Writing 30% * 20% 10% 0% Sophisticated Numbers and Short Science- Other Nonfiction Visual Related Representations Connected Text

*Note:Theonlygenreusedduringwritingpracticesthatfitsintothebroadtypeof

sophisticatednonfictionisnotebooknotes.ThecontentofthesenotesisgeneratedbyMs.

Marshandcopiedverbatimbystudentsintotheirnotebooks.

56

Figure 2.Readinggenresfoundinthefourscienceclassroomsaspercentageofreading practices(n=58)

Chemical Equation Caption/Label 2% 2% Computer Simulation Worksheet 9% 2% Trade Book 3% Data Chart/Table 5% Diagram 10% Textbook 12% Short Narrative 2% Editorial Cartoon 3%

Short Explanation 2% Experimental Procedures 9% Short Answer to Serial 10% Teacher Prompt 2% Game 2% Historical Reference Quiz/Test 3% Book 3% Map 2% Notebook Notes 3% Informational Packet Letter 2% 12%

57

Figure 3.Writinggenresfoundinthefourscienceclassroomsaspercentageofwriting practices(n=68).

Table of Contents, Short Narrative, 1% 3% Caption/Label, 6% Short Explanation, 4% Computation, 4% Short Answer to Teacher Prompt, 3% Computation and Diagram, 3% Rubric, 1% Poem and Illustration, 1% Data Chart/Table, 9%

Notebook Notes, 26% Experimental Observation (Sketch and Text), 22%

Letter, 3% Notation in Planner, Instructional Aid 9% Chart, 3%

58

Figure 4.Reading/writinggenresfoundinthefourscienceclassroomsaspercentageof

reading/writingpractices(n=23)

Annotation of Diagram 4%

Diagram 4%

Game 9%

Quiz/Test 13%

Worksheet 57%

Rubric 13%

59

Table 3. Readingandwritingpracticesthatoccurredcommonlyinthefourscience

classrooms.

GeneralSchoolPractices ScienceSpecificPractices Reading • Readaloudwrittenanswersto • Discussdiagramsorcomputer questions simulations • Readinformationalpacketsand • Readandfollowexperimental textbookpassages procedures • Readsciencerelatedtradebooksand • Discussdatachartshowinghands magazines onexperimentsresults • Reportinformationlearnedfrom • Comparechemicalequations independentreading • Interpretenvironmentaleditorial cartoon • Readassessmentdirections Writing • Copynotesfromwhiteboardinto • Completeextendedmathproblem notebooks • Constructdatatable,chartsor • Writehomeworkassignmentsin graphsdisplayinghandson planner experimentresults • Writeshortnarrativeorpoem • Writeandsketchobservations • Writelabelsandtableofcontentsto duringhandsonscience organizenotebook experiment • Createlabelsandcaptionsfor handsonexperiments • Writebriefexplanationsof scientificprocesses Reading and Writing • Fillinworksheets • Takequizzes/tests • Correctworksheets/quizzes/tests • Filloutrubricevaluatingnotebook

60

Figure 5 .Textgenresfoundinthefourscienceclassroomsaspercentageofgeneral schoolliteracypractices( n=102).

Editorial Cartoon Caption/Label 4% 2% Game 3% Historical Reference Diagram 1% Book 2% Worksheet 18% Homework Planner Trade Book 2% 6% Informational Textbook 7% Table of Contents Packet 7% 2% Instructional Aid Short Narrative 2% Chart 2% Letter 3% Short Explanation Map 1% 1% Short Answer to Notebook Notes Teacher Prompt 3% 20% Rubric 4% Poem and Illustration 1% Serial 6% Quiz/Test 5% Figure 6 .Textgenresfoundinthefourscienceclassroomsaspercentageofscience specificliteracypractices( n=47).

Annotation of Caption/Label 2% Short Explanation Diagram 2% Chemical Equation 6% 2%

Experimental Computation 6% Procedures 11% Computation and Diagram 4%

Experimental Computer Observation Simulation 2% (Sketch and Text) Data Chart/Table 33% 19% Diagram 13%

61

Table 4.Comparisonoftextgenresfoundintheclassroomsthatuseddifferentcurricula,

asapercentageofliteracypractices.

5th/6thGrade 7th/8thGrade Classrooms Classrooms Genre (n practices=73) (n practices=76) ExperimentalProcedures 5 1 HistoricalReferenceBook 3 0 InformationalPacket 4 5 Sophisticated NotebookNotes 8 18 Nonfiction Serial 4 4 Textbook 1 8 TradeBook 1 1 Total 27 38 AnnotationofDiagram 0 1 ChemicalEquation 0 1 Computation 0 4 ComputationandDiagram 0 3 Numbersand Visual ComputerSimulation 0 1 Representations DataChart/Table 8 4 Diagram 3 7 EditorialCartoon 0 3 ExperimentalObservation (SketchandShortText) 18 3 Map 1 0 Total 30 26 ShortAnswertoTeacher ShortScience Prompt 3 1 Related ShortExplanation 1 4 ConnectedText ShortNarrative 3 0 Total 7 5 Caption/Label 5 1 Game 0 4 HomeworkPlanner 5 3 InstructionalAidChart 1 1 Letter 4 0 Other PoemandIllustration 1 0 Quiz/Test 0 7 Rubric 5 0 TableofContents 1 1 Worksheet 11 13 Total 36 30

62

Figure 7. Comparisonofbroadtexttypesfoundinthefourscienceclassroomsas percentageofreadingpractices( n=58)andwritingpractices( n=68).

100% 17% 90% 26% 80% 5% Other 70% 9% 24% 60% Short Science-Related Connected Text 50% 38% Numbers and Visual 40% Representations

30% Sophisticated 53% Nonfiction 20% 26% 10% 0% Reading Writing

Figure 8. Comparisonofbroadtexttypesfoundinthefourscienceclassroomsas percentageofgeneralschoolliteracypractices( n=102)andsciencespecificliteracy practices( n=47).

2% 100% 6% 90%

80% 47% Other 70%

60% Short Science- 50% 6% 81% Related Connected 4% Text 40% Numbers and Visual 30% Representations 43% Sophisticated 20% Nonfiction 10% 11% 0% General School Science-Specific

63

Figure 9. Comparisonofbroadtexttypesfoundintheclassroomsthatuseddifferent curricula,asapercentageofliteracypractices.

100% 90% 30% 80% 36% Other 70% 5% 60% 7% Short Science-Related Connected Text 50% 26% 30% Numbers and Visual 40% Representations 30% Sophisticated Nonfiction 20% 38% 27% 10% 0% 5th/6th Grade 7th/8th Grade Classrooms Classrooms

64

Chapter3:Study2

ShapingGirls’ScienceIdentity:

ExploringtheRoleofClassroomExperiencesandPopularImages

Abstract

Scienceidentity—students’beliefsaboutwhoscientistsare,whatitmeanstodoscience, andwhetherscienceisinterestingorimportant—isincreasinglyreceivingattentionasa possibleexplanatoryfactorinthepersistentunderrepresentationofcertaingroupsin science.Therefore,thepurposeofthispaperistoexaminehowateacher’slanguageand instructionalpracticeswithinherclassrooms,andpopularimagesofsciencefromthe worldbeyondtheirclassroomsmightshapeadolescentgirls’scienceidentities.The multiplecaseembeddedstudywasconductedoverthecourseof7monthsin4science classrooms(grades58;50students)taughtbyasingleteacherinasmallallfemale middleschool.Icollectedindepthdatafocusedonscienceidentityfrommultiple sources,includingfieldnotes(Emerson,Fretz&Shaw,2011),videorecordedclassroom observations(102classes,113hours,recordedon29days),andsemistructured interviewswithasubsampleof12focalstudents(rangingfrom18to37minutes).My researchwasguidedbythefollowingquestions:(a)Dotheteacher’slanguageand instructionalpracticesgiveherstudentsopportunitiestoviewthemselvesasscientists doingscience?(b)Dotheteacher’slanguageandinstructionalpracticesmakescience relevanttoherstudents’dailylives?(c)Doindividualstudentsdrawonorcontestthe scienceidentitiesmadeavailableintheirscienceclassrooms?(d)Doindividualstudents drawonorcontestthescienceidentitiespresentedinpopularimagesofscience?(e)Do

65 individualstudentstalkaboutscienceasrelevant,interesting,andopentopeoplelike them?Findingsindicatethat,withinherclassroom,theteacherclearlypositionedher studentsasworkingscientistsandgavethemaccesstovalues,activities,tools,and languagethatsheindicatedwerecentraltodoingscience.Moreover,theteacher’s languageandinstructionalpracticesservedasimportantresourcesforherstudentsto drawoninconstructingtheirownviewsofwhoscientistsareandwhatitmeansto engageinscience.However,inadditiontodrawingonthismoreinclusiveview,students’ beliefsaboutsciencewerealsoinfluencedbymorelimitedarchetypalimagesofscientists foundoutsideoftheirclassrooms(e.g.,scientistasWhitemaleinlabcoat).Taken togetherthesefindingshighlightthedynamicandcomplexnatureofidentityformation.

66

Introduction

Inspiteofprogressoverthepastfortyyears,Americanfemalescontinuetoscore lowerthantheirmalecounterpartsontestsofscienceachievementandpursuescience relatedcareersatlowerrates(Hill,Corbett,&St.Rose,2010;NCES,2012;Reilly,

2012).Girls’scienceidentity—thatis,beliefsaboutwhoscientistsare,whatitmeansto doscience,andwhetherscienceisinterestingorrelevant—maybeanimportantlensfor understandingthesepersistentdifferences(Archeretal.,2012;Wong,2012).Inthis article,IreportonamultiplecaseembeddedstudyofscienceidentitythatIconducted overthecourseof7monthsinfourscienceclassrooms(grades5through8;50students) taughtbyasingleteacherinasmallallfemalemiddleschool.Ifirstexaminedthe teacher’slanguageandinstructionalpracticestodeterminewhatopportunitiesstudents weregiventoparticipateinthecentralpracticesofscienceandtobuildidentitiesasthe

“kindof”peoplewhodoscience.Iusedthefollowingtwoquestionstoguidethisaspect ofmyresearch:(a)Dotheteacher’slanguageandinstructionalpracticesgiveher studentsopportunitiestoviewthemselvesasscientistsdoingscience?(b)Dothe teacher’slanguageandinstructionalpracticesmakesciencerelevanttoherstudents’daily lives?Ithenexploredwhatsourcesindividualstudentsdrewoninconstructingtheirown viewsofscience.Inparticular,Iwasinterestedinunderstandingthewaysinwhichtwo factors—languageandinstructionalpracticeswithinthescienceclassroom,andpopular imagesandbeliefsaboutscienceoutsideoftheclassroom—intersecttoshapeadolescent females’beliefsaboutscienceidentity.Iusedanadditionalthreequestionstoguidethis aspectofmyresearch:(a)Doindividualstudentsdrawonorcontestthescienceidentities madeavailableintheirscienceclassrooms?(b)Doindividualstudentsdrawonorcontest

67 thescienceidentitiespresentedinpopularimagesofscience?(c)Doindividualstudents talkaboutscienceasrelevant,interesting,andopentopeoplelikethem?

TheoreticalFramework

Inanerawherepolicymakersoftenlinkthefuturehealthoftheeconomytothe preparationofleadersinthefieldsofscience,technology,engineering,andmathematics

(STEM;Hill,Corbett,&St.Rose,2010),persistentgenderdifferencesinscienceare

causeforconcern.Whilefemalehighschoolstudentsnowearnmathandsciencecredits

atthesamerateasmalesandreceiveslightlyhighergradesinthesecourses(NCES,

2007),genderdifferencesfavoringmalespersistinstandardizedtestsofscience

achievement(NCES,2012;Reilly,2012),attitudestowardscience(Archeretal.,2012;

Archeretal.,2010),andrepresentationamongthosepursuingSTEMdegreesandcareers

(Hill,Corbett,&St.Rose,2010).Takentogether,thesefindingsindicatethat,evenwith

similarpatternsofaccess,socialandculturalmechanismscontinuetoinfluencefemales’

viewsofscienceandwhetherornottheypursueSTEMfieldsbeyondhighschool.

Throughthelensofidentity,thepresentstudyexploresthesemechanismsinthemiddle

grades,whenstudentstransitionfromlearningscienceinselfcontainedelementary

classroomstolearningscienceinacontentareaclassrooms—atransitionthatisoften

associatedwithadeclineinsciencemotivation(Archeretal.,2010).

ThestudydrawsonGee’s(2001)dynamicdefinitionofidentityas“being

recognizedasacertain‘kindofperson,’inagivencontext”(p.99),whichisbroad

enoughtoincludebothselfrecognitionashavingaparticularidentityandrecognitionby

others.Inordertorecognizethemselvesashavingascienceidentity,studentsmustbe

willingandabletoengagewiththelanguageandconventionalpracticesofscience,

68 includingacceptingtradeoffsthatoccurwhenthereisaconflictbetweenscientificand everydaywaysofknowingandcommunicating(Gee,2004).Forexample,incontrastto everydaylanguage,scientificlanguageischaracterizedbyabstractratherthanconcrete subjectsandadetachedstance(Gee,2004).Acceptingsuchtradeoffsmakessenseonlyif oneseesabenefittobeingabletoconstructknowledgeandcommunicateinscientific ways.Thus,inherentinscienceidentityisthebeliefthatscienceisrelevant,interesting, orusefulinsomerespect.Additionally,itrequiresabeliefthatneitherexternalbarriers norinternalcapabilitieslimitthestudent’sabilitytoengagewithscience.Inotherwords, whetherornotstudentsviewscienceasbeingforpeople“likethem”appearstobean importantfactorthatinfluencestheiridentityformation(Archeretal.,2012;Archeretal.,

2013;Wong,2012).Thus,forthepurposesofthisstudy,Itreatedlanguageand instructionalpracticesthatindicatedwhoscientistsare(andarenot)andwhatitmeansto doscienceasaspectsofscienceidentity.Ialsoconsideredwhethertheteacherand studentsframedwhattheydidintheclassroomasbeingscienceandwhetherthey depictedscienceasrelevantbeyondtheclassroom.

BuildingIdentitieswithinClassroomCommunities

Oneproductivewaytothinkabouttherelationshipbetweenwhathappensina classroomandthedevelopmentofidentitiesistoconsidertheclassroomasacommunity ofpractice.Acommunityofpracticecanbedefinedasagroupofpeoplewhocareabout aparticulardomainofknowledgeand,throughsocialinteraction,developasharedsetof

“practices”—activities,tools,language,etc.—thathelpthegroupaccomplishsomething

(Wenger,McDermott&Snyder,2002).As“peoplewhocare”aboutaparticulardomain, membersofacommunityofpracticenecessarilyshareacertainidentity,butthestrength

69 ofthisidentitymaydifferamong“newcomers’and“oldtimers.”Newcomerstothe communitystrengthentheiridentitiesthroughparticipationinthecommunitywhenthey aregivenlegitimateaccesstothecommunity’scentralpracticesandtools(Lave&

Wenger,1991).Accesstothetoolsspecifictoacommunitymaybeparticularly importantforincreasingnewcomers’knowledgeandsenseofbelongingtothe community.Forexample,Marshall(1972)documentedhowdenyingapprenticebutchers accesstothetoolsandrelatedpracticescentraltocuttingmeatinfavoroflesscentral trainingtasks(e.g.,wrappingmeatcutbysomeoneelse)kepttheapprenticesfromfully identifyingwithandunderstandingtheirchosentrade(ascitedinLave&Wenger,1991).

Inthecaseofclassrooms,studentscanbethoughtofasthenewcomerstothecommunity andteachersasthemoreexperiencedoldtimers.Thus,inconsideringstudents’science identityformation,itisimportanttoexaminewhatopportunitiesteachersgivetheir studentstoparticipateinpracticescentraltodoingscience,includingusingthetoolsof science.

Previousresearchinscienceclassroomshasidentifiedwaysinwhichteachers’ languageandinstructionalpracticeswithinclassroomcommunitiescanpromoteorhinder students’abilitiestoseethemselvesasthe“kindofpeople”whodoscience.Forexample, teachersoftenuselinguisticmarkers,suchaspersonalpronounsthatidentifythemselves andtheirstudentsasmembersofscientificcommunities(Goldberg,Welsh&Enyedy,

2008;Moje,1995).Asreportedinastudyofteachertalkinahighschoolchemistry class,whenastudentindicatedthattheterm“actualyield”mightbe“whatthechemists get,”herteacherrespondedbyincludingthestudentinthescientificcommunity,saying,

“Yes.It’swhat you get.You’reachemist,too.You’llgetanactualyieldinthelab”

70

(Moje,1995,p.364).Evenwhenteachersarenotdirectlyreferencingscienceidentities, thelanguageandpracticesinscienceclassroomspromoteparticularviewsofwhocan engageinscience.Forexample,Lemke(1990)describeshowboththeconventionsof sciencetextsusedinclassroomsandteachers’attitudestowardsciencecanpromotewhat hecalls“aharmfulmystiqueofscience,”thebeliefthatscienceisinherentlytoocomplex tobeunderstoodbyanyoneoutsideofa“superintelligentelite”andthusoutofreachfor moststudents(p.160).Intheparticularcaseoffemalestudents,viewingthemselvesas the“kindofperson”whodoessciencecanbehinderedwhenteachersimplementwhole groupdiscussionpracticesthatfavormales,elaboratemoreonthecontributionsofmale students,orimplementmixedgendersmallgroupsthatmalesdominatewhilefemales takeonmorepassiveroles.(Forareviewofthisresearch,seeGuzzetti,2004.)

EncounteringPopularImages

Ofcourse,studentsareneitherblankslatesnorpassiverecipientsoftheir teachers’viewsonwhoscientistsareandwhatitmeanstodoscience.Evenbeforethey enterscienceclassrooms,studentsencounterpopularimagesofscienceandscientists whichinfluencetheirbeliefsaboutscienceasadisciplineandwhocanparticipateinit.

Forexample,studiesspanningthreedecadeshavedemonstratedthat,althoughmore inclusiveimagesarepossible,amongstudentstheenduringarchetypalimageofa scientistremainsaloneWhitemalewithalabcoat,glasses,andfacialhair,holding laboratoryequipment(Barman,1997;Chambers,1983;Reveles,2009).Morerecently,

Archerandcolleagues(2013)demonstratedthatpopularconstructionsofcareersin scienceas“brainy,”“notnurturing,”and“geeky”arecommonamongBritishgirlsas earlyasprimaryschoolandarealsooftensharedbytheirparents.Suchpopularimages

71 andbeliefsaboutsciencecaninteractwithotheraspectsofidentity—suchasgender, socialclass,andethnicity—toinfluencewhethergirls,andespeciallythosefromworking classandethnicminoritybackgrounds,believethatscienceisfor“peoplelikeme,”and whethertheychoosetopursueitasacareer(Archeretal.,2013;Wong,2012).

LinkingClassroomExperiencesandStudentIdentity

Muchoftheresearchreviewedabovehasfocusedononeunitofanalysis,either theclassroom(e.g.,Goldberg,Welsh&Enyedy,2008;Lemke,1990)ortheindividual student(e.g.,Archeretal.,2013;Barman,1997;Chambers,1983;Wong,2012).

However,afew,largelyethnographic,studieshaveattemptedtolinkteachers’language andinstructionalpracticeswithstudentexperiencesandidentities.Inthissection,I brieflyreviewthisresearch,andclosebysuggestinganumberofremainingquestionsfor thefield.

First,Moje’s(1995)analysisoflessontranscriptsandinterviewsfroman ethnographicstudyconductedinahighschoolchemistryclassdemonstratedthewaysin whichtheteacher’slanguagepromotedstudents’identificationwithscience.Shefound threepatternsintheteachers’talk:(a)itreinforcedtheideathatscienceis“adiscipline thatrequiredorganization,accuracy,andprecision,”(p.355),(b)itpresentedscienceas uniqueanddistinctfromotherdisciplines,and(c)itincludedpersonalpronounsthat identifiedboththeteacherandthestudentswiththesciencecommunity.Heranalysisof interviewswiththreestudentsinthisclassroomindicatedthattheteacher’stalkdid,in fact,encouragestudentstodevelopparticularviewsofscience,fosterdisciplinary identity,andbuildclassroomcommunity,althoughitalsoencouragedstudentstodeferto

72 theexpertiseoftheteacherortextbook.Notably,thisstudywasconductedataschool whereboththestudentsandteachingstaffwerepredominatelyWhiteandmiddleclass.

Morerecently,Carloneandcolleagues(Carlone,2004; Carlone,HaunFrank,&

Webb,2011; Carlone,Scott,&Lowder,2014)haveengagedinaprogramof

ethnographicresearchthatexaminesstudents’participationinandidentificationwith

schoolscience,especiallyamonggroupsoftenunderrepresentedinscience,suchasgirls

andethnicminoritystudents.InonestudyCarlone(2003)analyzedlessontranscriptsand

interviewsandfoundthattheteacher’slanguageandinstructionalpracticeswhenusinga

reformbasedphysicscurriculuminaprimarilyWhiteuppermiddleclasshighschool promotedtwoideas:(a)scienceasrequiringactiveparticipationandproblemsolvingand

(b)scienceasdifficultandhierarchical.Moreover,shefoundthatthegirlstakingthis

coursewereprimarilyconcernedwithbeingseenas“goodstudents”ratherthanengaging

inscienceinameaningfulwayandresistedaspectsofthecurriculumthatmightthreaten

their“goodstudent”identities.Asecondstudycomparedteacherlanguageand

instructionalpracticesintwoethnicallyandeconomicallydiversereformbasedfourth

gradescienceclassrooms( Carlone,HaunFrank,&Webb,2011).Whilestudentsinboth

classroomsdevelopedsimilarlevelsofunderstandingofscienceandexpressedpositive

attitudesaboutscience,inoneoftheclassroomsagroupofAfricanAmericanandLatina

girlsexpresseddisaffiliationwith“sciencepeople.”Theresearchersattributedthis

disaffiliationtothedifferencesinclassroompractices:intheclassroomwherethey

observeddisaffiliation,studentsindividuallytookturnswithtryingoutideasandtoolsin

ordertogettherightanswer(andprovetotheteacherthattheyknewtherightanswer),

whileintheotherclassroomstudentsengagedinmorecollaborativeinvestigationsin

73 whichdifferentstudents’observationsandquestionswereusedtomovethegroups’work forward.Thefinalstudyfollowedthreestudents,oneLatinoboy,oneWhitegirl,andone

AfricanAmericangirl,duringtheir4thand6thgradeyearstoexaminetheirscience classroomsasrelatedtothestudents’“identitywork”( Carlone,Scott,&Lowder,2014).

Inthisstudy,Carloneandcolleagues(2014)foundthatmovingfroma4thgrade classroomwherebeinga“smartsciencestudent”involvedcriticalthinking,persistence, andnurturingpeerstoa6thgradescienceclassroomwhereitinvolvedmemorizingand complianceledsomestudentstoengageinlessscientific(butmorecompliant)behaviors ortodisaffiliatewithschoolscienceentirely.

Takentogether,thereisagrowingbodyofresearchthatindicatesthatscience identitymightbeanimportantfactorinexplainingyoungpeople’sscienceengagement andachievement.Moreover,factorsbothwithinandbeyondscienceclassroomsappearto influenceyoungpeople’sscienceidentityformation. However,thereareseveral

importantareasinneedofinvestigation.First,littleisknownabouthowadolescentsin

differentclassroomcontextsaresocializedintodifferentviewsofscience.Specifically,

althoughitisnotuncommonthatproposalstoaddresstheunderrepresentationofwomen

insciencecallforsinglegenderscienceclassrooms,thereisverylittleempiricalwork

investigatinghowstudentsinsuchsettingsconstructscienceidentity.Second,although

classroomexperiencesandpopularculturebothappeartoplayanimportantrolein

shapingyoungpeople’sviewsofwhatitmeanstobethekindofpersonwhodoes

science,verylittleempiricalworkhasexaminedbothofthesefactorstogether.Finally,

veryfewoftheclassroomstudiesthatlinkclassroomexperiencestostudentconstructions

ofscienceidentityhavefocusedonracial/ethnicminoritystudents,studentsfrom

74 workingclassfamilies,orstudentswhospeakEnglishasasecondlanguage.Sincethese samegroupsareoftenunderrepresentedinthefieldofscience,thereisaneedformore researchthatconsiderstheirperspectives.Tobeginaddressingtheseneeds,inthepresent articleIreportontheresultsofamultipleembeddedcasestudyofscienceidentity conductedinonesmallallfemaleschoolservingprimarilystudentsofcolorfrom workingclasshomes.

StudyDesignandMethods

StudyDesign

Thestudyemployedamultiplecaseembeddeddesign(Yin,2009),whichallowed crosscasecomparisonsattheclassroomandstudentlevels.Theembeddeddesignwas chosenbecausemyresearchgoalsinvolvedtwounitsofanalysis:theclassroomandthe individualstudent.Attheclassroomlevel,Iwantedtobetterunderstandthewaysin whichtheteacher’slanguageandinstructionalpracticesgaveherstudentsopportunities toviewthemselvesasscientists,engageincentralpracticesofscience,andviewscience asrelevant,or,conversely,thewaysinwhichtheydeniedstudentstheseopportunities.At thestudentlevel,Iwasprimarilyconcernedwithwhatsourcesindividualstudentsdrew frominconstructing(orrejecting)scienceidentities,aswellashowinterestingand/or relevantthestudentssaidsciencewastothem.Whilealloftheclassroomswerelocated inoneschool,thestudydidnotaskabouttheinfluenceoftheschoolasawhole.Thusthe schoolservedasthecontext,whiletheclassroomwastheunitofanalysisandthe individualstudentwasasubunitofanalysis.

StudyContext

75

ThecasestudywasconductedattheMaryLyonAcademyforGirls(Lyon

Academy) 4,asmallnondenominational,nonprofit,privateschoolservingadolescent

girlsingrades58.LocatedinamidsizedcityinNewEngland,theHeadofSchool

describedtheLyonAcademyasdesignedtoprovidea“genderspecific,holistic

educationalexperience.”Theschoolwasfoundedin2000and,atthetimeofdata

collection,hadanenrollmentof55students.BecauseoftheLyonAcademy’ssmallsize,

therewasonlyoneteacherforeachcontentarea,andstudentsworkedwiththesame

teacheroverthecourseof4years.Forseveralyears,studentsattheLyonAcademy

outscoredtheircitywidepeersontheNewEnglandCommonAssessmentProgram

(NECAP)test.Additionally,over90%ofLyonAcademyalumnaecontinuedonto

graduatefromhighschool4yearsafterleaving,andcloseto100%didsowithin5years.

Participants

Teacher. Ms.Marsh,thescienceteacher,isaWhitefemalewithaMasterofArts inTeachingdegreefromaneliteprivateuniversity.Atthetimeofdatacollection,she was31yearsoldandinher5thyearteachingandher4thyearattheLyonAcademy.

Priortobecomingateacher,sheworkedforseveralyearsinafterschoolprogramsinthe sameurbanareainwhichtheLyonAcademyislocated.Unlikemoretraditional classrooms,instructionwasnotdrivenbyasciencetextbook,althoughMs.Marsh sometimesassignedshortreadingsdrawnfromseveraltextbooks,aswellasscience relatedtradebooksandmagazines.Thus,inadditiontomoretraditionalactivities,suchas readingsciencetexts,teacherdirectedinteractivelectures,andcopyingnotesfromthe board,Ms.Marshoftenstructuredscienceactivitiessothatherstudentsengagedin handsonexperiments,usuallyinpairsorsmallgroups.Intheseinstances,Ms.Marsh 4Allnamesofpeopleandplacesarepseudonyms.

76 wouldtypicallydemonstratesomeoralloftheprocedurestothewholeclasswhile commentingonwhatstudentsshoulddobeforesendingthemofftotrytheexperiment.

Someoftheseexperimentswerequick,lastingonlyasmallportionofthescienceclass, whileothersstretchedoutoverthecourseofseveralclassperiodsorevenweeks.

Students. Iinvitedall55LyonAcademystudentsingrades58toparticipatein

theclassroomobservationportionofthestudy.Fiftystudentsconsentedtoparticipate.

Accordingtoschoolrecords,62%ofthesestudentswereLatina,26%Black,8%

multiracial,2%Asianand2%White.Roughlyhalfofthesestudentscamefromahome

wherealanguageotherthanEnglishisspokenand94%wereeligibleforfreeorreduced pricelunch.Inaddition,asubsampleof12focalstudentsalsoparticipatedininterviews.

Foreachgrade,Iinterviewedonestudenttheteacheridentifiedasaverageinscience achievement,onestudentsheidentifiedasbelowaverage,andonestudentsheidentified asaboveaverage.InTable1 ,Ipresentdemographicinformationforthissubsample.

DataCollection

Datawerecollectedovera7monthperiodduringasingleacademicyear.During thisperiod,ItypicallyvisitedtheLyonAcademyforafullschoolday1to2timesper week,observingtheregularlyscheduledscienceclasses,aswellasthe5thgradeadvisory period,whichMs.Marshled.Inaddition,IoftenchattedinformallywithMs.Marsh aboutwhatwashappeninginherclassesbeforeschoolorduringlunchtime. Icollected

indepthdatafocusedonscienceidentityfrommultiplesources,including(a)fieldnotes

(Emerson,Fretz&Shaw,2011),(b)videorecordedclassroomobservations(102classes,

113hours,recordedon29days),and(c)semistructuredinterviewswiththesubsample

of12focalstudents(rangingfrom18to37minutes).Whilethestudentinterview

77 protocolincludedquestionsrelatedtomanyaspectsofscienceliteracy,analysisforthis studyfocusesonthequestionsmostrelevanttounderstandingthestudents’constructions ofscienceidentity(SeeAppendix).Thusmyanalysisconcentratesontheportionsofthe interviewwherestudentstalkedabout(a)howtheyfeltaboutscience,includingwhether theylikeditandwhethertheyeverusedthingstheylearnedinscienceclassoutsideof school,(b)animaginedscientistatwork,(c)animageofthemselvesinscienceclass,and

(d)whether13imagesIshowedthemwererelatedtoscienceornot,andhowtheyknew this.

ResearcherStance

Theroleoftheresearcherasobservercanvaryfromcompleteparticipantto completeobserver(Creswell,2009).MyrolebestfitsCreswell’s(2009)classificationof

“observerasparticipant.”AllstudentsandschoolpersonnelknewthatIwasaresearcher.

Duringscienceinstruction,Iremainedlargelysilent,openlytakingnotes.WhileIacted primarilyasanobserverduringacademicinstruction,Iactivelyparticipatedinother aspectsofthedailylifeoftheschool.Forexample,Ms.Marshandherstudents occasionallybroughtinsnacksandduringthosetimesIwouldeatandengageininformal conversations.IalsochattedinformallywithLyonAcademystudentsandteachersbefore orafterclassandinthehallsandparkinglot.Inaddition,Iparticipatedwheneverthere wasaninclass“icebreaker”typeactivity,suchassharingapieceofnewsfromthe weekend.

Throughoutmyinteractionswithstudents,Itriedtoadoptaroleofacuriousadult friend,ratherthanateacher.Mygoalwastobeseenasaregularnonjudgmentalpresence intheclassroom,theretolearnfrombeingattentivetoclassroomactivities.Assuch,Idid

78 notdisciplinestudentsifIsawaminorinfractioninschoolrules(e.g.,voicestooloud), nordidItrytoinstructthem.Asamarkofmystatus,thestudentscalledmebymyfirst name,“Beth,”ratherthan“MissFaller,”whichwashowtheyaddressedtheirteachers.I didnotinitiateconversationswithstudentswhileobserving,butdidanswerinafriendly mannerifstudentsspoketome.Manyofthemwouldsayhellotomeastheyenteredthe room,oriftheysawmeinthehall.Rarelydidstudentsappealtomeonanacademic matter,andwhentheydid,itwasusuallyaquickquestionaboutsomethingtheyknewI hadobserved(e.g.,“Whatdoyoucallthosethingswegrewplantsin?”).Ingeneral, studentsappearedtobecomfortableengaginginnonacademictalkwithpeerswhileIwas around.

DataAnalysis

Datacollectionandanalysiswereoverlappinganditerativeprocesses(Dyson&

Genishi,2005;Heath&Street,2008).Afterclassroomobservations,Iwrotememosto recordemergentthemesthatcouldbeusedtohelpguidewhatIattendedtoduringfuture observations.Forexample,earlyonIidentifiedthekeyphrase“asscientists”inMs.

Marsh’slanguageandrecordedthedetailsofasmanyinstancesofitsuseaspossiblein myfieldnotes.Towardtheendofdatacollection,Itranscribed10minuteintervalsfrom

30minutesintoeachclassroomobservation.Thisdetachedselectionofdatafor transcriptionwasusedtoallowforattentiontochangesovertimeandmitigateagainstthe selectionofpurelyillustrativedatathatconfirmedpreconceivedideas(Heath&Street,

2008).Myanalysisoftranscribedobservationaldataandfieldnotesforallobservations indicatedthatclassesdid not followastrictdailyroutine,suchasaregularsequenceof beginningwithnotetaking,followedbyhandsonactivity,followedbydiscussion,for

79 example.Therefore,thetranscribedintervalscanbeviewedasasampleoftheclassroom activitiesthatoccurredacrossobservations.

Afterdatacollectionwascomplete,Icodedobservationtranscriptions,alongwith fieldnotesandinterviewtranscriptions,inAtlas.tiqualitativeanalysissoftwareusingan inductiveopencodingapproach(Charmaz,2006;Maxwell,2005;Corbin&Strauss,

2008).Ibeganbycodingobservationtranscriptionsandfieldnotes,andthenusedthis initialcodelisttocodeinterviews.Theinitialcodelistfocusedonclassroomactivities

(e.g.,reading,writing,experiment,assessment,constructingadiagram),behaviors(e.g., teacherquestion,studentquestion,teacherconnectsscienceconcepttosomethingelse, studentconnectsscienceconcepttosomethingelse),andexplicitmessagesaboutwho scientistsareandwhattheydo(e.g.,teacherusesphrase“asscientists,”talkaboutoruse oftoolsspecifictodoingscience).Incodinginterviewtranscriptions,Iaddedanotherset ofcodestocapturerelevantinformationfromthestudentperspective(e.g.,whatstudents saidaboutwhatscientistswear,wherescientistswork,whattheydoinscienceclass, etc.).Ialsoaddedasetofcodestocapturestudents’talkaboutwhethertheybelieved sciencewasusefulorrelevantintheirlives.Followingcoding,Icreatedtwoadditional matrices.Thefirstallowedmetolookattrendsinthelanguagestudentsusedtodescribe animaginedscientistatwork,whilethesecondallowedmetocomparetheactionsthey attributedtoascientistwhentheyimaginedhim/heratworkwiththeactionsthey attributedtothemselveswhentheyimaginedbeinginscienceclass.Asafinalanalytic step,IcreatednarrativeprofilesoftheindividualstudentsIinterviewed(Seidman,1998).

Theseprofileswerecraftedinordertocompareandcontrastexperiencesacrossstudents, andusedthestudents’ownwordswheneverpossible.Throughoutdataanalysis,I

80 engagedinaprocessofwritinganalyticmemos,buildingtheories,andreturningtothe datatoverify,reject,andrefinethesetheories.

Findings

“You’reBuildingyourPersonaasaScientist”:ClassroomLevelFindings

Inthissection,Ipresentclassroomlevelfindingsbasedonmyanalysisof videorecordedclassroomobservationsandfieldnotes.Thisanalysisfocusedonwhat opportunitiesforbuildingscienceidentitieswereavailabletothefemalestudentsintheir

LyonAcademyclassrooms.Asmyanalysismakesclear,thelanguageandinstructional practicesthatMs.Marshusedcreatedanexpandedandmoreinclusiveviewofscience andscientiststhanispresentinmanypopularconceptions.Inparticular,Ms.Marshused languagethatpositionedherstudentsasscientists,gavethemaccesstovalues,activities, tools,andformsofexpressionthatsheindicatedwerecentraltodoingscience,andbuilt bridgestosciencebeyondtheschoolcurricula.Idiscusseachoftheseareasinturn.

Positioningstudentsasscientists. Analysisofobservationaldatarevealedthat

Ms.Marshoftenusedlanguagethatexplicitlypositionedherstudentsasscientists engagedinthescientificenterprise.AsdemonstratedinTable2,thekeyphrase“as scientists”occurredinhertalkacrossallclassrooms.Forexample,Ms.Marshtoldher

6thgradeclass,“Asscientists,there’llbelotsofquestionsandyouhavetoputyourbest thinking,everythingthatyouknow,everythingthatyoulearnedabout,towardsthat questionorproblem,”movingfromthemoregeneral“scientists”tothepersonalpronoun

“you”topositionherstudentsaslegitimatemembersofthisgroup(1/15/13).Similarly, onanotheroccasion,whena6thgraderwasspontaneouslytellingherclassmatesaboutan impromptu“experiment”withacarbonateddrinkonabus,Ms.Marshaskedfor

81 clarification,saying,“Sowait,canyoubackup?Explainyoursetup,asascientist,on yourbuslaboratory”(1/8/13).Atothertimes,Ms.Marshwasevenmoreexplicitabout theworkherstudentswereengagingintobecomerecognizedmembersofthescience community,asillustratedbyaninstancewhenher7thgradersperformedpoorlyonan assessment.Ms.Marshrespondedtothispoorperformancebyleadingadiscussionwhere studentsgeneratedideasforhowtheymightensurebetterperformanceinthefuture.

Duringthisconversation,Ms.Marshtoldherstudentswhattheydidinclasswas importantbecause“you’rebuildingyourpersonaasascientist.You’resaying,‘Thisis whoIam’”(2/25/13).

AfinalexampleofMs.Marshpositioningherstudentsasscientistsoccurred whenthe6thgraderswerediscussingtheirobservationsofplantsthattheywerewatering withfourdifferentkindsofliquids,includingorangejuice.Thefollowingexchange occurredafterastudentsaidthatherorangejuicewateredcontainerlooked“likea cemetery.”

Ms.Marsh: Whoelsehasadescription?So,shesaysitlookslikeacemetery.

Niceuseofsimile.But,ifwe’rescientists,isthereanythingwe

canconnectthisbackto,maybeinascienceclassroom?Toni?

Toni: It’skinda,itkind,itkindoflookslikemoldisbeginningtogrow,

becauseit,becauseitlookskindoffuzz,fuzzyish...

Ms.Marsh: OK.

Toni: ...likespiderwebs.

Ms.Marsh: Let’smakesomeconnections.Whenelsewould,wewouldhave

seenmoldinthisclassroom?Howdowe,unlike,I’mnotsure

82

aboutShaniqua’s[containerwateredwithvinegar].Iseriously,I,

I’mnotsurewhatthatis,butI,IagreewithTonithatIthinkthe

OJoneismold,becausewhatarewe,whatamIconnectingit

backtothatmaybeyouaretoo?

Samayah: The,whenwehadthebreadslicesthere.

Ms.Marsh: OK.Sothebread,thebreadhereandwesawsomefunkylooking

moldoverthere.Whereelsedidweseemold?Whereelse?

Gabrielle: Oh,wesawmoldinourterrariums.

Ms.Marsh: Inourterrariums.Yes.So,thatleadsmetobelieveasscientists,

andmaybeyoutoo,thatactuallythatis,ismold(1/7/13).

Duringthisexchange,Ms.Marshaffirmsthevalueofherstudent’spoeticdescriptionof themold(“likeacemetery”),whilealsoencouragingtheuseofpreciselanguageand experiencesmoreappropriatetothesituation“ifwe’rescientists.”Sheendsby positioningbothherselfandherstudentsasscientistsandleavingopenthepossibilitythat they,empoweredasscientistsusingindependentjudgment,mightdisagreewithher(“that leadsmetobelieveasscientists,andmaybeyoutoo.”)

Makingcentralvalues,activities,tools,andlanguageavailable. Inthe previousexamples,Ms.Marshusedlanguagethatexpressedageneralsenseofgroup

affiliation: We are scientists .However,myanalysisalsorevealedthat,onmany

occasions,sheusedlanguagethatfocusedherstudentsonspecificvalues,activities,

tools,andlanguagethattheyshouldemployinordertoberecognizedasscientistsinher

classroom.Theseinstancesgenerallyoccurredinthecontextofhandsonexperiments,

whichMs.Marshtreatedasvalidinstancesofdoingscience.Atypicalexampleoccurred

83 whenMs.Marshwasworkingwithher5thgradeclasstojointlyconstructachart displayingtheresultsofanexperiment.Whiletheyworked,shetoldthem,“Asscientists, wewanttobespecific,wewanttouseevidence,andwewanttoreallycommunicateour thinking...becauseasscientistsitdoesn’tmatterwhatwefindoutunlesswecanshareit withpeople”(12/13/12).Inthisexample,Ms.Marshengagedherstudentsintheactivity ofconstructingmultiplerepresentations(e.g.,oralexplanations,printedtitlesandkeys, charts)toconveyexperimentalfindings,whilealsoendorsingthevaluesofclear communicationandusingevidencetosupporttheirclaims.AnotheractivitythatMs.

Marshhighlightedascentraltodoingscienceacrossallfourclassroomswaswriting downandsketchingobservationsduringanexperiment.Forexample,sheadvisedher8th graders,“Girls,again,youarealsowritingquestions,butyou’realsowriting observations.So,youknow,asscientists,youarerecordingobservationsbydrawing,but you’realsowritingdownyournoticings.Right?Whatdoyousee?Whatdoyounotice?”

(4/1/13).

Inadditiontogivingherstudentsaccesstoactivitiessheendorsedascentralto doingscience,Ms.Marshalsoinvitedherstudentstousedisciplinespecifictoolsand languageconventions.Forexample,shetoldher8thgraders,“Asscientistswe’regonna usemodelsalot,specificallywith[the]areaofgenetics‘causeit’sveryconceptual...We havetocreatethingstolookattohelpusmakesenseofit”(3/21/13).Similarly,she prefacedanexperimentwhere6thgradersusedbeakersandgraduatedcylindersby saying,“Thesearebothtoolsthatareusedinsciencetomeasurethevolumeorthe amountofspace[that]usuallyliquidstakeup”(2/4/13).Examplesofspecificlanguage conventionsthatMs.Marshendorsedincludeusingsymbols(“I’mgonna,asa

84 scientist,...givethesethingssomesymbols,”7thgrade,1/3/13),usingthemetricsystem

(“Youshouldbeworking,asscientists,withmillimetersandcentimeters,”6thgrade,

12/10/12),andusingtechnicalvocabulary(e.g.,abiotic,inertia).Ms.Marshoften explicitlytaughtthelatterbymakingconnectionstostudents’everydaylivesand languageandthenintroducingatechnicaltermthattheyshoulduseinscience.For example,sheintroducedtheterm“optimumcondition”to5thand6thgradestudentsby askingthemwhethertherewasatimeofdaywherethey“feelyou’reatyourverybest.”

Shethenaskedthemtousetheirnew“terminscience”toachartrecordingtheresultsof anexperiment:

SoIwantyoutomakeaconnectionbetweenthoseexamplesyoujustsaidabout

ourselvesandthengoagainbacktoourplants.Solet’sgobacktoourplants,

actuallybacktothe,thewhitepaperthatwesetup.Nowwe’vegottogivea

nametothatsticker.Nowwe’vegotaterminscience(5thgrade,12/13/12).

Thus,withinherclassroom,Ms.Marshclearlypositionedherstudentsasworking

scientistsandgavethemaccesstovalues,activities,tools,andlanguagethatsheindicated

werecentraltodoingscience.

Buildingbridgestosciencebeyondtheschoolcurricula. Analysisof

observationaldatarevealedthatMs.Marshalsoprovidedherstudentswithopportunities

toconnectwithabroadercommunityofscientistsandtoseescienceasrelevanttotheir

lives.Theseopportunitiesincludedschoolwideassemblies,sciencecamps,andother

extracurricularprograms,fieldtrips,readings,andguestspeakers.Manyofthese

opportunitiesinvolvedinteractingwithnature(e.g.,fieldtriptoalocalnaturecenter

wherestudentslookedforanimaltracksinthesnow)andenvironmentalism(e.g.,

85 summercampdedicatedtoexperiencingandcleaningupalocalbay).Throughthese opportunities,Ms.Marshexpandedthemorenarrowviewofwhatscienceisandwho scientistsareprovidedbytheofficialcurricula,givingherstudentsmorepotential sourcestodrawfrominconstructingscienceidentities.

Importantly,manyoftheseexperiencesextendedovertimeandgavestudentsan opportunitytomakeconnectionsatalocallevel,seeingscienceandscientistsintheir ownbackyard.Themoststrikingexampleofthisunfoldedoverthecourseoftheschool year,beginninginthefallwhenMs.Marshinvitedaspeakerfromalocalenvironmental agencytovisitherclassesandtalkabouttrashandrecycling.Aspartofhistalk,the speakermentionedtheenvironmentalimpactofStyrofoaminlandfills.AfterthistalkMs.

MarshaskedherstudentstocalculatehowmanydisposableStyrofoamtrays,whichwere theninuseintheLyonAcademycafeteria,theythrewawayinayear.Ms.Marshthen startedaprojectwherethestudentsdesignedwashableandreusableplasticplatesto replacetheStyrofoamtrays.Inthewordsofsometimesdisengaged6thgrader,Gloria,

Ms.Marshorganizedthisproject“sowecouldstopusingStyrofoamtraysandwecan savetheearth.”Ms.Marshfundedtheprojectbyapplyingforagrantfromalocal organizationthatsupportedenvironmentaleducationandthroughadditionalsupportfrom alocalnaturecenterwithwhichshehadformedanextendedmultiyearrelationship.The reusableplateprojectwasnearingcompletionduringthespringofthedatacollection yearandprovidedstudentswithatangibleandverylocalopportunitytoseetherelevance ofscienceintheirdailylives.Thus,throughherlanguageandinstructionalchoicesinthe

LyonAcademyclassrooms,Ms.Marshcreatedanexpandedviewofsciencerelativeto manypopularconceptionsofwhoscientistsareandwhattheydo.Ofcourse,her

86 individualstudentswerefreetodrawonthisexpandedviewornotastheyconstructed

(orrejected)theirownscienceidentities.

ConflictingViewsofScience:StudentLevelFindings

Inthissection,Ipresentstudentlevelfindingsbasedonmyanalysisofdatafrom

interviewswith12focalstudents.Thisanalysisconcentratedonwhatresources

individualstudentsdrewoninconstructingscienceidentities.Asmyanalysismakes

clear,studentsdiddrawonthemoreinclusiveviewofsciencemadeavailablebyMs.

MarshintheLyonAcademyclassrooms.However,thepicturethatemergedfromthe

dataismorecomplicatedthanastraightforwardacceptanceorrejectionofthisview,

sincemanystudentsalsodrewonsometimesconflictingpopularimagesandbeliefsabout

sciencefromoutsideoftheclassroom.Idiscusseachoftheseareasinturn.

Drawingonclassroomexperiences. Analysisofinterviewdataindicatedthatall butonestudent,6thgraderGloria(SeeChapter4foradetailedcasestudyofGloria),did

indeedshowevidenceofdrawingontheexpandedviewofsciencethatMs.Marshmade

availableinherclassrooms.Inparticular,studentspositionedthemselvesasscientistsby

talkingaboutclassroompracticesaslegitimateexpressionsofwhatitmeanstodo

science.Thiswasprimarilyevidencedintwoways.First,duringtheimageelicitation portionoftheinterview,allbutonestudentreferredtoclassroomexperiencesinorderto justifywhyanimagewasrelatedtoscience.Typically,thestudentwouldstatethatshe

knewitwassciencebecauseshehadlearnedaboutsimilarcontentorengagedinasimilar

activityinascienceclassbefore.Forexample,5thgraderJeannettesaidthatanimageof

aplanthadtodowithscience,because“upstairs[inthescienceclassroom]whenwe

weredoingenvironmentalscience,weusedtogrowplantsandthisisjustseeinghowthe

87 plantgrowsandhowitwouldsproutandusuallywewouldsketchit.”Similarly,when shownanimageofacoralreef,7thgraderSilvanasaid,“Ohmygosh!Yes.Thisreminds meofscience.‘Causewhenwelearnedaboutcoralandwesawthiswholevideo documentaryandIstayedafterschoolforextracredit.Andthisremindsmeofhow they’resayingpollutioniskillingallthecoral.”Asafinalexample,7thgraderCamila saidthatanimageofamanlookingatananimalinacagewasscience,“becausehe’s lookingatanimalsandtakingnotes.Wedothat.Welookatwhatthey’redoing.We describethem.”

Inadditiontousingclassroomexperiencestojustifylabelingsomethingas sciencerelated,studentsalsotendedtoviewmanyoftheactivitiestheydidinscience classasthingsworkingscientistswouldalsodo.Inparticular,asIshowinTable3, analysisofinterviewdatarevealedasubstantialoverlapintheactionsthatstudents describedimaginedscientistsdoingandthosetheydescribedthemselvesdoingwhenthey imaginedthemselvesinscienceclass.Actionsthatappearedinbothimagesofscientists andimagesofstudentsinscienceclassincludebuilding,creating,doingsomethingover again,findinginformation,figuringsomethingout,lookingcloser,observing,taking notes,testingsomething,andworkingwithorganisms.Interestingly,onlythreeactions appearedinstudents’imagesofthemselvesinscienceclasswithoutappearinginthe imagesofscientistsatwork:sketchingwhattheysawunderamicroscope,aswellasthe schoolrelatedactivityofcopyingfromaboardandthedisengagedaction,providedby

Gloria,ofsittingstaringatnothing.Basedonthelattertwoactivities,someoftheLyon

Academystudentsdidseemtomaintainadistinctionbetweendoingschoolanddoing science,atleastpartofthetime.

88

Inadditiontothegeneralendorsementofclassroomactivitiesaslegitimate expressionsofdoingscience,threestudents,Mariana,Camila,andVanessa,explicitly labeledMs.MarshasascientistandVanessaalsoincludedherselfandherclassmatesas membersofthisgroup.Forexample,8thgraderMarianatoldmethat“alotofscientists likeMissMarshandotherscientists”wereworkingontheproblemofpollution,while

7thgraderCamilatoldmethatshethoughtofMs.Marshwhensheimaginedascientist.

Similarly,8thgraderVanessaalsosaidshethoughtofMs.Marshwhensheimagineda scientist(inadditiontoaNASAscientist),butVanessaalsospokeaboutMs.Marsh’s invitationtoherstudentstoviewthemselvesasscientists:

Beth: Socanyoutellmealittlebitaboutwhatyou’repicturing?

Vanessa: ANASA.

Beth: OK.

Vanessa: Because,well,NASA’stheplaceofscientists,butthenmysecond

oneiskindoflikeMissMarshbecausefor,whatlike4years,

she’sbeentheonlyscientistlikefigurethatI,like,OK.That’s

whatascientistis.And,Ithinkthatonateacherlevelshe’scloser

toNASAthanotherschoolsthatI’vebeentoare.

Beth: Whatmakesyousaythat?

Vanessa: Becauseit’s,it’smore,it’smoreofhandson,it’smoreofa

puttinginmathwithscienceandit’smore,howdoyousaythis?

MissMarshsheputsitinlike,OK,whenyoucomeintothis

room,you’renot8thgrade,you’renotjustgirls,you’rescientists.

89

Later,VanessacontrastedherexperiencesinMs.Marsh’sscienceclassattheLyon

Academywithherexperiencesatapreviouscoeducationalschoolwheresheindicated thatgroupingpracticeshinderedgirlsfromengaginginsciencepracticesandthus formingscienceidentities:

Beth: Whydoyoulike[science]?

Vanessa: ‘Cause,ImostlylikeitbecauseofMissMarsh’swayofteaching

itandlikeIsaidbefore,whenyougointothescienceclassroom,

you’renotaboyoragirl.You’rejustascientist...

Beth: Ummhmm.

Vanessa: ...So,formanyyearsitwasonlymalescientists.Andthennow

we’reinthesettingwheregenderisn’treallyanissue,like

everyone’sascientistnomatterifyou,ifyoucan’tdothe

equation,butyoucan,youcanseesomething,observesomething

thatnooneelsehashad,youcandigdeeperintotheorganismand

thenifyou’regoodattheequation,you’rehelping,youandthat

person[inaudible]becauseyoudon’tseesomethingthat’sthere

buttheydoandtheydon’tknowtheequation,soyoujustfit

together.

Beth: Beforeyoucameherewereyouinaschoolwith,likea

coeducational,boysandgirls...

Vanessa: Yeah.

Beth: ...schoolanddidyoutakescienceclassesthere?

Vanessa: Yes.

90

Beth: Didyoufeellikegendercameintoplaythere?

Vanessa: Yeah.Becauseit’sjustlike,ifyougetpartneredwithaboy,it’s

like,‘OK.I’mgonnadoallthework.Youjustsitthere.’

Beth: OK.

Vanessa: Andthenattheendoftheday,even,Ifeellikeeventhoughthe

teachersawthathewasdoingallthework,Iwasstillgetting

rewardedforit.

Beth: Ummhmm.

Vanessa: Anditwasn’tsomethingthatIwantedbecauseIwasjustlike,‘I

didn’tdoanything.You’rerewardingapersonwhodidn’tdo

anything,whojustsatthereandwatchedaboydoallthework.’

Beth: Ummhmm.

Vanessa: So,whenIcamehere,itwaseveryonewasdoingsomething.If

youdidn’tdothework,youweren’trewardedforworkyoudidn’t

do.

InthisstatementVanessaverydirectlydrewonMs.Marsh’spositioningofherfemale studentsasscientistsandlinkedthispositioningtoallstudents’abilitytoengageinthe centralpracticesofdoingsciencewithintheirLyonAcademyclassrooms,something

Vanessasaidwaslackinginherpreviousschool.Notably,Vanessawastheonlystudent toexplicitlylinkattendinganallfemaleschoolwithincreasedopportunitiesinscience.

Finally,analysisofinterviewdataindicatesthat,withoneexception,6thgrader

Gloria,LyonAcademystudentsgenerallytalkedaboutscienceinapositivelightandsaw itasrelevanttotheirlives.Forexample,whenthestudentstoldmeaboutanimageof

91 themselvesinscienceclass,theylistedthefollowingpositivedescriptivewords: like what doing, fun, interesting, understand, have patience, want to participate, pay attention, cool, important, useful, surprised, accomplished, easy, entertaining, exciting, fascinating, and not scared .Incontrast,studentsonlyusedthreenegativedescriptors: difficult, frustrating, and don’t understand .Whilefourstudentsincludedsomeofthese negativedescriptors,allstudentsexceptGloriatalkedaboutthenegativeinthecontextof otherpositivefeelingsaboutdoingscience.Forexample,Silvanadescribedhowshe sometimesfelt“frustrated”inscienceclass,butindicatedthatthisfrustrationwasastep onthewaytogettingthedesired“outcome”andfeeling“accomplished”:

Silvana: I’mprobablyexcitedandfascinatedbutthenI’malittlefrustrated

too‘causeit’snotworkingoutthewayIwantto.ButthemI’m

like,‘OK.OnedayIwillgetanoutcome.’

Beth: [laughs]So,doyoufindthatscienceisoftenfrustrating?

Silvana: Well,not,wellIgetalittlefrustratedwitheverything‘causeIlike

ittocomeoutperfect.Butthenit’salso,I,Ilikeitbecauseit’s

likeIdon’tknowtheanswerrightaway...

Beth: Ummhmm.

Silvana: ...andIdon’t,Iliketochallenge,soIliketotrytogetitthere.

AndIknowthatwhenIgetthereI’mgonnabesoaccomplished.

Thus(withtheexceptionofGloria),evenamongthestudentswhoassociatedsome

negativeemotionswithscience,theiroveralldescriptionsweregenerallypositiveand

focusedontheaccomplishmenttheyfeltwhentheyfinallyfiguredsomethingoutorthe

aspectsofsciencetheyenjoyed.

92

Inadditiontothesepositiveemotions,themajorityofLyonAcademystudents talkedaboutconnectionsbetweenscienceandtheiroutofschoollives.Forexample,83% oftheinterviewedstudentssaidthattheyusedsomeofwhattheylearnedinscienceclass outsideofschool.Threestudentsdescribedusingscienceequipment,suchastelescopes ormagnifyinglenses,whileotherstalkedaboutknowingmoreaboutphenomenathey sawintheireverydaylife,orapproachingsituationsdifferently.Forexample,5thgrader

Jeannettelinkedherinterestinscienceclasstotheconnectionsshewasabletomaketo thingsshehadpreviouslyseenoutsideofschool:

Jeannette: FormeIfinditinterestingbecausewelearnstuffthatwedon’t

knowandlikeI’veneverknownsomeofthestuffthatsheteaches

usandit’sveryinterestingandIfindIliketopayattentioninthe

classbecause,youknow,itkeeps,itkeepsmeentertained.

Beth: OK.Andsowhataresomethingsthatyoufoundoutthatare

interestingtoyou?

Jeannette: Well,underthemicroscope,welookatmicrobesandthen

sometimeswecouldseestuff...

Beth: Ummhmm.

Jeannette: ...butthenupcloseyoudon’tseethingsthatyouwillwiththe

nakedeyeandit’scoolthewayitlooksandthen,Ithinkwhen

youweren’there,weweredoingenvironmentalstuffandthenwe

learnedabouthowtheenvironmentwasbeingtreatedbadlyand

howpeoplearejustthrowingstuffonthefloorandnotcaring

93

aboutwheretheplantslike,therewasnospacefortheplantsto

grow.

Beth: Ummhmm.Andsowhywasthatinteresting?

Jeannette: Well,becauseI,I’veseenithappen.Iseepeoplelitteralotand

it’sveryinterestingtolikelearnabouthowpeopletreatitand

maybetalksomesenseintopeople.

Similarly,7thgraderSilvanaalsodiscussedtherelationshipbetweenwhatshelearnedin scienceclassandhereverydaylife.Shesaidshelikedto“knowthings”andsoliked science,“becauseinsciencetheyteachyouthebackgroundstoryandlittlethingsthat happenbefore,soIcanbeabletotellyouthattheplantdidn’tjustpop...theseedwas planted.”Thus,themajorityofLyonAcademystudentsdrewonclassroomexperiences

inconstructingscienceidentities.However,aswillbediscussedinthenextsection, popularimagesalsoplayedanimportantroleinthisendeavor.

Drawingonpersistentpopularimages. Inadditiontodrawingontheexpanded

viewofscienceprovidedintheirclassrooms,students’beliefsaboutscienceidentity

werealsoinfluencedbymorelimitedarchetypalimagesofscientistsfoundoutsideof

theirclassrooms(e.g.,solitaryWhitemeninlabcoatswithfacialhairandtesttubes).This

wasespeciallyevidentwhenIaskedstudentstoimagineascientistdoingscientificwork.

InTable4,Isummarizethekeyattributesthatwerepresentinstudents’descriptions.The

resultsfrommyanalysisrevealedthepersistenceoffeaturesdrawnfromlimitedand

noninclusivearchetypalimagesandpopularculturerepresentationsofscientists.This

wasespeciallytrueinthecaseofphysicalfeatures.InspiteofattendingtheallgirlsLyon

Academywheresciencewastaughtbyawoman,halfofstudents( n=6)imaginedthe

94 scientistasaman,whileanother25%( n=3)imaginedbothmaleandfemalescientists.

Onlythreestudentsfocusedtheirdescriptiononafemalescientist.Interestingly,twoof

thesestudentsdescribedlivingfemalescientists,Ms.MarshandJaneGoodall.Other

featuresoftenpresentinarchetypalimagesincludewearingalabcoat( n=10;83%)or

glassesorgoggles( n=5;42%),having“crazy”hair( n=2;17%)orfacialhair( n=2;17%),

andbeing“lightskinned”or“notdarkskinned”( n=2;17%).

Moreover,threestudentsfurtherelaboratedonwhytheyheldlessinclusiveviews

ofwhoscientistsare.Allthreeofthesestudentssaidthattheyrarelysawwomenor peopleofcolorengagedinscience,makingadistinctionbetweenclassroomscienceand

morepopularimages.Forexample,whenIaskedaboutwhethertherewasacertaintype

ofpersonwhowasmorelikelytobecomeascientist,8thgraderMarianadrewonthe

imagesofscientistsshesawontelevisiontoexplainwhyshethoughtmenweremore

likelythanwomentobecomescientists:

Beth: Isthereanytypeofpersonwho’smorelikelythanadifferenttype

ofpersontobecomeascientistorisanyoneequallylikelyto

becomeascientist?

Mariana: Ithinkit’smoremen.

Beth: Menaremorelikely?

Mariana: Yeah.

Beth: OK.Andwhydoyouthinkthat?

Mariana: BecausejustlikewhenIseeTVandIsee,likesciencechannels,I

mostlyseementhere,likeyourarelyseeawoman.

95

Similarly,8thgraderSavannahdescribedherimaginedscientistasa“lightskinned”man.

Shethenelaborated,“’CausethosearewhatIsee.That’swhatIthinkofwhenImostly hearofscientists.Youdon’tseealotoffemalesdoingsciencestuff,likeinclass,butnot in[theoutsideworld],menusuallydo.”ThusSavannahmadeexplicitthedifference betweendoing“sciencestuff”inclassandbeingascientistintheoutsideworld.

Moreover,forthemajorityofstudents( n=10;83%),thetypicalscientistwould workinasciencelaboratoryandtheimageofasolitaryscientisttoilingawaystill predominates.Halfofstudents( n=6)indicatedthatthescientistworkedaloneand another42%( n=5)describedonlylimitedinteractionwithanassistant(e.g.,askingfor materials)oranotherscientist(e.g.,sharingideasaftertheworkwascomplete).Science equipmentandmaterialsalsoplayedacentralroleintheseimagesforallbutonestudent.

Themostfrequentlymentionedincludechemicalsor“liquids”( n=6;50%)andtesttubes

(n=6;50%).Onefairlytypicalexampleofthesecharacteristicsisthedescriptionofa scientistprovidedby8thgrader,Mariana:

Mariana: Iseeascientisttryingtocreateacureforasickness.

Beth: OK.Andso,sortawhat’sthe,whatspacearetheyworkingin?

What’sitlooklike?

Mariana: It’slikealabandhehasgogglesonandit’slikealittletight

crowdedroomwithalotoflikeglassbottles.

Beth: OK.Andyousaid,yousaid,“he,”didn’tyou?

Mariana: Yeah.

Beth: Sowhatdoeshelooklike,thescientist?

Mariana: HekindalookslikeEinstein.

96

Beth: OK.And,and,how’shedressed?Sortawhat’shewearing?

Mariana: He’swearingawhitelabcoatwithsomeblackpants.

Beth: OK.And,isthe,isheworkingwithanyoneelseorisheby

himself?

Mariana: He’sbyhimself.

Interestingly,likeMariana,afewstudentsseemedtodrawdirectlyfromiconic photographic,television,orcomicbookimagesofscientists,describingsuchthingsasa scientistwearingahelmetandbuildingaflyingmachine,adarkroomwithaspotlighton thescientist,andagleamingwhiteroomwherethescientistworked.Additionally,two studentsreferredtotheirimaginedscientistaslookinglike“Einstein,”whileVanessa,the

8thgraderwhospokeeloquentlyaboutherselfandherclassmatesasscientists,saidher imaginedscientistlookedlikeDr.Doofenshmirtz,acharacterfromthepopularDisney cartoon Phineas and Ferb .Dr.DoofenshmirtzisalabcoatwearingWhitemalescientist whospeakswithaGermanaccentandcreatesobscureinventionstofurtherhisevilplots.

ThusthemajorityofLyonAcademystudents,eventhosewhoembracedMs.Marsh’s positioningofthemasworkingscientists,drewfromatleastsomeelementsfrommore

limitedandnoninclusivepopularimagesinconstructingtheirviewsofwhoscientistsare

andwhattheydo.However,somestudents,like8thgraderMariana,werehighlyreliant

onthesenoninclusiveimages,whileothers,likeherclassmateVanessa,drewmore

heavilyfromtheexpandedviewofscienceavailableintheirscienceclassrooms.

Discussion

Agrowingbodyofliteraturehasimplicatedscienceidentityasapossible

explanatoryfactorinthepersistentunderrepresentationofwomeninscience(e.g.,

97

Brickhouse,Lowery,&Schultz,2000;Carlone,2004;Carlone,HaunFrank,&Webb,

2011;Wong,2012 ).Yetveryfewstudieshaveexaminedthewaysinwhichteachers’ languageandinstructionalpracticesencouragetheirfemalestudentstoviewthemselves asthe“kindof”peoplewhodoscience.Evenfewerstudieshaveconsideredthe perspectiveofthestudentswithintheseclassrooms,examiningthesourcestheydrawon inconstructing(orrejecting)scienceidentities.Thus,thepurposeofthisstudywasto addressthisneedwithintheunderstudiedcontextofasmallallgirls’schoolserving primarilystudentsofcolorfromworkingclassbackgrounds.

Overall,myfindingsreaffirmtheimportantrolesplayedbybothlanguageand instructionalpracticeswithinthescienceclassroomandpopularimagesandbeliefsabout scienceoutsideoftheclassroom.Specifically,attheclassroomlevel,Ifoundthatthe languageandinstructionalpracticesthatMs.Marshusedcreatedaninclusiveviewof sciencethatherstudentscoulddrawon.Inparticular,Ms.Marshusedlanguagethat positionedherstudentsasscientists,gavethemaccesstovalues,activities,tools,and languagethatsheindicatedwerecentraltodoingscience,andbuiltbridgestoscience beyondtheschoolcurriculum.Inaddition,atthestudentlevel,Ifoundthatmoststudents diddrawonthismoreinclusiveviewofscienceinconstructingtheirownscience identities.However,manystudentsalsodrewonmorelimitedandnoninclusiveviewsof scienceandscientistsfrompopularcultureoutsideoftheclassroom.

Extendingpreviousresearchonthewaysinwhichscienceteacherspromote affiliationwithscience(e.g.,Goldberg,Welsh&Enyedy,2008;Moje,1995),the findingssuggestthatwhileteachers’useoflinguisticmarkerssuchasinclusivepersonal pronounsplayanimportantrole,otherpracticessuchasprovidingaccesstocentral

98 values,activities,tools,andlanguage,anddemonstratingtherelevanceofsciencein students’livesmayalsobeimportant.Thisisespeciallyapparentwhencontrastedwith otherdocumentedclassroompracticesthatencourageddisaffiliation,suchasusing languagethatmarksscienceasadifficultdisciplinemeantforonlyafew(Carlone,2004;

Lemke,1990)oremphasizingtheneedtoproducetheonerightanswersaidintheright way( Carlone,HaunFrank,&Webb,2011;Moje,1995) .Suchpracticesdiscouraged somestudentsfromseeingthemselvesasscientistsandmakeitriskyforthemto participatemeaningfullyindisciplinarypractices.

Thus,thefindingshighlighttheimportantroleofthescienceteacherinhelping studentstoviewscienceasopentopeople“likethem.”Thisincludessuchseemingly basicthingsasensuringthatallstudentsareabletoparticipateinscienceclass.Whilenot anissueinasinglegendersetting,Vanessa’sstoryofaformerscienceteacherwhodid notinterveneeventhoughVanessabelievedshewasmarginalizedbyhermalepartner duringgroupwork,providesawarningthatteachersincoeducationalsettingsmayneed tobeparticularlyattunedtothisissue.Suchawarningisechoedbyabroaderliterature documentingmaledominanceduringsmallgroupworkinscienceclassrooms(Guzzetti,

2004,Roychoudhury,1994).

Beyondensuringthatallstudentsareabletoparticipate,thefindingsalso illustratehowscienceteacherscanprovidetheirstudentswithaccesstovalues,activities, tools,andlanguagecentraltotheirdiscipline.Whiledisciplinarynormsandlanguage weresometimesimplicitinMs.Marsh’steaching,sheoftenexplicitlymarkedparticular valuesorusesoflanguageasimportanttoscientists.Providingaccesstosuch disciplinaryknowledgeisacrucialpartofscienceidentityformation,becauseonecannot

99 berecognizedasthekindofpersonwhodoessciencewithouthavingsomeknowledge thatallowsonetodemonstratecompetencewithinthedomain(Carlone&Johnson,

2007).

Finally,thestudentlevelfindingsprovideareminderofthedynamicandcomplex natureofidentities.Importantly,severalstudentsindicatedthatwhattheydidinthe classroomwasscienceandthattheyenjoyedscience,butthatitwasn’tfor“peoplelike us”(e.g.,scientistsarelightskinned).Onekeytounderstandingthisapparent contradictionmaybethedistinctionbetween“doingscience”and“beingascientist” documentedinpriorresearch(Archeretal.,2010).Archerandcolleagues(2010)found thatstudentscommonlydistinguishbetween“doingscience,”whichtheygenerallylike, and“beingascientist,”acareertowhichfewaspired.Moreover,theauthorsnotedthe roleofsocialclass,ethnicity,andgender,suchthattheideaofbeingascientistwas beginningtoberuledoutas“unthinkable”forcertainstudents,evenatayoungage

(Archeretal.,2010).SuchadistinctionmightallowLyonAcademystudentstoenjoy doingscienceintheclassroomandseeitrelevanttotheirlives,whilealsoconsideringthe careerofscientistassomethingclosedofftothem.Ifthisisthecase,myfindingsindicate thatlessinclusivepopularimagesofscientistsmaybeimplicatedincreatingsuchaview

(“Youdon’tseealotoffemalesdoingsciencestuff,”saidSavannah),evenamong studentswhoseemtoembracetheirteacher’sinvitationtoviewthemselvesasscientists intheclassroom.

LimitationsandDirectionsforFutureResearch

Iwishtoacknowledgethelimitationsofthisstudy,whichinvolvestheanalysisof datafromasinglesmallallfemaleschoolservingmiddlegraders.Ichosetoworkatthis

100 schoolbecauseitprovidedaninterestingcontexttoexplorescienceidentity,especiallyin lightofcallsforsinglegenderscienceeducationdespitethelackofresearchinthese settings.NotonlyistheLyonAcademysinglegender,butitisunusualinseveralother respects.Notablyitslimitedenrollmentmeansthatclasssizesarerelativelysmallforthe

USandteacherscontinuetoworkwithandgettoknowtheirstudentsoverthecourseof

4years.Forallofthesereasons,IacknowledgethattheLyonAcademyshouldnotbe seenasrepresentativeofotherschoolsandresultsshouldnotbegeneralizedbeyondthis study.

Inspiteofthis,thestudypointstoseveralareasworthyoffurtherresearch.First, thefindingshighlighttheimportanceofscienceteachersinprovidingcounternarratives tomorelimitedpopularnarrativesofwhoscientistsareandwhattheydo.Such experiencescanbeimportantforthosewhoarenotincludedinpopularimagesand beliefs.Inparticular,myfindingsdocumentMs.Marsh’swaysofbuildingbridgesto sciencebeyondtheschoolcurriculumtohelpherstudentsseeitsrelevanceintheir everydaylives.Suchinstructionalpracticesappearespeciallypromisinginlightof previousresearchdocumentingthatevengirlswhoachieveataverageorhighlevelsin scienceclassesmayviewscienceasirrelevanttotheireverydaylivesand/ortheirfuture goalsforthemselvesandthusbeunlikelytopursuesciencebeyondcompulsorycourses

(Brickhouse,Lowery,&Schultz,2000;Carlone,2004;Carlone,HaunFrank,&Webb,

2011;Wong,2012).Futureresearchisnecessarytodocumentthesetypesofbridging

instructionalpracticesandespeciallytoexaminetheirlinktostudentattitudesabout

scienceandcareerplans.

101

Finally,thereisaneedforfurtherresearchintostudents’distinctionbetween

“doingscience”inschooland“beingascientist.”Consistentwithfindingsfromalarge sampleofstudentsinEngland(Archeretal.,2010),severalstudentsattheLyon

Academyseemedtomaintainthisdistinction.Whiletheyhadgenerallypositiveviewsof schoolscienceandviewedthemselvesascapableofdoingscienceatschool,theystill hadamorelimitedviewofwhocouldbeascientistasacareer,aviewthatseemedtobe atleastpartiallydrawnfrompopularimagesofscienceandscientists.Moreresearchis neededtoinvestigatethisdistinctionandwhetheritmightbemitigatedbyprograms designedtomakecareersinsciencemoreimaginablefortraditionallyunderrepresented students.Forexample,futureresearchcouldinvestigatetheimpactofexposingsuch studentstoamorediversearrayofworkingscientiststohelptocombatsomeofthemore limitedandnoninclusivepopularimages.

102

References

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2012).“Balancing

acts”:Elementaryschoolgirls'negotiationsoffemininity,achievement,and

science. Science Education, 96 (6),967989.doi:10.1002/sce.21031

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2013).“Notgirly,

notsexy,notglamorous”;Primaryschoolgirls’andparents’constructionsof

scienceaspirations. Pedagogy, Culture, and Society, 21 (1),171194.

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2010).“Doing”

scienceversus“being”ascientist:Examining10/11yearoldschoolchildren's

constructionsofsciencethroughthelensofidentity. Science Education, 94 (4),

617639.doi:10.1002/sce.20399

Barman,C.R.(1997).Students’viewsofscientistsandscience. Science and Children,

35, 1823.

Brickhouse,N.W.,Lowery,P.&Schultz,K.(2000).Whatkindofagirldoesscience?:

Theconstructionofschoolscienceidentities. Journal of Research in Science

Teaching ,37,441–458.doi:10.1002/(SICI)10982736(200005)37:5<441::AID

TEA4>3.0.CO;23

Carlone,H.B.(2004).Theculturalproductionofscienceinreformbasedphysics:Girls'

access,participation,andresistance. Journal of Research in Science Teaching ,

41 ,392–414.doi:10.1002/tea.20006

Carlone,H.B.,HaunFrank,J.,&Webb,A.(2011).Assessingequitybeyondknowledge

andskillsbasedoutcomes. Journal of Research in Science Teaching ,48,459–

485.

103

Carlone,H.B.,&Johnson,A.(2007).Understandingthescienceexperiencesof

successfulwomenofcolor:Scienceidentityasananalyticallens. Journal of

Research in Science Teaching, 44 ,1187–1218.

Carlone,H.B.,Scott,C.M.,&Lowder,C.(2014 ). Becoming(less)scientific:A

longitudinalstudyofstudents’identityworkfromelementarytomiddleschool

science. Journal of Research in Science Teaching ,doi:10.1002/tea.21150

Chambers,D.W.(1983).Stereotypicimagesofthescientist:Thedrawascientisttest.

Science Education, 67 (2),255265.doi:10.1002/sce.3730670213

Charmaz,K.,(2006). Constructing grounded theory: A practical guide through

qualitative analysis .ThousandOaks,CA:SagePublications.

Corbin,J.M.&Strauss,A.L.(2008). Basics of qualitative research: Techniques and

procedures for developing grounded theory (3rded.).ThousandOaks,CA:Sage

Publications.

Dyson,A.H.&Genishi,C.,(2005). On the case: Approaches to language and literacy

research. .NewYork:TeachersCollegePress.

Emerson,R.M.,Fretz,R.I.,&Shaw,L.L.(1995). Writing ethnographic fieldnotes .

Chicago,IL:UniversityofChicagoPress.

Gee,J.P.(2001).Identityasananalyticlensforresearchineducation. Review of

Research in Education, 25 ,pp.99125.

Gee,J.P.(2004).Languageinthescienceclassroom:Academicsociallanguagesasthe

heartofschoolbasedliteracy.InE.W.Saul(Ed.), Crossing borders in literacy

and science instruction: Perspectives on theory and practice (1332).Newark,

DE:InternationalReadingAssociation.

104

Goldberg,J.,Welsh,K.&Enyedy,N.(2008). Negotiatingclassroomparticipationina

bilingualscienceclassroom.InKatherineBrunaandKimberleyGomez(Eds.)

Talking Science, Writing Science: The Work of Language in Multicultural

Classrooms. Mahwah,NJ:LawrenceErlbaumAssociates,Inc.

Guzzetti,B.J.(2004).Girlsinscience:Creatingsymmetricalopportunitiesforacquiring

scientificliteracy.InE.W.Saul(Ed.), Crossing borders in literacy and science

instruction: Perspectives on theory and practice (1332).Newark,DE:

InternationalReadingAssociation.

Heath,S.B.,&Street,B.V.(2008). On ethnography: Approaches to language and

literacy research .NewYork:TeachersCollegePress.

Hill,C.,Corbett,C.&St.Rose,A.(2010). Why so few?: Women in science technology,

engineering, and mathematics. Washington,DC:AAUW.

Lave,J.&Wenger,E.(1991). Situated learning: Legitimate peripheral participation.

Cambridge,UK:CambridgeUniversityPress.

Lemke,J.L.(1990). Talking science: Language, learning, and values .Norwood,N.J.:

Ablex.

Maxwell,J.A.,(2005). Qualitative research design: An interactive approach (2nded.).

ThousandOaks,CA:SagePublications.

Moje,E.B.(1995).Talkingaboutscience:Aninterpretationoftheeffectsofteachertalk

inahighschoolscienceclassroom. Journal of Research in Science Teaching,

32 (4),349371.

105

NationalCenterforEducationStatistics.(2012). The nation’s report card: Science 2011

(NCES2012–465).Washington,DC:InstituteofEducationSciences,US

DepartmentofEducation.

NationalCenterforEducationStatistics.(2007). The nation’s report card: America’s

high school graduates: Results from the 2005 NAEP high school transcript study ,

byC.Shettle,S.Roey,J.Mordica,R.Perkins,C. Nord,J.Teodorovic,J.Brown,

M.Lyons,C.Averett,&D.Kastberg.(NCES2007467).Washington,DC:

GovernmentPrintingOffice.

Reilly,D.(2012).Gender,culture,andsextypedcognitiveabilities. PLoS ONE 7 (7):

e39904.doi:10.1371/journal.pone.0039904

Reveles,J.M.(2009).Academicidentityandscientificliteracy.InK.R.Bruna&K.

Gomez(Eds.), The work of language in multicultural classrooms: Talking

science, writing science (pp.93114).NewYork:Routledge.

Roychoudhury,A.(1994).Isitmindsoffscience?:Aconcernfortheelementarygrades.

Journal of Science Teacher Education, 5 (3),8796.

Seidman,I.(1998). Interviewing as qualitative research: A guide for researchers in

education and the social sciences (2nded.).NewYork,NY:TeachersCollege

Press.

Wenger,E.,McDermott,R.&Snyder,W.M.(2002). Cultivating communities of

practice: A guide to managing knowledge .Boston,MA:HarvardBusinessSchool

Press.

106

Wong,B.(2012).Identifyingwithscience:Acasestudyoftwo13yearold‘high

achievingworkingclass’BritishAsiangirls. International Journal of Science

Education, 34 (1),4365.doi:10.1080/09500693.2010.551671

Yin,R.K.(2009). Case study research design and methods (4thed).ThousandOaks,CA:

SagePublications.

107

Table 1 .DemographicMakeupforStudentInterviewSample(n=12) Eligiblefor Teacher Freeor Classificationof ReducedPrice Science Grade Name a Race/Ethnicity Lunch Achievement 5th Mandy MultiRacial No AboveAverage Jeannette Latina Yes Average Aaliyah Black Yes BelowAverage 6th Effie Black Yes AboveAverage Lauren Black Yes Average Gloria Latina Yes BelowAverage 7th Silvana Latina Yes AboveAverage Bianca Latina Yes Average Camila Latina Yes BelowAverage 8th Vanessa Black No AboveAverage Savannah Latina Yes Average Mariana Latina Yes BelowAverage a Allnamesarepseudonyms.

108

Table 2. ExamplesofMs.Marsh’slanguagethatexplicitlypositionsherstudentsas

scientistsbygrade.

Grade Examples 5 Asscientists,wewanttobespecific,wewanttouseevidence,andwewant toreallycommunicateourthinking...becauseasscientistsitdoesn’tmatter whatwefindoutunlesswecanshareitwithpeople. *** Andthenwhatelseshouldweinclude?Asscientists,Imakesureyoudoit everydayinhere,wheneverIgiveyouapieceofpaper. *** Howdoyoucommunicateyourthinkingasascientist? *** SoasascientistI’mgonnagobacktomakesure.OK?Ialwaysgoback andreread.It’samarkofagoodreader.It’sthemarkofagood,um, scientist.OK? *** Nicejob.Iseesomefuturemicrobiologistsinmymidst,which,bytheway, I’mtryingtogetamicrobiologisttocomevisitus. 6 Sowhatwe’regonnadorightnowisIhavealittleresponsesheetforyou anditposesaquestion,‘causeasscientiststhere’llbelotsofquestionsand youhavetoputyourbestthinking,everythingthatyouknow,everything thatyoulearnedabout,towardsthatquestionorproblem. ** Sayyou’vegot,that’senoughevidenceformeasascientistandthenyou start[to]wateryourindoorradishplantsandthenyouatetheradishplant. Doweeatbleach? *** Butifwe’rescientists,isthereanythingwecanconnectthisbackto,maybe inascienceclassroom? *** So,um,thatleadsmetobelieveasscientists,andmaybeyoutoo,that actuallythatismold. *** Sowait,canyoubackup?Explainyoursetup,asascientistonyourbus laboratory. *** Again,youshouldbeworkingasscientistswithmillimetersand centimeters. *** ‘Causelikeyousaid,onewaythatscientistscommunicatetheirfindingsis throughthewrittenword,soyou’regonnawritedownanypropertiesthat youcantodescribetheobjects.

109

*** Sothesearebothtoolsthatareusedinsciencetomeasurethevolumeor theamountofspace,usuallyliquidstakeup. *** Ifyouhadoneofthoseyellowrulersorjustbigsticks,whataredifferent unitsthat,whetherwe’reascientistornot,mightbeonthatruler? *** You’reclose.Butasscientistsusingkindofthemetricsystemandbaseten, it’salittlebitmorecleanedup. 7 NowI’mgonnaasascientistdoa...I’mactuallygonnagivethesethings somesymbols.SoI’mgonnacallthis,I’mgonnagiveasymbol.OK?I’m gonnacallinitialvolume,I’mgonnagiveitasymbol.I’mgonnacallitVi. *** Ifyouthinkofthismoreglobally.Likethebigperspective.You’re buildingyourpersonaasascientist.You’resayingthisiswhoIam. *** So,it’sareallybigthinginsciencetoseetherelationshipbetweencellular respirationthathappenswhen,youknow,organismsbreatheinandoutand howplantsgrow. 8 Asscientistswe’regonnausemodelsalot,specificallywith[the]areaof genetics‘causeit’sveryconceptual...Wehavetocreatethingstolookatto helpusmakesenseofit. *** Girls,againyouarealsowritingquestions,butyou’realsowriting observations,soyouknowasscientistsyouarerecordingobservationsby drawingbutyou’realsowritingdownyournoticings.Right?Whatdoyou see?Whatdoyounotice?

110

Table 3. Actionsthatfocalstudents( n=12)attributedtoscientistswhentheyimagineda

scientistatworkandthemselveswhentheyimaginedthemselvesinscienceclass.

WhatScientistsDo: WhatWeDo: Action ImagineaScientist Imagine Yourselfin ScienceClass build/putstufftogether √ √ create/invent √ √ doitoveragain √ √ findinformation √ √ findout/figureout/see how/understand/discover √ √ lookcloser √ √ Observe √ √ takenotes √ √ test/experiment √ √ usechemicals √ √ workwithorganisms √ √ Analyze √ Collect √ Dig √ Dissect √ holdequipment √ Multitask √ Predict √ staringinto[outer]space √ Teach √ copyfromboard √ lookatsomethingundermicroscope √ sitstaring √ Sketch √

111

Table 4. Keyattributesfoundinfocalstudents(n=12)imagesofscientistsatwork.

Vanessa Savannah Mariana Silvana Bianca Camila Effie Lauren Gloria Mandy Jeannette Aaliyah Total ScientistPhysical Description man √ √ √ √ √ √ √ √ √ 9 woman √ √√ √ √ √ 6 labcoat √ √ √ √ √ √ √ √ √ √ 10 dressedinWhite √ 1 tshirt √ 1 jeans √ 1 dirtypants √ 1 dressed"fancy" √ 1 crazy/spikyhair √ √ 2 long/prettyhair √ √ (woman) 2 glasses √ 1 goggles √ √ √ √ 4 helmet √1 moustache/beard √ √ 2 lightskinned √ √ 2 tan √ 1 Character Trait/Emotion frustrated √ 1 rude √ 1 lovescience √ 1 tryinghard √ 1 SocialContext workingalone √ √ √ √ √ √ 6 workingwithanother √ √ 2 limitedinteraction √ √ √ √ √ 5 PhysicalLocation inlab/scienceroom √ √ √ √ √ √ √ √ √ √ 10

112

outoflab √ √ 2 trashonfloor √ 1 organized √1 spotlight √ 1 crowdedroom √ 1 Whiteroom √ √ 2 inAfrica √ 1 Equipment chemicals/acid/liquids √ √ √ √ √ √ 6 bottles/tubes/containers √ √ √ √ √ √ 6 microscope √ √ 2 forceps √ 1 bigvideoscreens √ 1 screwdriver √ 1 drill √ 1 wrench √1 tables √ 1

113

Appendix Mappingofquestionsfromstudentinterviewprotocoltothreefacetsofscience identity. FacetofScienceIdentity RelevantInterviewProtocolQuestions Whoarescientistsand (2)Tostartout,Iwouldlikeyoutopictureinyourminda whatdotheydo? scientistwhoisdoingscientificwork.Thinkaboutwhatthe scientistisdoing,wherethescientistis,andwhatthe scientistislike.I’llgiveyouaminutetogetthatpicturein yourmind.Tellmewhenyouareready. Canyoutellmeaboutwhatyoupicturedinyourmind? GENERALPROBEIFNEEDMOREINFORMATION: • Canyoutellmealittlemoreaboutthat? PROBEIFNOTALREADYCOVERED: • Whatisthescientistdoing? • Whyisheorshedoingthis? • Whereisthescientistworking? • Isthescientistworkingwithanyoneelse?IFYES, whoelseisthescientistworkingwith?Whatare theydoing?IFNO,doyouthinkthescientistever workswithanyoneelse?Whoisit?Whatdothey do? • Isthereacertaintypeofpersonwhousually becomesascientist? NowIwouldliketotalktoyoualittlebitmoreabouthow scientiststhinkandwhatscientistsdo. (7)First,I’mgoingtoshowyouabunchofpictures.Iwant youtotakealookatthemandtellmewhethertheyshow somethingthathastodowithscienceornot.Howdoyou knowthisis/isn’tscience? (8)Whatmakessomeoneagoodscientist? DoIdothethingsthat (3)NowIwantyoutogetanewpictureinyourmind. scientistsdo? Pictureyourselfdoingscienceinscienceclass.Thinkabout whatyouaredoing,whereyouare,andhowyoufeel.I’ll giveyouaminutetogetthatpictureinyourmind.Tellme whenyouareready. Canyoutellmeaboutwhatyoupicturedinyourmind?

114

GENERALPROBEIFNEEDMOREINFORMATION: • Canyoutellmealittlemoreaboutthat? PROBEIFNOTALREADYCOVERED: • Whatareyoudoing? • Whyareyoudoingthat? • Whereareyoudoingit? • Areyouworkingwithanyoneelse?IFYES,who elseareyouworkingwith?Whataretheydoing?IF NO,doyoueverworkwithotherpeoplewhenyou doscience?Whoisit?Whatdoyoudotogether? NowIwouldliketotalktoyoualittlebitmoreabouthow scientiststhinkandwhatscientistsdo. (7)First,I’mgoingtoshowyouabunchofpictures.Iwant youtotakealookatthemandtellmewhethertheyshow somethingthathastodowithscienceornot.Howdoyou knowthisis/isn’tscience? Issciencerelevantand/or (1)Tostartout,I’dlikeyoutoimagineyourselfin20years engagingtome? anddescribewhatkindofworkyouwillbedoing.Isthere anypartofwhatyouwillbedoingthatisrelatedto science? (4)Doyoulikescience?Whyorwhynot? (5)Areyougoodatscience?Whyorwhynot? (6)Doyoueverusethethingsyoulearninscienceclass outsideofschool?Canyougivemeanexample?

115

Chapter4:Study3

WhoDoesScience?:

ScienceAttitudesandIdentityamongMiddleGradeStudentsataSmallAllGirls’

School

Abstract

Theresearchpresentedinthispaperbeganwiththepremisethatscienceidentity—thatis, students’beliefsaboutwhoscientistsare,whatitmeanstodoscience,andwhether scienceisinterestingorimportant—isanoftenneglectedlensforunderstandingfemales’ scienceliteracyoutcomesandthepersistentunderrepresentationofwomeninscience professions.InthisarticleIpresentdatacollectedoverthecourseof7monthsaspartofa largerstudyofscienceliteracyattheLyonAcademy,asmallallfemalemiddleschool servingprimarilystudentsofcolorandstudentsfromworkingclassbackgrounds.The purposeofthismultiplecasestudy(Yin,2009)istoexplorethestudents’attitudes towardscienceandconstructionsofscienceidentity,operationalizedhereastwo dimensions:(a)students’beliefsaboutwhetherscienceisaccessibletopeople“like them”and(b)theirbeliefsaboutwhetherscienceisinterestingorimportant.Thestudy drewontwocentraldatasources:astudentsurveyadministeredtoallstudents( n=50) andsemistructuredinterviewswithcasestudystudents( n=3).Inaddition,Itriangulated thesurveyandinterviewdatawithdatafromfieldnotes(Emerson,Fretz&Shaw,2011) andvideorecordedscienceclassroomobservations(102classes,113hours,recordedon

29days).Usingsurveydata,Ifirstexaminedoverallpatternsinthestudents’beliefs aboutthetwodimensionsrelatedtoscienceidentitydevelopment.Ithenusedsurvey,

116 interview,andobservationaldatafromthreecontrastingcasestudystudentstoexplore students’constructionsofscienceidentityinmoredepth.Overallsurveyresultsindicated thatmanyLyonAcademystudentshadstrongpositivebeliefsabouthowinteresting scienceis,butweremoreambivalentabouthowaccessibleitistopeoplelikethem.

Moreover,comparisonsacrossthecasestudystudentsindicatedthatinspiteofattending scienceclassestaughtbythesameteacherandusingthesamecurriculum,therewere strikingdifferencesinwhetherthestudentsdescribeddoingscienceasanactiveor passiveprocess.Finally,whileallcasestudystudentsindicatedthatattributesthatanyone candevelopdeterminewhobecomesascientist,twoofthesestudentsalsodrewon limitedandnoninclusivepopularimageswhentheydescribeanimaginedscientist.

117

Introduction

Educatorsareincreasinglyaskedtofosterscienceliteracyin all adolescents, preparingacitizenryreadytoengageinmeaningfulwayswiththescientificand technologicalquestionsthatconfrontusineverydaylife,fromglobalwarmingtostem cellresearch.Suchcallsoftenfocusonmeetingtheneedsoffemalesandothergroups traditionallyunderrepresentedinscienceprofessions.Whilefemaleshavemade noteworthygainsinscienceparticipationandachievementoverthelast50years,they remainunderrepresentedinalmostallscienceandengineeringfieldsandveryfew womenreachtheupperlevelsoftheseprofessions(Hill,Corbett,&St.Rose,2010).

Reasonsforthisunderrepresentationarecomplex,butevidenceimplicatesbroadsocial andenvironmentalfactorsbeyondjustaccesstosciencecoursesandscienceachievement insecondaryschools(Hill,Corbett,&St.Rose,2010).Forexample,researchhas demonstratedthatevengirlswhoachieveataverageorhighlevelsinscienceclassesmay viewscienceasirrelevanttotheireverydaylivesand/ortheirfuturegoalsforthemselves andthusbeunlikelytopursuesciencecourseworkbeyondwhatiscompulsory

(Brickhouse,Lowery,&Schultz,2000;Carlone,2004;Carlone,HaunFrank,&Webb,

2011;Wong,2012).Forethnicminoritygirlsfromworkingclassbackgrounds,such beliefsmaybereinforcedbymultiplefactorsincludingnoninclusiveviewsofwho

scientistsare,limitedknowledgeoftherangeofsciencerelatedcareersthatexist,and

lowteacherexpectationsfortheirscienceachievement(ASPIRES,2013).Giventhese

findings,i tappearsthatscienceidentity—thatis,students’beliefsaboutwhoscientists are,whatitmeanstodoscience,andwhetherscienceisinterestingorrelevant—isan importantandoftenneglectedlensforunderstandingfemales’scienceliteracyoutcomes

118 andthepersistentunderrepresentationofwomen,andespeciallywomenofcolor,in scienceprofessions.

InthisarticleIpresentdatacollectedoverthecourseof7monthsaspartofa largerembeddedmultiplecasestudy(Yin,2009)offourclassroomsandtwelvefocal students(threeperclassroom)attheMaryLyonAcademyforGirls(LyonAcademy).

TheLyonAcademyisasmallallfemalemiddleschoolservingprimarilystudentsof colorandstudentsfromworkingclassbackgrounds.Iselecteditasthesiteofthelarger studyfortworeasons.First,whilemanyproposalstoaddressthegendergapinscience callforsinglegenderscienceclassrooms,thereisverylittleempiricalworkinvestigating suchsettings.Second,theLyonAcademyprimarilyservesstudentswhosevoicesare oftenabsentfromstudiesofsciencelearning,andwhoaregenerallyunderrepresentedin thefieldofscience,namelyfemalesofcolorfromworkingclassbackgrounds.

Thedesignofthelargerstudyallowedmetoaskquestionsandmakecomparisons atboththeclassroomandthestudentleveltoshedlightonthelocalparticularsofscience literacyinstructionandscienceidentitydevelopmentamongadolescentgirlsinasingle gendercontextdesignedtoenhancetheirlearning.Relevanttothepresentarticle,inthe largerstudy,IdocumentedhowMs.Marsh,thescienceteacher,usedlanguageand instructionalpracticesthatcreatedanexpandedandmoreinclusiveviewofscienceand scientistsrelativetomanypopularconceptions.Forexample,asIdescribedindetailin

Chapter3,sheusedlanguagethatpositionedherstudentsasscientists,gavethemaccess tovalues,activities,tools,andlanguagethatsheindicatedwerecentraltodoingscience, andbuiltbridgesforthemtoseetherelevanceofsciencebeyondtheschoolcurricula.

However,individualstudentsarealwaysfreetotakeuporrejecttheidentitiesmade

119 availabletothemthroughtheirvariousexperienceswithschool,family,peers,and popularculture.Thus,inthisstudyIusedstudentleveldatatoexploretheattitudes

towardscienceandconstructionsofscienceidentityamongthestudentsattheLyon

Academy.Whileidentityisacomplexandmultifacetedconstruct,forthepurposesof

thisarticle,Ifocusedontwomajordimensionsrelatedtostudents’scienceidentity

development: believing that science is accessible to people “like me” and believing that science is interesting and/or important. Usingsurveydatacollectedfromallstudents,I

firstexaminedoverallpatternsinthestudents’scienceattitudes.Ithenusedsurvey,

interview,andobservationaldatafromthreecontrastingcasestudystudentstopresentan

indepthexplorationofthesestudents’beliefsaboutwhatitmeansto“do”science,

whetherscienceisrelevanttotheirlivesbeyondschool,andthetypeofpersonwho becomesascientist.

TheoreticalandEmpiricalPerspectivesonScienceIdentity

WhatisScienceIdentity?

Thereisagrowingbodyofempiricalresearchfocusedonscienceidentity,and

especiallyitsinterplaywithotherdimensionsofidentitysuchasgender,socialclass,

race,andethnicity(e.g.,Archeretal.,2010;Archeretal.,2012;Carlone,HaunFrank&

Webb,2011;Carlone&Johnson,2007;Carlone,Scott&Lowder,2014;Wong,2012).

Muchofthisworkdrawsonaflexibleanddynamicconceptionofidentity,suchasGee’s

(2001)definitionofidentityas“beingrecognizedasacertain‘kindofperson,’inagiven

context”(p.99).Expandingonthisdefinition,everypersontakesonmultipleidentities

andtheseidentities“canchangefrommomenttomomentintheinteraction,canchange

fromcontexttocontext,and,ofcourse,canbeambiguousorunstable”(Gee,2001,p.

120

99).Inapplyingsuchabroadandfluiddefinitionofidentity,researchersmustmake manychoicesaboutwhatcountsasscienceidentityandtheconstructremains“slippery anddifficulttooperationalize inawaythatprovidessolidmethodologicalandanalytic

direction”(Carlone&Johnson,2007,p.1189).

Priorresearchhasfocusedonseveraldimensionsofscienceidentity.First, drawingontheoryandethnographicinterviewswithfemaleundergraduatestudentsof colorstudyingscience,CarloneandJohnson(2007)createdamodelofscienceidentity consistingofthreeinterrelateddimensions:competence,performance,andrecognition.

Toillustratethesedimensions,theydescribedaprototypicalwomanwhohasastrong scienceidentity:

Sheiscompetent;shedemonstratesmeaningfulknowledgeandunderstandingof

sciencecontentandismotivatedtounderstandtheworldscientifically.Shealso

hastherequisiteskillstoperformforothershercompetencewithscientific

practices(e.g.,usesofscientifictools,fluencywithallformsofscientifictalkand

waysofacting,andinteractinginvariousformalandinformalscientificsettings).

Further,sherecognizesherself,andgetsrecognizedbyothers,asa‘‘science

person’’(Carlone&Johnson,2007,p.1190).

AlthoughCarloneandJohnson(2007)affirmedtheimportanceofallthree dimensions,theiranalysishighlightedthekeyroleofrecognitionintheformationof strongscienceidentitiesamongwomenofcolor.Specifically,theyfoundthatmembersof traditionallyunderrepresentedgroupswhodonotfitinwithhistoricalandprototypical conceptionsofscientistscanexperiencedifficultyachievingrecognitionas“science people”fromestablishedmembersofthescientificcommunity.Moreover,theyfound

121 thatthelackofrecognitionbyotherscanhinderscienceidentitydevelopmentand discouragepreviouslysuccessfulwomenofcolorfromcontinuingtopursuescience careers.

ResearchconductedinK12settingsconfirmsthatrecognition(byothersand self)isakeydimensionrelevanttoscienceidentityformation,whilefurtherreinforcing theideathatsuchrecognitioncanbecomplicatedbyinteractionswithracial,ethnic,and genderidentities( Carlone,HaunFrank&Webb,2011;Carlone,Scott&Lowder,2014;

Wong,2012 ). Specifically,whetherornotstudentsviewscienceasbeingforpeople“like them”appearstobeanimportantfactorthatinfluencestheirscienceidentitydevelopment andcareeraspirations(Archeretal.,2012;Archeretal.,2013;Wong,2012).Suchbeliefs arelikelyinfluencedinpartbypopularimagesofwhoscientistsareandwhattheydo.In fact,studieswithyoungpeoplespanningthreedecadeshavedemonstratedthatthe enduringprototypicalimageofascientistremainsalonewhitemalewithalabcoat, glasses,andfacialhair,holdinglaboratoryequipment(Author,Chapter3;Barman,1997;

Chambers,1983;Reveles,2009).Inaddition,morerecentresearchhasrevealedtheways inwhichculturaldiscoursesaroundscience(e.g.,scienceasmasculine)canrender aspirationsforcareersinscience“unthinkable”formanyyoungwomen,especiallythose fromworkingclassorethnicminoritybackgrounds(Archeretal.,2013;Wong,2012).

Thuslackofcongruencebetweensuchpopularimagesanddiscoursesandadolescents’ beliefsaboutthemselvesmaylimittheirabilitytorecognizeadvancedscience courseworkandcareersasviableoptionsforpeople“likethem.”

Motivationalfactors,suchasbelievingthatscienceisinteresting,important,or relevanttofuturecareerplans,alsoappeartoinfluenceadolescents’scienceidentity

122 development(Archeretal.,2012;Archeretal.,2013; Archeretal.,2010 ).Suchbeliefs canhelpmotivatestudentstodevelopcompetenceinsciencespecificwaysofreasoning andcommunicating,whichcandiffermarkedlyfromeverydayreasoningandlanguage

(Gee,2004).Liketheearlierdiscusseddimension,students’interestinscienceand beliefsaboutitsimportancecansufferwhenpopulardiscoursesaboutscienceand scientistsrepresentlimitedandnoninclusiveviews(Archeretal.,2012;Archeretal.,

2013).

Therefore,drawingontheaforementionedresearch, Ifocusedontwomajor dimensionsrelatedtostudents’scienceidentitydevelopmentinordertooperationalizeit forthepurposesofthisarticle.Thefirstdimension, believing that science is accessible to people “like me ,”buildsonpreviousresearchontheimportanceofrecognitionofselfas ascienceperson.Theseconddimension, believing that science is interesting or important ,buildsonpreviousresearchontheimportanceofmotivation.

WhatisknownaboutAdolescents,theirAttitudestowardScience,andScience

IdentityDevelopment?

Recently,ProjectASPIRES,basedatKing’sCollegeLondon,conductedamulti yearmixedmethodsinvestigationofscienceattitudesandcareeraspirationsamonga nationallyrepresentativesampleof1014yearoldsacrossEngland.Intotal,thisproject collecteddatavia19,000studentsurveysadministeredatthreetimeperiodsandrepeated longitudinalinterviewswithasubsampleof83studentsand65oftheirparents

(ASPIRES,2013).Resultsindicatedthatstudentsgenerallyhadpositiveviewsofschool scienceandscientists,butveryfewwereinterestedinscienceasacareer.Moreover,the

123 vastmajorityofsurveyedstudentsagreedthatscientistsare“brainy”andthisimage seemedtoplayaroleinconvincingmanythatscienceisnotforpeoplelikethem.

Inadditiontotheseoveralltrends,differenceswereobservedfromayoungage acrossstudentsofdifferentgenders,ethnicities,andeconomicbackgrounds.Forexample, thestudentswhoweremostlikelytoexpressinterestinsciencecareerswereAsian males,whowerefromfamilieswithhighlevelsofculturalcapital,hadbeentrackedinto thehighestabilitygroupinscience,andhadafamilymemberworkinginaSTEMrelated job.Incontrast,thestudentsleastlikelytoexpressinterestinsciencecareerswereWhite females,whowerefromfamilieswithlowlevelsofculturalcapital,hadbeentrackedinto thelowestabilitygroupinscience,anddidnothaveanyfamilymemberswithSTEM relatedjobs.Moreover,femaleswhodefinedthemselvesas“girly”wereparticularly unlikelytoexpressinterestinaSTEMrelatedcareer,whichdidnotappeartobe compatiblewiththeirconstructionsoffemininity(ASPIRES,2013;Archeretal,2013).

Thisperceivedlackofcongruenceappearedtobeparticularlysalientamonggirlsfrom workingclassfamilies(ASPIRES,2013;Archeretal,2013).

Whatshapesstudents’scienceidentity? Studentsdrawfrommanysourcesin constructing(orrejecting)scienceidentities.Studiesattendingtoclassroomlanguage havedemonstratedhowscienceteachers’language—andtheiruseofpersonalpronouns inparticular—canpositiontheirstudentsasmembersofscientificcommunities(Moje,

1995;Author,Chapter3).Forexample,Moje(1995)describedahighschoolchemistry teacherwhorespondedtoherstudent’sstatementthat“actualyield”mightbe“whatthe chemistsget”bysaying,“Yes.It’swhat you get.You’reachemist,too.You’llgetan actualyieldinthelab”(Moje,1995,p.364).However,notallmessagesaboutwhat

124 scienceisandwhoitisforarethisexplicitinnature.Otherstudieshaverevealedhow schoolscienceisoftentaughtinwaysthatindicatethatitisonlymeantforthe

“superintelligentelite”(Lemke,1990,p.160),favortheparticipationofmalestudents overfemale(Forareviewofthisresearch,seeGuzzetti,2004),orcreatedisaffiliation withbeinga“scienceperson”amongcertainstudents,especiallygirlsandstudentsfrom someethnicminorities( Carlone,HaunFrank,&Webb,2011; Carlone,Scott,&Lowder,

2014).

Factorsbeyondschoolalsoplayaroleinshapingstudents’scienceidentity.

Adolescents’familymembersandculturaldiscoursesalsoaffecttheirviewsofwho

scientistsare,whattheydo,andwhetherscienceisforpeoplelikethem.Forexample,

ProjectASPIREShighlightedtheimportanceof“sciencecapital,”definedasafamily’s

“sciencerelatedqualifications,understanding,knowledge(aboutscienceand‘howit

works’),interestandsocialcontacts(e.g.knowingsomeonewhoworksinascience

relatedjob)”(ASPIRES,2013,p.3).Suchsciencecapitaltendsbeunevenlydistributed

suchthatitismoreavailableamongstudentsfrommiddleclassfamiliesthanstudents

fromworkingclassfamilies(ASPIRES,2013).Inaddition,asnotedearlier,popular

imagesanddiscoursesaroundscienceandscientistsalsoshapetheyoungpeople’sviews

(ASPIRES,2013;Archeretal,2013;Wong,2012).

WhatistheRelationshipbetweenScienceIdentityandScienceKnowledge?

Thereislimitedresearchexploringtherelationshipbetweenstudents’science

knowledgeandtheirscienceidentities.However,researchdrawingfromthe

anthropologicalandsociologicaltraditionssuggeststhatscienceidentityandscience

knowledgeshouldbeviewedasrelatedbutdistinctconstructs(Brickhouse,Lowery,&

125

Schultz,2000;Carlone,2004;Carlone,HaunFrank,&Webb,2011; Kanter&

Konstantopoulos,2010;Wong,2012).Inparticular,thisresearchindicatesthatstudents

whodemonstrateknowledgeinschoolscienceclassesdonotalwaysviewscienceas

relevanttotheirlivesorbeingforpeoplelikethem.Furthermore,evidencefrom

interventionworkindicatesthatstudentscangainscienceknowledgewithoutbuilding

strongerscienceidentities.Specifically,KanterandKonstantopoulos(2010)foundthat

implementingaprojectbasedsciencecurriculuminurbanschoolsincreasedthescience

achievementofmiddlegradersfromethnicallyandraciallyunderrepresentedgroups,but

didnotimprovetheirattitudestowardscienceorincreasetheirplanstopursuescience.

Whilemoreresearchisneeded,itisplausiblethathelpinggirls,andespeciallygirlsof

color,tostrengthenboththeirscienceknowledge and theirscienceidentitiesisnecessary

toimpactlongertermoutcomessuchastakingcollegesciencecoursesorchoosinga

sciencerelatedprofession.Allgirlsschools,whicheliminatethemaledominated participationpatternsfoundinmanycoeducationalscienceclassrooms(Guzzetti,2004),

mightprovideafavorableenvironmentforundertakingsuchwork.

Asthisbriefreviewillustrates,thereisagrowingbodyofresearchdemonstrating

thatscienceidentityisanimportantfactorinexplainingscienceengagementand

achievementamongadolescents.However,thereareseveralimportantareasinneedof

investigation.First,littleisknownabouthowadolescentsindifferentclassroomcontexts

aresocializedintodifferentwaysofconstructingscienceidentities.Specifically,although

itisnotuncommonforproposalsdesignedtoaddresstheunderrepresentationofwomen

insciencetocallforsinglegenderscienceclassrooms,littleempiricalworkhasbeen

conductedinthesesettings.Tomyknowledge,nostudieshaveexaminedthescience

126 attitudesandconstructionsofscienceidentityamonggirlsattendingsuchaschoolwhere theteacherusedlanguageandinstructionalpracticesthatactivelyencouragedher studentstoviewthemselvesasscientistsandconstructamoreinclusiveviewofwho scientistsareandwhattheydo.Inaddition,thereisarelativelackofempiricalworkthat hasattemptedtosystematicallyexaminemultipledimensionsrelatedtoscienceidentity usingbothquantitativeandqualitativemeasures.Asafirststepinaddressingthese unansweredquestions,Ireporthereontheresultsofa7monthstudyofstudents’science identityconductedinonesmallallfemaleschoolservingethnicallyandlinguistically diversestudents,primarilyfromworkingclasshomes.

StudyDesignandMethods

Asnotedpreviously,thedataIanalyzedforthisarticleweredrawnfromalarger studyofscienceliteracyattheLyonAcademy.Theoverallstudyemployedamultiple caseembeddedstudydesign(Yin,2009),whichallowedcrosscasecomparisonsatthe classroomandstudentlevels.Theembeddeddesignwaschosenbecausemyoverall researchgoalsinvolvedtwounitsofanalysis:theclassroomandtheindividualstudent.

However,inthisarticleIfocusonstudentleveldatatoexploretheLyonAcademy students’attitudestowardscienceandconstructionsofscienceidentity.

SchoolandClassroomContext

ThestudywasconductedinMs.Marsh’sfourscienceclasses(grades58)atthe

LyonAcademy,locatedinamidsizecityinNewEngland.AccordingtoUScensusdata, in2010approximately38%ofthecitypopulationwasLatinowithasimilarpercentage ofnonLatinoWhiteresidents.ThecitywasalsohometosmallernumbersofBlack,

Asian,AmericanIndian/AlaskaNative,andMultiRacialresidents.Almosthalfof

127 residentsovertheageof5camefromahomewherealanguageotherthanEnglishwas spoken.Additionally,approximately28%ofresidentswerelivingbelowthepoverty level.

TheLyonAcademywasfoundedin2000toserveadolescentfemales,primarily fromthecity’sworkingclasshouseholds.Theschool’spurposewastooffergirlsfacing economichardshipan“empoweringeducationalprogram”focusedontheirintellectual andemotionalgrowth.Atthetimeofdatacollection,theschoolhadatotalenrollmentof

55studentsingrades5through8,mostofwhom(94%)camefromfamilieseligiblefor freeorreducedpricelunch.Mirroringcitydemographics,roughlyhalfofLyonAcademy studentscamefromahomewherealanguageotherthanEnglishwasspoken.However,

Latina(62%)andBlack(26%)studentsweremoreheavilyrepresentedattheschoolthan intheoverallpopulationofthecity.Theremainingstudentswereidentifiedasmulti racial(8%),Asian(2%)andWhite(2%).Despitethesedemographics,atthetimeofdata collection,studentsattheLyonAcademyhadoutscoredtheircitywidepeersontheNew

EnglandCommonAssessmentProgram(NECAP)testforseveralyears.Additionally, over90%ofLyonAcademyalumnaecontinuedontograduatefromhighschoolfour yearsafterleaving,andcloseto100%didsowithinfiveyears.

BecauseoftheLyonAcademy’slimitedenrollment,therewasonlyoneteacher foreachcontentarea.Forthisreason,theschoolusedatwoyear(A/B)science curriculumcycle.ThecontenttaughtchangedbetweenAandByears,buteachyear’s5th and6thgradecohortslearnedthesamecontent.Similarly,the7thand8thgradecohorts sharedsciencecontent.Duringthedatacollectionyear,5thand6thgradestudents studiedLifeSciencewithunitsonEnvironments,Microworlds,andLandandWater.The

128

7thand8thgradestudentsstudiedanEarthScienceunitonWeatherandWaterandaLife

ScienceUnitonPopulationsandEcosystems.Scienceinstructionofteninvolvedhands onactivities,althoughmoretraditionalactivitiessuchasreadingfromtextbooksand takingnotesalsooccurredintheLyonAcademyclassrooms.Asnotedearlier,during instructionMs.Marshpositionedherstudentsasworkingscientistsandencouragedthem toseetherelevanceofsciencetotheirlivesbeyondthecurriculum.

Participants

Students. Iinvitedall55LyonAcademystudentsingrades58toparticipatein

theclassroomobservationandsurveyportionsofthestudy.Fiftystudentsconsentedto participate.Inaddition,Iinterviewedasubsampleof12students(threefromeachgrade).

Iselectedthesestudentstorepresentarangeofteacheridentifiedscienceachievement

levelsateachgrade.Inthisarticle,Ipresentdatafromthreecasestudystudentsselected

fromthesubsampleof12.Thesethreestudentsare(a)Effie,ahighachieving,Black6th

grader,whowasborninCameroonandspeaksmainlyEnglishandsomeFrenchathome

(b)Mandy,ahighachieving,USborn,MultiRacial5thgrader,whospeaksonlyEnglish

athome,and(c)Gloria,alowachieving,USborn,Latina6thgraderwhospeaksSpanish

andEnglishathome.Iselectedthesestudentsbecausetheyrepresentthevariationinthe

sampleinLyonAcademystudents’attitudestowardscienceandconstructionsofscience

identity.InTable1,Isummarizeselectdemographic,scienceattitude,andcareer

aspirationdataforthesethreestudents.

Teacher. Ms.Marsh,thescienceteacherattheLyonAcademy,isaWhitefemale

withaMasterofArtsinTeachingdegreefromaneliteprivateuniversity.Atthetimeof

129 datacollection,shewas31yearsoldandinher5thyearteachingandher4thyearatthe

LyonAcademy.

DataCollectionMethodsandProcedures

Icollectedthedataforthisstudyovera7monthperiod(OctoberthroughApril) duringasingleacademicyear.Thecentraldatasourcesforthisarticlewere(a)astudent surveyadministeredtoallparticipatingLyonAcademystudentsand(b)interviewswith threecasestudystudents.Idescribebothofthesedatasourcesinmoredetailbelow.In addition,Itriangulatedthesurveyandinterviewdatawithdatafromfieldnotes(Emerson,

Fretz&Shaw,2011)andvideorecordedclassroomobservations(102classes,113hours, recordedon29days).

Surveys.InJanuaryofthedatacollectionyear,allparticipatingstudents

completedapencilandpaperresearcherdesignedsurveyduringasinglescienceclass period.Theoverallsurveyconsistedof45itemsdesignedtodocumentstudents’attitudes

towardscience,andbeliefsaboutconstructingknowledgeinscienceandreadingand

writinginscience.Theanalysespresentedinthispaperfocusontensurveyitemsfrom

theattitudestowardscienceportionofthesurvey.Fiveoftheseitemsaskedabout

students’beliefsaboutthe accessibility of science to “people like them” (e.g.,Howoften

arepeoplelikeyouwhowanttobescientistsabletobecomescientists?).Anotherfive

itemsaskedaboutstudents’ interest in science and beliefs about its importance (e.g.,

Howhelpfulislearningsciencetomeetingyourgoalsforyourself?) 5.Allresponseswere

5Idesignedthissurveytoreflecttwounderlyingsubstantivedimensions:(a.)students’beliefsaboutthe accessibilityofsciencetopeople“likethem”and(b.)students’interestinscienceandbeliefsaboutits importance.Thesedimensionshavenotbeenempiricallyvalidated.Iconsideredusingexploratoryfactor analysisasadatareductiontechniqueandsourceofvalidationfortheseconstructs.However,suchanalysis isproblematicbecauseofthelowratioofobservationstovariablesinmydataandtheexistingevidence thatexploratoryfactoranalysisisnotsufficientlysensitivefordeterminingdimensionality(Koretz,

130 recordedona5pointLikerttypescale.Followingbestpracticesinsurveydesign, responsescaleanchorsmirroredtheconstructspecificlanguageinthequestions

(Dillman,Smyth,&Christian,2009).

SemiStructured Interviews.InAprilofthedatacollectionyear,Iconducted

semistructuredinterviewswithasubsampleof12focalstudents.Interviewswere

conductedoneononeinanemptyofficeorclassroomandrangedinlengthfrom18to

37minutes.Theinterviewprotocolincludedquestionsaboutstudents’futurecareerplans

andarangeoftopicsrelatedtoscienceliteracy.Theanalysespresentedinthispaper

focusonthequestionsmostrelevanttounderstandingthestudents’constructionsof

scienceidentity.Thusmyanalysesconcentrateontheportionsoftheinterviewwhere

studentstalkedabout(a)theirattitudestowardscience,includingwhethertheylikeitand

whethertheyeverusethingstheylearninscienceclassoutsideofschool,(b)a

descriptionofanimaginedscientistatwork,(c)whattypesofpeopleusuallybecome

scientists,and(d)animageofthemselvesinscienceclass.

ResearcherStance

ThroughoutmyinteractionswithLyonAcademystudents,Itriedtopresent

myselfasacuriousadultfriend,ratherthanateacher.Atthebeginningofdatacollection,

IexplicitlytoldstudentsthatIbelievedthattheywerethebestexpertsontheirown

learningandthatIwantedtolearnfromwatchingthemandlisteningtowhattheyhadto

say.Iwishedtobeseenasaregularnonjudgmentalpresenceintheclassroom.Therefore,

Ididnotinstructstudents,nordidIdisciplinethemfortheminorinfractionsinschool

rulesthatIobserved(e.g.,voicestooloudwhenteachersteppedoutoftheroom).Asa

personalcommunication).Theunderlyingstructureofsurveyshouldbeexaminedatalaterdatewitha largerstudentsample.

131 markofmydistinctstatus,thestudentscalledmebymyfirstname,“Beth,”ratherthan

“MissFaller,”whichwashowtheyaddressedtheirteachers.Duringclassroom observations,studentsappearedtobecomfortablejokingandengaginginnonacademic talkwithpeerswhileIwasaround.Likewise,duringinterviewsstudentsappearedtobe comfortabletellingmethingstheydidn’tlikeaboutscienceclass.

DataAnalysis

IusedquantitativeandqualitativeanalysistechniquestoexploreLyonAcademy students’attitudestowardscienceandconstructionsofscienceidentity.First,Icalculated descriptivestatisticsforthesurveydata.Sincethesurveyisnotonanintervalscale,I determinedthemedianandinterquartilerange(IQR),measuresofcentraltendencyand dispersionrespectively,foreachitem. Next,afterdatacollectionwascomplete,I transcribedthefullstudentinterviewsandcodedthemusinganinductiveopencoding approach(Charmaz,2006;Maxwell,2005;Corbin&Strauss,2008)inAtlas.tiqualitative analysissoftware.Theinterviewspresentedinthisarticlewereinitiallycodedaspartofa largerstudythatexaminedMs.Marsh’slanguageandinstructionalpracticesandpatterns intheconstructionofscienceidentityamongall12interviewedstudents(SeeChapter3).

TheinitialcodingIusedforChapter3focusedonstudentperspectiveson(a)who scientistsareandwhattheydo,and(b)whetherscienceisusefulorrelevanttotheirlives.

However,duringthisanalysis,itbecamecleartomethateachoftheinterviewedstudents hadauniqueperspectivethatwasnotfullycapturedwithinthiscodingscheme.While codingbroadpatternsacrossall12interviewsallowedmetoanswermyinitialresearch questions,itdidnotallowforanindepthanalysisofindividualstudents’experiences, attitudes,andconstructionsofscienceidentity.ThusIselectedthreecasestudystudents

132 whopresentedcontrastingperspectivesfortheindepthanalysisthatIpresentinthis article.

Tounderstandtheuniqueperspectivesofeachcasestudystudent,Ireturnedtothe fullinterviewsforthethreestudentsandrereadeachasawhole.Ithencraftednarrative profiles(Seidman,1998)foreachstudentinordertocompareandcontrastexperiences, attitudes,andimagesofscientistsacrossthethreestudents.Fortheprofiles,Iusedthe studentsownwordswheneverpossible.Iusedtheseprofilesasastartingpointfor examiningeachcasestudystudent’sperspectiveandidentifyingemergentthemes.For example,thethemeof doing science as active vs. passive emergedatthispoint.Ithen revisitedthefulltranscriptsforthecasestudystudentstoreviewandrefinetheemergent themes.Itriangulatedinterviewdataforthethreecasestudystudentswiththeir individualsurveyresponsesandobservationaldata.Throughoutdataanalysis,Iengaged inaprocessofwritinganalyticmemos,buildingtheories,andreturningtothedatato verify,reject,andrefinethesetheories.

Findings

Inthefollowingsections,Ifirstreportonmyanalysisofsurveydatafromall

LyonAcademystudents.Ithenusethisoverallanalysisasabackdropfordiscussingthe attitudesandexperiencesofthreecasestudystudents,Effie,Mandy,andGloria.These casestudiesallowmetoexplorethreestudents’attitudestowardscienceandscience identityconstructionsindepthandhelptoexplainsomeoftheoverallsurveyfindings.

Takenasawhole,theseanalysesillustratethedifferencesinattitudestowardscienceand constructionsofscienceidentityfoundevenamongstudentsinthesamesupportiveall girlseducationalcontext.

133

OverallScienceAttitudesSurveyResults

Accessibilityofscience. Inspiteofasupportiveclassroomenvironmentwhere theirteacherencouragedthemtoviewthemselvesasscientists,manyLyonAcademy studentsreportedreservationsaboutwhethertheprofessionofsciencewasopentopeople

“likethem”(Table2).Forexample,thetypicalLyonAcademystudentreportedthatitis only somewhat easy forpeoplelikehertobecomescientists( Mdn= 3, IQR= 23)andthat peoplelikeherwhowanttobescientistsareonlysometimes able tobecomescientists

(Mdn= 3, IQR= 23).Moreover,thetypicalLyonAcademystudentindicatedthatscience is very difficult ( Mdn= 4, IQR= 44)andthatthingsshecannotcontrolgetinthewayof herunderstandingscience most of the time ( Mdn= 4, IQR= 34).Surprisingly,giventhese results,mostLyonAcademystudentsreportedthatyouonlyhavetobe a little smart

(N= 17,34%)or about as smart as most people ( N= 21,42%)tobeascientist( Mdn= 2,

IQR= 23).

Interestinandimportanceofscience.Incontrasttotheirsomewhatambivalent viewsabouttheaccessibilityofscience,manyLyonAcademystudentsreportedahigh levelofinterestinscience(Table2).Forexample,thetypicalstudentindicatedthatshe thinksscienceis very interesting ( Mdn= 4, IQR= 34)and very useful ( Mdn= 4, IQR= 34).

However,responsesweremoredividedwhenthestudentsreportedontheimportanceof scienceforspecificsituationsandgoals.Forexample,thetypicalstudentreportedthat learningsciencewasonly somewhat important forherfuture( Mdn= 3, IQR= 34).

Moreover,therewaslittleconsensuswithregardtotheapplicabilityofsciencebeyond school.ManyoftheLyonAcademystudents( N= 16,32%)reportedthatlearningscience was very or extremely helpful formeetingtheirfuturegoalsforthemselves,whilea

134 similarnumber( N=14,28%)indicatedthatitwas a little helpful or not helpful at all

(Mdn= 3, IQR= 24).Similarlymanyofthestudents( N=17,34%)saidthattheyusethings

theylearninscienceclassoutsideofschool most of the time or almost all the time ,while

aslightlygreaternumber( N=23,46%)indicatedtheydidthis once in a while or never

(Mdn= 3, IQR= 24).

ThreeCaseStudies:Effie,Mandy,andGloria

TheoverallanalysesofsurveydatafromallLyonAcademystudentsrevealedan

intriguingpattern,ageneralconsensusthatscienceisinteresting,coupledwithmore

ambivalenceaboutitsusefulnessforparticularsituationsanditsaccessibilitytopeople

“likethem.”Withtheseoverallanalysesasabackdrop,inthissectionIpresentanalyses

ofdatafromthreecontrastingcasestudystudents,Effie,Mandy,andGloria(SeeFigures

1and2foracomparisonofsurveyresultsforthesethreestudents.)Inthefollowing

sections,Ifirstprovideabriefintroductiontothethreestudentstosituatemyanalyses,

whichareorganizedaccordingtotwothemes:(a.)Whatisdoingscienceanddoesit

matteroutsideofschool?and(b.)Whodoesscience?

Introductiontothecasestudystudents.

Effie. SixthgraderEffie’sfamilyemigratedfromCameroonwhenshewas5

yearsold.Athome,herfamilyusuallyspokeEnglish,althoughtheyalsousedsome

French.EffiewasoneofmanyLyonAcademystudentswithotherfamilymemberswho

alsoattendedtheschool.Ms.MarshtaughtEffie’soldersisterafewyearspriortodata

collectionforthisstudy.Likehersister,Effiewasanenthusiasticsciencestudentwhom

Ms.Marshidentifiedasaboveaverageinachievement.Effiealsobelievedthatshewas

“goodatscience”andappearedtotakeprideinherscienceachievement,whichshe

135 describedbyreferringtoherownlearningaswellasexternalvalidationsofher knowledge.Forexample,whenIaskedherhowsheknewshewasgoodatscience,Effie said,“IcantellI’mgoodatsciencebecauseofthewayIunderstandthethingsthatMiss

MarshtalksaboutandhowIinteractwithother[living]things[duringexperiments]and mygrades.”AlthoughnewtotheLyonAcademyasa6thgrader,Effieseemedtofitin wellwithherpeersandtoenjoyscienceclass,whichshedescribedas“fun.”Duringmy classroomobservations,Effiefrequentlyaskedandansweredquestions,making connectionstoexperiencesfrombeyondtheLyonAcademysuchasascienceexperiment shehaddoneatapriorschool.Inhersurveyresponses,Effietendedtorespondina similarmannertoormorepositivelythanthemedianLyonAcademystudentfor questionsabouttheaccessibilityofscience,althoughshedidindicatethatitwasonly“a littleeasy”forpeoplelikehertobecomescientists.Sheconsistentlyrespondedina similarmannertoormorepositivelythanthetypicalLyonAcademystudentfor questionsrelatedtohowinterestingandusefullearningscienceis.

Mandy. FifthgraderMandywasbornintheUnitedStatesintoamultiethnic family,whichschoolrecordsclassifiedasBlackandWhite.Herfamilywasoneofthree

LyonAcademyfamiliesnoteligibleforfreeorreducedpricelunchandspokeonly

Englishathome.MandywasanenthusiasticsciencestudentwhomMs.Marshidentified asaboveaverageinachievement.Mandyagreedthatshewas“prettygood”atscience.

LikeEffie,shereferredtobothherownknowledgeandexternalvalidationinexplaining whyshethoughtshewasgoodatscience:“IusuallyknowstuffandIusuallygetpretty goodgradesonthetest.”Duringobservations,Mandyseemedtoenjoyparticipatingin handsonexperimentsinscienceclass,althoughshewouldoftendoodleinhernotebook

136 duringmoretraditionalactivitiessuchasnotetaking.ItwasnotuncommonforMs.

Marshtorepeatinstructionsorotherwisecheckinwithhertoseethatsheremainedon task.Still,MandywasaregularcontributorwhenMs.Marshaskedquestionsandwas quicktousenewlyintroducedtechnicalterms,suchas photosynthesis and optimum

condition .Inhersurveyresponses,Mandyconsistentlyrespondedinasimilarmannerto

ormorepositivelythanthemedianLyonAcademystudentforquestionsaboutthe

accessibilityofscience.However,sheoftenrespondedmorenegativelythanthetypical

LyonAcademystudentforquestionsrelatedtohowinterestingandusefullearning

scienceis.

Gloria. GloriawasaLatina6thgraderwhowasbornintheUnitedStates.Her

familyspokebothSpanishandEnglishathome.Gloriadidnotlabelherselfassomeone

whoisgoodatscienceandMs.Marshdescribedherasbelowaverageinscience

achievement.Duringclassroomobservations,shesometimesparticipatedbyanswering

Ms.Marsh’squestions,manipulatingtools,anddiscussingworkwithotherstudents,but

atothertimes,shesighed,satquietlyorputherheaddownonthetable. Ingeneral,her

surveyresponsesrelatedtobothaccessibilityandinterestwerelesspositivethanthe

typicalLyonAcademystudent.

Whatisdoingscienceanddoesitmatteroutsideofschool?Ms.Marsh’s

classroomprovidedanimportantsourcefortheLyonAcademystudentstodrawonin

developingtheirattitudestowardscience,includingtheirbeliefsaboutwhatconstitutes

doingscienceandwhetherscienceisrelevanttotheirlivesbeyondschool.Perhapsnot

surprisingly,eachcasestudystudent’sdiscussionofdoingsciencewasheavily

influencedbyherinterpretationoftheexperiencesshehadhadinMs.Marsh’s

137 classroom.Whatismoresurprisingisthatinspiteofattendingscienceclassestaughtby thesameteacherandusingthesamecurriculum,therewerestrikingdifferencesacross thestudentsinwhethertheirdescriptionsindicatedthatdoingsciencewasanactiveor passiveprocessandhowtheydescribedreactingwhentheydidnotimmediately understandsomethinginscience.

Effie: Science as putting it all together and figuring it out. Effie’sdiscussion wasnotableforitsdepictionofdoingscience,atleastasenactedinMs.Marsh’s classroom,asaremarkablyactiveprocess.Shepresentedavisionofsciencethatrequired bothhandsonphysicalactivityandmentalactivity.Liketheothercasestudystudents, whenIaskedEffieifshelikedscience,shefocusedonherclassroomexperiences:

Beth: Doyoulikescience?

Effie: Yeah.

Beth: OK.Whydoyoulikeit?

Effie: Ilikeitbecauseit’sfunandIgettolearnnewthingseveryday

andIlikehowMissMarshteachesitbecauseshemakesuslike,if

wedon’tunderstandit,she’lltrytoanswerit,buttrytomakeus

answeritinsteadofherhavingtoanswerit‘causesheknowsthat

weknowthelittledetailstofigureitout.Soshe’sgonnatryto

makeusputitalltogetherandfigureitoutonourown.

Beth: Andsoyoulikethatbetterthanifshejusttoldyou?

Effie: Yeah,becauseifshejusttoldme,thenIhaven’treallylearned

anything.IjustgotinformationthatIdon’tunderstand.

Beth: OK.Andyousaiditwasfun.What’sfunaboutit?

138

Effie: It’sfunhowwehavehandsonthingsandwegettoplaywithnew

equipmentanddifferenttypesoforganisms.

Asillustratedbythisexchange,Effielinkedherlikingofsciencewiththechallengeit posed.Whilesheindicatedthatstudentsdonotalwaysimmediately“understand”things

inscience,theycanarriveatunderstandingthroughengaginginaprocessinvolvingboth physicalactivity(“handson,”“playwithnewequipment”)andmentalactivity(“putitall

togetherandfigureitout”).Inaddition,EffieclaimedthatMs.Marshencouragedher

studentstoactivelyparticipateinconstructingnewknowledge.Thatis,bypositioningher

studentsascompetentandcapableofdoingscience(“sheknowsthatweknowthelittle

details”),MsMarshallowedherstudentstorisetotheoccasion,figuringthingsout“on

ourown”andarrivingatadeeperunderstanding.Effiecontraststhisactivevisionof

scienceas“figuringout”withavisionofscience(oratleastschoolscience)aspassively

receivinginformation.Inthepassiveinformationreceivingscenariotheredoesnot

appeartobeawayforstudentstoconstructnewknowledgefromthefactstheyaretoldif

theydonotimmediatelyunderstand(“IjustgotinformationthatIdon’tunderstand.”)

Effie’sactivevisionofscience,whichemphasized“figuringthingsout”and

“understanding,”alsoledhertoendorsecollaboratingwithotherpeoplerepresenting

multipleperspectives,somethingshesaidshedidinMs.Marsh’sclassroom:

Beth: Anddoyouthinkthat’simportant,toworkwithsomeoneelse,to

science,ornotreally?

Effie: Ithinkitis,becauseifyouhaveoneperspective,thenyouwon’t

reallylookateverything.You’lllookatonething.Butifyouhave

139

morethanonepairofeyesonit,thenyouhavemorepeople

understandingitandmorepeopleseeingthingsthatyoudon’tsee.

Inthepreviousquotation,itisnotablethatEffieconnectscollaborationandthe availabilityofmultipleperspectiveswithdevelopingdeeperunderstandinginscience.

EffieclearlyendorsedtheactivevisionofdoingsciencesheassociatedwithMs.

Marsh’sclassrooms,butherinterestinsciencewasnotconfinedtotheclassroom.She alsotalkedabouthowwhatshelearnedinscienceclasscouldbereadilyappliedtoher moregeneralunderstandingoftheworldaroundher:

Beth: Anddoyoueverusethingsyoulearninscienceclassoutsideof

school?

Effie: Iusethe,becausenowinthisunitwe’relearningabout

microscopesandmicroorganisms,nowIgohomeandIthink

aboutwhatIcan’tseeandhowmuchdifferentthingsarearound

methatIcan’tseeandItrytofigurethemoutandstuff.

Asthisquotationillustrates,Effieindicatedthatsheapplieswhatshelearnsinthescience classroomtotrytobetterunderstandherworld.Notably,inmakingthisconnection,she againusedthephrase“figureout,”thistimeappliedtousingsomethingshelearnedinher scienceclassroomtounderstandtheworldbeyondtheclassroom.

Mandy: Science as doing cool stuff. Mandy’sdescriptiondepicteddoingscience assomethingthatrequiresalotof“fun”handsonphysicalactivity.However,itwasnot entirelyclearwhatshebelievedthepurposeofthehandsonactivitytobeandher descriptiondidnotalludetoengagingthemindaswellasthehands.LikeEffie,Mandy

140 drewonherexperiencesinMs.Marsh’sclassroominordertoanswerthequestionof whethershelikedscience:

Beth: Sodoyoulikescience?

Mandy: Yeah.Ilikescience.

Beth: OK.Whydoyoulikeit?

Mandy: Becausewegettodoalotofcoolstuffandlookatstuffunderthe

microscopes.

Beth: OK.Sowhatwouldbecoolaboutsomethingyou’dbedoing?

Likewhatmakesitcool?

Mandy: IfI’mlooking,likewewerelookingatthevinegarworm,vinegar

eelsandtheylookedreallycoolunderthemicroscopebecause

therewerealotofthemandtheywereallwigglingaround.

Asillustratedbytheabovequotation,Mandyexpressedapositiveorientationtoward science.However,thisenthusiasmwasmainlycenteredonhandsonactivities,suchas manipulatingequipment,andseeing“cool”thingsthatmight“surprise”or“interest”her.

Herfocusonthe“fun”handsonaspectsofsciencedidnotmakeitclearwhetherorhow engagedshewasinconnectingthesehandsonactivitiestoscientificwaysofreasoning orlargerconceptsinscience.

Consistentwiththisviewofscienceasdoingcoolhandsonactivities,Mandy indicatedthatcollaboratingwithotherpeoplewasperipheraltotheworkofscience.In discussingpartnerworkinMs.Marsh’sclassroom,Mandydescribedtwopeopledoing handsonactivitiesindependentlybutinparallelandthensharingtheirobservations:

141

Beth: Andareyouworkingwithanyoneelseoryouworkingby

yourself?

Mandy: MypartnerisalsolookingatamicroscopebutIdomyown

observations.

Beth: OK.

Mandy: Butmypartneristhere.They’relookingthroughtheir

microscope.

Beth: Andthenwouldyoueverdoanythingwithyourpartnerorwould

youmainlybejustdoingyourownthing?

Mandy: Sometimeswedothing,wedothingswithourpartneralot,but

whenwe’rejustlookingatstuff,wemostlyjustlookatthestuff

onourown.Thenwesharewithourpartner.

Beth: OK.Andisitimportanttoworkwithsomeoneelseinscience,or

notreally?

Mandy: Itcanbe.Itcanbeimportant.Mepersonally,sometimesIdon’t

reallylikeworkingwithpeople‘causethat’sjustthekindofwayI

am.

Beth: Ummhmm.

Mandy: ButsometimesIdolikeworkingwithpeople.

Beth: Soisthattrueofotherclassestoo?That’snotaboutscience?You

justtendtoliketoworkonyourown?

Mandy: Ummhmm.

142

Beth: Yeah.Andwhenyoudolikeworkingwithsomeoneelse,what

makesyoulikeit?

Mandy: Whatmakesmelikeitisthatyoucanhavefunwithanother

personandtheyhelpyouonstuff,andstuff.

Althoughherperceptionofgroupworkseemstobeatleastpartiallydrivenbyherstated personalpreferencetoworkalone(“that’sjustkindofthewayIam”),Mandydidnot indicatethatworkingwithothersiscentraltothedisciplineofscience.Infact,evenher descriptionofwhatmightbepositiveaspectsofworkingwithothersfocusedon tangentialbenefits(“youcanhavefunwithanotherperson”)ratherthananypotential benefitstolearningorknowledgeconstruction.

Mandy’sfocusonthenovelandsurprisingaspectsofdoinghandsonscience, suchasinterestingorganismsorapparatus,madeitdifficultforhertomakeaclear connectionbetweenscienceclassandherlifebeyondschool.Consistentwithhersurvey responses,sheindicatedlittlerelevanceofsciencetoherlifebeyondtheclassroom:

Beth: Anddoyoueverusethethingsyoulearninscienceclassoutside

ofschool?

Mandy: Notthatmuchbutsometimes.

Beth: OK.Whatwouldbeanexampleofwhenyoumightuseit?

Mandy: LikeifmycousinissayingsomethingorsomethingandthenI

correcthim.

Beth: Sohasthathappenedbefore?

Mandy: Yeah.

Beth: Yourcousinhadsaidsomethingandthenyoucorrectedhim?

143

Mandy: Ummhmm.

Beth: Doyourememberwhatyoucorrectedhimon?

Mandy: Uh,no.

Thus,whileMandyseemedtobelieveinherowncompetenceinscienceandtalkedabout

thehandsonactivitiesinclassas“fun,”“interesting,”and“cool,”focusingonthehands

onactivitiesgaveherlittleroomtomakeconnectionstothebroaderworld.Whendoing

scienceisconceivedofascompletingassignedhandsonactivitiesratherthandeveloping

newwaysofreasoningandunderstandingtheworld,itisnotsurprisingthatscience

wouldseemtohavelittlerelevancetolifeoutsideofschool.Interestingly,Mandy’s

exampleofwhenshemightusesomethingshelearnedinscienceinvolvedprovidingher

cousinwithcorrectinformation(“thenIcorrecthim”),ratherthanamoreactiveprocess

oftryingtocometoanewunderstanding.

Gloria: Science as doing what’s expected of you. Gloria’sdescriptionofdoing

sciencewasnotableforitspassivity.Shepresentedavisionofsciencewheresuccess

comesfromdoingwhatisexpectedofyouandfollowingdirections.ForGloria,avoiding

troubleseemedtobemoreimportantthanarrivingatunderstanding.Consistentwiththis passivevisionofscience,GloriaprovidedastrikinglydisengagedimagewhenIasked

hertodescribeherselfinscienceclass:

Gloria: OK.SoI’minthescienceroom,liketheoneupstairs.And

nobody’sintheroomwithmeandI’mjustsittingdown,staringat

thetable.

Beth: OK.Andsonobody’saroundyou.So,whyareyouallby

yourself,doyouthink?

144

Gloria: ‘CauseIyellatalot.Iyellatalotofpeople.LikeifIget

frustrated,I’llyell,andthat’swhyI’mstayingatthetable.

Beth: Becauseyou’refrustrated?

Gloria: [nods]

Beth: Andwhatmakesyoufrustratedaboutscience?

Gloria: Idon’tgetitsometimes.

Beth: Likeyoudon’tunderstandit?

Gloria: Yeah.

Gloria’svisionofdoingscienceinMs.Marsh’sroominvolvedbothphysicalpassivity

(“sittingdown,”“stayingatthetable”)andmentalpassivity(“staringatthetable,”“I

don’tgetit”).ForGloria,thispassivityseemedtobea(slightly)betteralternativeto

actingoutwhenshedoesn’tunderstandsomething(“ifIgetfrustrated,I’llyell”).

Importantly,shedidnotseemtobelievethatshehadanyproductiveoptionsforactively

constructingknowledgewhenshedidnotimmediatelyunderstandsomethinginscience

classandsoshedescribedreactingwithangerorpassivity.

Thethemesof“gettingfrustrated”and“notgettingit”ranthroughoutGloria’s

discussionofscience.Shereferencedherlackofunderstandingasgettinginthewayof bothlikingscienceandbeinggoodatit.Forexample,shetalkedaboutsciencenotas

somethingshe was goodat,butassomethingshe could begoodatifsheunderstoodit:

Beth: Doyouthinkyou’regoodatscience?

Gloria: Well,IthinkIamgoodatscienceandIcouldbegoodatscience,

thatifIunderstooditmore.LikesometimeswhenIgetsomething

145

I’mlikeIdon’tunderstandit,butthenmostpeopleassumethatI

wasn’tlistening.So,that’swhyIusuallydon’taskquestions.

Beth: Becauseyou’reafraidthatifyouaskquestions,thatpeople’ll

assumeyouweren’tlistening?

Gloria: Yeah.

Beth: Andreallyit’sthatyousortofhavelookedatitandjuststilldon’t

understandit?

Gloria: [nods]

Asthisexchangeillustrates,Gloriatalkedaboutscienceassomethingwhere understandingshouldbeimmediateandimmediatelydemonstrable.Agoodscience studentshouldknowtheanswersrightawayandbeabletoprovidetheminorderto receiverecognition.Thus,whenshedidnotunderstandsomething,thebestcourseof actionappearedtobetoremainquiettoavoidpossiblecensure(“mostpeopleassumethat

Iwasn’tlistening”).

Inaddition,Gloria’spassivityinscienceclassseemedtobeinfluencedbyabelief thatcomplianceanddoingwhatoneistoldarethebestwaystodowell:

Beth: Whatmakessomebodyagoodscientist?

Gloria: Tolistenandgobackto,likeMissMarshsays,gobacktoyour

workandcheckitandthat’swhyyouhavedataonstuffandstuff

likethat.

Beth: OK.Sotogobackandcheckitandyousaidtolisten.Anything

elseyoushoulddotobeagoodscientist?

146

Gloria: Idon’tknow.It’slikeeverythingyougottado,likeeverything

that’sexpectedfromyou.Youshoulddoitif,fortobeascientist.

Beth: OK.Andhowwouldyou,likehowdoyoufindoutwhat’s

expectedofyou?

Gloria: Somebodywilltellyouandthenyouprobablyknowbecauseyou

wenttoaschoolorsomethingthattellsyouthisiswhatscientists

need,liketowriteeverythingdown,writethedate,observe,you

know,likeyeah.

Beth: OK.So,itwouldbesortathethingsyourteacherstoldyouin

school,maybe?

Gloria: Yeah.

Inthisexchange,Gloriaclearlyassociatedbeingagoodscientist,thelanguageIusedin myoriginalquestion,withdoingwhatoneistold(“somebodywilltellyou”).This orientationtowardcompliancewasalsopresentwhenIaskedGloriahowshewould knowforsurethatsomethingwasascienceexperiment.Sheresponded,“Iftherewasa bookrighttherethatsaidthatyoushoulddothat.”Gloria’scommentswerereminiscent oftheviewofsciencepromotedinmanyclassroomsthatprivilegememorizing informationandfollowingprocedurestoarriveatexpectedresults.Suchanorientation towardcompliancewithabehaviorregardlessofwhetheroneunderstandstheunderlying rationalemighthelptoexplainGloria’sfrustrationwithscience.Notsurprisingly,given herpassiveversionofdoingscience,Gloriasaidsheneveronceusedanythingshe learnedinscienceclassoutsideofschool.

147

Whodoesscience?Inadditiontotheirviewsonwhatitmeanstodoscience,I

wasinterestedinlearningaboutthecasestudystudents’perceptionsofwhetherscience

wasopentoanyonewhowishedtopursueitorwhethertherewereexternalbarriersthat

mightlimittheiraccess.Themoststrikingaspectofthesediscussionsisthatwhileall

threestudentsindicatedthatattributesthatanyonecandeveloparekeydeterminantsin

whobecomesascientist,bothMandyandGloriadrewtosomedegreeonnoninclusive popularimageswhentheydescribedanimaginedscientist.

Effie: It doesn’t really matter what type of person you are. Effieindicatedthat attributesthatanyonecandevelop,ratherthanfixedtraits,arethemostimportantfactors indeterminingwhowillbecomeascientist.Inparticular,shefocusedonlikingscience andbeingcommittedtoitinthelongterm:

Beth: Isthereacertaintypeofpersonwhousuallybecomesascientist?

Effie: Ithinkitkindadepends.Ifyoureallylikescienceandyoureally

likewhatyou’relearningabout,thenitdoesn’treallymatterwhat

typeofpersonyouare.

Beth: OK.

Effie: So,yeah.

Beth: So,themostimportantthingislikingit?

Effie: Yeah.

Beth: Isanythingelseimportanttobecomingascientist?

Effie: Youhavetoknowwhatyou’redealingwithandyouhaveto

knowwhatyou’reputtingyourmindupto‘causewhenyou’re

148

doingscienceyoucan’tjustdecideonedayyoudon’twanttodo

itanymore.Youhavetobecommittedtoitforalong,longtime.

Beth: OK.Anddoyouthinkthat’sdifferentthanotherthings? Effie: Yes.Becausewhenyou’redoingsomeotherthing,itdoesn’ttake

aslongtodoit,becausetobeascientistyouhavetobeprepared

tostudyonethingforalongtimeandthenwhenyougettoone

pointthatyoureallyunderstandit,youmoveontoanotherthing.

Asthisexchangeillustrates,Effieemphasizedtherelatedaspectsof“reallyliking” scienceandbeingcommittedtoit.Theseattributesseemtolinktoherearlierdiscussed conceptionofscienceas“figuringthingsout.”ForEffie,developingthistypeof knowledgeseemedtorequirepersistenceand“puttingyourmindto”somethingfora

“long,longtime”inordertogettothe“pointthatyoureallyunderstand”it.

ConsistentwithEffie’sviewofscienceasanactiveprocessthatisopentoall typesofpeoplewhoarewillingtocommittoit,whenIaskedhertopictureascientistin hermindandthentellmeabouttheimage,Effie’sdescriptioncontainednoneofthe elementssignalingalimitedandnoninclusiveviewofscientistsoftenfoundinyoung people’sdescriptions:

Iforgothernamebutshe’sascientistandsheworkswithanimalsandmonkeys

andshewouldprobablybeoutsideinAfrica...Ilearnedaboutherinmyold

schoolwhenwewerestudyingthescientistsinthirdgrade.SoIdon’tremember

hername,butwewerestudyingdifferenttypesofsciencethatyoucouldbe

learningandwestudiedaboutthat.Yeah[it’sJaneGoodall].She’sprobably

playingwiththemonkeysorchimpanzeesandtryingtounderstandandwriting

149

downnotes,whatthey’redoingandhowtheybreedorhowtheycleaneach

other...Idon’tknow[ifsheworkswithotherpeople],butsheprobablyworks

withotherscientistswhoworkwithotheranimalstotryandfigureoutwhat’sthe

sameandwhat’sdifferentaboutthisanimalandanotheranimal.

Here,Effiedescribedanimageofascientistthatcontradictedmanymorelimitedand noninclusivepopularimages.Ratherthanthelonemaleinalabwithchemicals,Effie’s scientistwasawomanwhoworkedwithotherscientistsandwasoutintheworld observinganimalbehavior.Consistentwithherearliercommentsaboutscience,in

Effie’simageGoodallisactive,bothphysically(“playingwithmonkeys”)andmentally

(“tryingtounderstand”).Interestingly,inthisdescription,Effiereferredtohavinglearned about“differenttypesofscience,”indicatingthatherviewofwhoscientistsareandwhat theydomightbeexpansiveenoughtoincludeawidearrayofpeopleandactivities.

Mandy: Some scientists work in a lab and some go out. Mandyalsopresenteda viewofsciencewhereinterestwasthemostimportantcharacteristicindeterminingwho wouldbecomeascientist.However,inherdescription,Mandyemphasizedthatsuch interestcoulddevelopovertime:

Beth: Andisthereacertaintypeofpersonwhousuallybecomesa

scientist?

Mandy: Ithinkthatusuallyapersonwhoreallylikessciencebecomesa

scientist,butevenifyoudon’tlikesciencewhenyou’reakid,you

couldbecometolikeitwhenyougrowup.

ThisdevelopmentalperspectivewasagainevidentwhenIaskedMandytoelaborateona statementshemadethatscientistshavetobesmart:

150

Beth: Andthenyousaidtheyhavetobesmart.Dotheyhavetobesort

ofaveragesmartordotheyhavetobereallysmart?

Mandy: Well,youkindofgetsmarterbyhowmuchyoulearn,so[...]they

wouldhavetohavelearnedthingsandstuff.

Asillustratedbythesequotations,Mandy’sdevelopmentalperspectiveseemedto indicatethatanyonecanbecomeascientistaslongastheydevelopinterestand knowledgeatsomepoint.

Interestingly,whensheimaginedascientist,Mandydescribedtwoimages:one influencedbytheinclusiveviewofsciencediscussedaboveandonethatdrewmuch moreheavilyonmorelimitedandnoninclusivefeaturesfoundinmanyyoungpeople’s imagesofscientists:

Somescientistsworkinalab,andsomegoout,theygooutsideandtodifferent

placesandtheytrytofindoutnewstuffabouttheworld.Isee[ascientist]

holdingatesttubeorsomething.Ordigging.Thescientistwho’sdiggingisa

woman.Shehaslongbrownhair,andthescientistwho’sinthelabisaman.The

scientistinthelabiswearingalabcoatandthescientistwho’sdiggingiswearing

justlikejeansandashirt.No[they’renotworkingwithanybodyelse,buttheydo

workwithotherpeople]alotofthetime,especiallythatonethat’sdigging.They

wouldgotogetheroutanddigtogetherandseewhattheyfindandtheyallwork

togethertofindouttheinformation.Theywouldworktogethertoanalyze

informationandfindnewstuff.

HereMandy’stwoscientistsalmostseemedtobevyingfordominanceasshemoved backandforthfromonetotheotherinherdescription.Mandydrewalmostequallyfrom

151 bothanarchetypalscientist—alonemalescientistinalabwithalabcoatandtesttube— andamoreinclusiveview—afemalescientistinjeansoutdiggingandworkingwitha team.Notably,shedrewonthemorelimitedviewwhenshedescribedascientistinthe physicalsciencesandthemoreinclusiveviewwhenshedescribedanarcheologist, perhapsindicatingdifferentviewsofwhoparticipatesinthedifferentsubfieldsof science.

Gloria: He’s not dark skinned.Gloriaalsoendorsedtheviewthatanattribute

thatanyonecandevelopisthemostimportantdeterminantofwhowillbecomea

scientist.However,aswillbediscussedshortly,shecontradictedthisideaindescribing

herimageofascientist.Still,whenaskedaboutthetypeofpersonwhousuallybecomes

ascientist,Gloriaindicatedthateffortwaskey:

Beth: Isthereacertaintypeofpersonwhousuallybecomesascientist?

Gloria: Whatdoyoumean?

Beth: Areallpeopleequallylikelytobecomescientistsoraresome

peoplemorelikelythanothers?

Gloria: Dependsiftheytryhard.

Beth: OK.Sothemainthingishowhardtheytry?

Gloria: [nods]

Interestingly,asdiscussedpreviously,Gloria’sconceptionof“tryinghard”inscience

wasboundupwiththeideaofdoingwhatyouaretoldtodo.

Despiteherinitialdiscussionofscientistasaprofessionopentoanyonewhotries

hard,Gloria’sdescriptionofanimaginedscientistwasheavilyreliantonlimitedand

noninclusivepopularimages:

152

SomethingthatI’mthinkingaboutisthatthey’reinawhiteroom.Andit’skind

oflikethetablesthatwehaveinscience[class].They’reallblackandthenthey

havethemsciencetubes,likethetubesthattheyusetopourlike,Idon’tknow

howtocallit,likeacidsandotherthing,likeliquidintoanotherliquidtomakea

experiment.[Thescientistis]amanwithabeard.He’snotdarkskinned.Inever

seenadarkskinnedpersondoingsciencethatmuch.Sothat’swhy.[He’s

wearing]alabcoat.[He’s]alone.He’sfrustratedcausehe’sbyhimselfbuthe’s

veryrude.It’slikeI’mmakingastory,butIjustseehimmultitasking,likegoing

toeachtable,trytododifferentthings,differentexperiments.There’sastationat

eachtable,likeonestation’sforexperiments,one’sdissectingsomething,one’s

takingnotes.[He’sdoing]somethingforNASA.

Inherdescription,Gloriadrewheavilyongenericnoninclusivepopularimages,which

weresometimesdevoidofrealmeaning(e.g.,pouringaliquidinatesttubeintoanother

liquidwithoutaclearreasonfordoingthis).Interestingly,Gloriawastheonlystudentto

attributenegativeemotions(“frustrated”)andsocialbehaviors(“veryrude”)toher

imaginedscientist.Inaddition,Gloria’sexplanationofwhyherscientistis“notdark

skinned”seemedtomakeadistinctionbetweenwhathappensinMs.Marsh’sclassroom,

whereMs.Marshpositionsherfemalestudentsofallskintonesasscientistsdoing

science,andtrulydoingscience(“Ineverseenadarkskinnedpersondoingsciencethat

much.”)

Discussion

Inthefaceofthecontinuedunderrepresentationofwomeninalmostallscience

andengineeringfieldsandconcernsaboutthenation’sprospectsofremaining

153 competitiveinscienceandtechnology(Hill,Corbett,&St.Rose,2010),thereisaneedto focusonthewaysinwhichadolescentgirlsconstructscienceidentity—thatis,their beliefsaboutwhoscientistsare,whatitmeanstodoscience,andwhetherscienceis interestingorimportant.Thisfocusonscienceidentityiswarrantedsincegirls’science achievementalonedoesnotseemtopredictwhethertheywillpursueadvancedscience courseworkorsciencerelatedprofessions( Brickhouse,Lowery,&Schultz,2000;

Carlone,2004;Carlone,HaunFrank,&Webb,2011; Hill,Corbett,&St.Rose,2010l;

Wong,2012).Therefore,thegoalofthepresentstudywastoprovideinsightsintofemale middlegradestudents’attitudestowardscienceandconstructionsofscienceidentity, operationalizedhereastwodimensions:(a)their beliefs about whether science is accessible to people “like them” and(b)their beliefs about whether science is interesting or important .ThestudydrewonsurveydatafromallstudentsattendingtheLyon

Academy,asmallallgirlsmiddleschooldesignedtoenhancethestudents’learning,as wellasinterviewandclassroomobservationaldataforthreefocalstudents,Effie,Mandy, andGloria.Inthissection,Idiscussfourkeyfindings.

First,overallsurveyresultshighlightedthecomplexandmultifacetednatureof scienceidentity.Becauseofthiscomplexity,studentsmightdevelopstrongpositive beliefsrelatedtoonedimensionofscienceidentitybutnotanother.Specifically,most

LyonAcademystudentsindicatedthatsciencewasinterestinganduseful,butexpressed moreambivalenceaboutitsaccessibilitytopeople“likethem.”Moreover,theywere dividedintheirresponsesaboutitsrelevancetotheirlivesoutsideofschoolandto meetingtheirfuturegoals.Notably,noneofthe12LyonAcademystudentsIinterviewed aspiredtobeascientist.Thispatternofrelativelystronginterestinsciencecoupledwith

154 afailuretoseeitsrelevancetofutureplansmirrorsonefoundinthebroaderliterature fromtheUSandEngland(Archeretal.,2010;ASPIRES,2013;Carlone,HaunFrank&

Webb,2011).Forexample,itisconsistentwithfindingsfromalargescaleBritish longitudinalstudyofyoungpeople’s(age10to14)beliefsaboutscienceandcareer aspirations(ASPIRES,2013).Resultsfromthatstudyindicatedthattheyoungpeople generallyheldpositiveviewsofscienceandscientists,butdidnothopetobecome scientiststhemselves.Furthermore,theresearchersfoundthatconstructionsofcareersin scienceas“geeky,”“brainy,”and“notnurturing”conflictedwithconstructionsof femininity,renderingsuchprofessions“unthinkable”formanygirls,andparticularly thosefromworkingclassbackgrounds(Archeretal.,2013).Thepresentstudyextends thesefindingsbyfocusingongirlsfromaknown—andsupportive—classroom environmentwheretheirfemaleteacherattemptedtocountermanylimitedand nonincusivepopularimagesandbeliefsinordertocreateamoreinclusiveviewofwho scientistsareandwhattheydo.Yetinspiteofthisfavorableclassroomenvironment,the aforementionedpatternstillheld.Thisindicatesthateveninaclassroomenvironment thatsupportsgirlssciencelearning,itmaybedifficulttoovercomepopularimagesand culturaldiscoursesthatpresentalimitedandnoninclusiveviewofwhoscientistsare.

Threeadditionalfindingsfromcomparisonsacrossthecasestudystudents,discussedin detailbelow,providemorenuancethathelpsunpackthiscomplexity.

First,comparisonsacrossthecasesofEffie,MandyandGloriasuggestthe importanceofcarefulconsiderationofstudents’understandingsofwhatitmeanstobea goodscientist.Althoughtheyarealltaughtbythesameteacherusingthesame curriculum,Effie,Mandy,andGloriahintedatquitedifferentunderstandingsofwhatlies

155 attheheartofdoingscience.Effiepresentedamentallyandphysicallyactiveviewof sciencethatemphasizedtheneedto“figureout”andtoworkwithotherssothatyouhave

“morepeopleseeingthingsthatyoudon’tsee.”Ontheotherhand,Mandydescribed doingscienceinawaythatemphasizednovelhandsonactivities,butdidnotmakea clearlinktoscientifichabitsofmind.Finally,Gloriaofferedamorepassivevisionwhere beingagoodscientistmeant“doingeverythingthat’sexpectedofyou.”Inthisworld,

doingsciencemeantfollowingdirectionsfrombooksthattellyouexactlywhattodoin

ordertogetpredeterminedresults.Previousresearchhasshownthatdifferent

understandingsofwhatitmeanstobeagoodscientisthaveimportantimplicationsfor

students’trajectories(Carlone,HaunFrank&Webb,2011;Carlone,Scott&Lowder,

2014).Forexample,Carlone,ScottandLowder(2014)documentedhowmovingfroma

4thgradeclassroomwherebeinga“smartsciencestudent”involvedthingslikecritical

thinking,persistence,andnurturingpeers(aviewmorealignedwithEffie’s)toa6th

gradescienceclassroomwhereitinvolvedthingslikememorizingandcompliance(a

viewmorealignedwithGloria’s)canleadstudentstoengageinlessscientific(butmore

compliant)behaviorsortodisaffiliatefromschoolscienceentirely.

Additionally,thestudyconfirmstheroleofpopularconceptionsofwhoscientists

areandwhattheydotogirls’constructionsofscienceidentity.Allthreecasestudy

studentsreportedsubscribingtoanequitableviewofsciencewhereanyonecanbecomea

scientistaslongastheylikescience(EffieandMandy)ortryhard(Gloria).However,

Gloriaalsomadestatementsthatdirectlycontradictedthisassertion(“Ineverseenadark

skinnedpersondoingsciencethatmuch.”)andshewasnottheonlyLyonAcademy

studenttodoso.Importantly,inthisstatementGloriamaintainedadistinction,similarto

156 thatobservedelsewhereintheliterature(Archeretal.,2010),betweenschoolscienceand

“real”oradultscience.Thatsomanystudentsmaintainthisdistinctionisnotsurprising sincescienceaspracticedinschoolsoftendiffersinfundamentalwaysfromadult science.Specifically,schoolscienceoftenignorestheinquirythatliesattheheartof scienceinfavorofactivitieswherestudents’goalistofollowasetofpredetermined proceduresinorder“togetthingstoworkasexpected”(Millar,1998ascitedinOsborne,

2002,p.204).However,thisdoesraisetheissuethatitmaybedifficultforstudentsfrom underrepresentedgroupstousethemselvesandtheirpeersasmodelsofpeople“like them”doingsciencewhilewhathappensintheirclassroomsremainsremovedfromadult science.

Finally,myfindingssuggesttheimportanceofrecognitionfromothersin understandingtherelationshipbetweenscienceknowledgeandscienceidentitybecause onemustbeabletodemonstrateacertainlevelofscienceknowledgeinordertobe recognizedasthekindofpersonwhoiscompetentinscience(i.e.,developscience identity;Carlone&Johnson,2007).Inthepresentstudy,bothEffieandMandywereable toeffectivelyexhibittheirknowledgeinscienceclass.Asaresult,theywererecognized bytheirteacherasaboveaveragesciencestudentsandrecognizedthemselvesasgoodat science.Incontrast,Gloriaexperiencedmoredifficultydemonstratingscience knowledge.Shewasneitherrecognizedbyherteachernorrecognizedherselfassomeone whowasgoodatscience.Thethemeoffrustrationwassalientinherinterview,aswas thefearofbeingaccusedoffailingtopayattention.Accordingtoher,thisfearactually preventedherfromaskingquestionsthatmighthelpherdevelopdeeperunderstandingin scienceclass.Thepresentstudydoesnotincludeameasureofthesestudents’science

157 knowledge.However,regardlessoftheiractuallevelsofscienceknowledge,their perceivedrecognition(orlackthereof)asknowledgeableandcapableinscienceappears toplayaroleintheirdevelopmentofscienceidentities.ThisfindingextendsCarloneand

Johnson’s(2007)model,basedoninterviewswithwomenofcolorwhostudiedscienceat thepostsecondarylevel,byindicatingthatrecognitionmayalsobeacrucialfactorin promotingorhinderingscienceidentitydevelopmentamonggirlsinthemiddlegrades.

ImplicationsforPractice

Overall,myfindingshaveseveralimplicationsforpractice.First,thecomplexity ofscienceidentityneedstobeacknowledgedinscienceclassrooms.Researchhasshown howscienceteacherscanpromoteaffiliationwiththeirdisciplinebyusinginclusive linguisticmarkers,suchas“asscientists,we”(Moje,1995;AlsoseeChapter3)or creatingclassroomnormsandexpectationsthatgiveallstudentsopportunitiesto participateinscientificpractices(Carlone,Scott&Lowder,2014).However,myfindings takentogetherwithfindingsfromthebroaderliteratureindicatethatattentiontojustone dimensionofscienceidentitymightnotbeenoughtoprovidestudentswithrealaccessto thediscipline.Forexample,studentsmaycometothinkthatclassroomscienceis interestingandfunbutstillnotseescienceasaviablecareeroptionforpeoplelikethem.

Thisdisconnectbetweeninterestandfutureaspirationssuggeststheneedfor scienceinstructionthatengageswithmultipledimensionsrelatedtoscienceidentity developmentaswellasyoungpeoples’everydayidentities.Indeed,Archerand colleagues(2010)havearguedforjustsuchanapproach:

Thismaypointtotheneedtoworkwithmultiplevisionsofscience—aposition

thatinitselfsuggestsaneedtodisruptdominantdiscoursesaroundscienceand

158

theidentityofascientist.Italsoimpelsustoconsiderhowwemightbridgethe

gapbetweenchildrenandyoungpeople’severydayidentities(thosethatare

experiencedasdesirable,authentic,andconveyingstatuswithintheirdailyfields

ofinteraction)andtheidentitiesandmessagesconveyedbyschooland“real”

science(p.636637).

Inconsideringwhatitmightlookliketoprovidestudentswith“multiplevisionsof

science”thatdisruptpopularconceptionsofwhoscientistsare,Effieprovidesapractical

example.JaneGoodall,whomshelearnedaboutinapreviousscienceclasswhenthey

studied“differenttypesofscience,”seemstohaveprovidedherwithapowerfulmodelof

awomandoingsciencethatcontrastswithmanynoninclusivepopularimagesand beliefs.Suchreallifeexamplesmaybeimportantforexpandingstudents’conceptionsof

whoscientistsareandwhattheydo.

Inaddition,thefindingsregardingdifferencesinstudents’understandingsofwhat

makessomeoneagoodscientisthaveimplicationsforscienceclassrooms.Previous

researchhaslinkedteachers’instructionalpracticestostudents’viewsofwhatmakes

someoneagoodscientist(e.g.,Carlone,Scott&Lowder,2014).Importantly,findings

fromthepresentstudyindicatethatevenstudentswithinthesameclassroomcanexpress

verydifferentideasaboutwhatitmeanstobeagoodscientist.Someoftheseviews

appeartobemoreconducivetodevelopingascienceidentity(e.g.,workingtogetherto

figurethingsout)thanothers(e.g.,followingdirectionsandnotaskingquestions).Thus,

itmaybefruitfulforclassroomscienceteacherstoleaddiscussionsinwhichstudents

expresstheirunderstandingsofwhatmakessomeoneagoodscientistsothattheycan

developamoreproductivecommonunderstandingofthesebehaviorsandhabitsofmind.

159

LimitationsandDirectionsforFutureResearch

Itisimportanttoacknowledgethatthisstudyinvolvestheanalysesofdatafrom onesmallschoolservingmiddlegraders.Ichosetoworkatthisschoolbecauseit providedaninterestingcontexttoexplorescienceidentity,namelyanallfemaleschool wheretheteacherusedlanguageandinstructionalpracticesthatactivelyencouragedher studentstoviewthemselvesasscientistsandconstructamoreinclusiveviewofwho scientistsareandwhattheydo.Theschoolisbynomeansrepresentativeofmiddle schoolsintheUS.Thusresultsfromthisstudyshouldbetakenasilluminatingstudents’ constructionsofscienceidentitywithinaparticularcontextthatwouldseemtoencourage girls’developmentofscienceidentitiesratherthangeneralizedbeyondthiscontext.

Giventherelativepaucityofresearchinthisarea,moreresearchisneededtounderstand thecomplexanddynamicnatureofconstructionsofscienceidentityamongtraditionally underrepresentedstudents,especiallyintheschoolsthatthemajorityofsuchstudents attend,namelylarge,underperforming,coeducationalsettings.

Inaddition,thisstudydrawslargelyonsurveyandinterviewdatathatpresenta snapshotofonemomentintime.Giventhedynamicnatureofscienceidentity,further longitudinalresearchisneededtoexplorethetrajectoriesalongwhichscienceidentity develops.Thisisespeciallyimportantbecausepreviousresearchhasshownadeclinein interestinscienceduringthemiddlegrades,followedbyrelativelystableinterestin scienceafteraboutage14(Forareview,seeArcheretal.,2010).Inparticular,future researchshouldattendtothefactorsthatappeartoaidorhinderthedevelopmentof scienceidentitiesovertime,especiallyforstudentsfromtraditionallyunderrepresented groups.

160

Finally,whileresearchershavedemonstratedtheexplanatorypotentialofscience identityforstudents’engagementinscienceclassand/orfuturecareeraspirations(e.g.,

Archeretal.,2010;Archeretal.,2012;Carlone,HaunFrank&Webb,2011;Carlone,

Scott&Lowder,2014),theyhaveoperationalizedtheconstructinmanydifferentways, makingitdifficulttocompareacrossstudies.Althoughafewresearchers(e.g.,Carlone&

Johnson,2007)haveattemptedtoconstructmodelsofscienceidentitygroundedinthe extantliteratureandempiricalwork,morework,theoreticalandempirical,needstobe doneonthisfront.

161

References

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2012).“Balancing

acts”:Elementaryschoolgirls'negotiationsoffemininity,achievement,and

science. Science Education, 96 (6),967989.doi:10.1002/sce.21031

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2013).“Notgirly,

notsexy,notglamorous”;Primaryschoolgirls’andparents’constructionsof

scienceaspirations. Pedagogy, Culture, and Society, 21 (1),171194.

Archer,L.,DeWitt,J.,Osborne,J.,Dillon,J.,Willis,B.,&Wong,B.(2010).“Doing”

scienceversus“being”ascientist:Examining10/11yearoldschoolchildren's

constructionsofsciencethroughthelensofidentity. Science Education, 94 (4),

617639.doi:10.1002/sce.20399

ASPIRES.(2013). Young people’s science and career aspirations, age 10-14. London:

King’sCollege.

Barman,C.R.(1997).Students’viewsofscientistsandscience. Science and Children,

35, 1823.

Brickhouse,N.W.,Lowery,P.&Schultz,K.(2000).Whatkindofagirldoesscience?:

Theconstructionofschoolscienceidentities. Journal of Research in Science

Teaching ,37,441–458.doi:10.1002/(SICI)10982736(200005)37:5<441::AID

TEA4>3.0.CO;23

Carlone,H.B.,HaunFrank,J.,&Webb,A.(2011).Assessingequitybeyondknowledge

andskillsbasedoutcomes. Journal of Research in Science Teaching , 48 ,459–

485.

162

Carlone,H.B.,&Johnson,A.(2007).Understandingthescienceexperiencesof

successfulwomenofcolor:Scienceidentityasananalyticallens. Journal of

Research in Science Teaching, 44 ,1187–1218.

Carlone,H.B.,Scott,C.M.,&Lowder,C.(2014 ). Becoming(less)scientific:A

longitudinalstudyofstudents’identityworkfromelementarytomiddleschool

science. Journal of Research in Science Teaching ,doi:10.1002/tea.21150

Charmaz,K.,(2006). Constructing grounded theory: A practical guide through

qualitative analysis .ThousandOaks,CA:SagePublications.

Chambers,D.W.(1983).Stereotypicimagesofthescientist:Thedrawascientisttest.

Science Education, 67 (2),255265.doi:10.1002/sce.3730670213

Corbin,J.M.&Strauss,A.L.(2008). Basics of qualitative research: Techniques and

procedures for developing grounded theory (3rded.).ThousandOaks,CA:Sage

Publications.

Dillman,D.A.,Smyth,J.D.,&Christian,L.M.(2009). Internet, mail, and mixed-mode

surveys: The tailored design method (3rded.).Hoboken,NJ:J.Wiley.

Driver,R.,Newton,P.,&Osborne,J.(2000).Establishingthenormsofscientific

argumentationinclassrooms. Science Education, 84 (3),287312.doi:

10.1002/(SICI)1098237X(200005)84:3<287::AIDSCE1>3.0.CO;2A

Emerson,R.M.,Fretz,R.I.,&Shaw,L.L.(1995). Writing ethnographic fieldnotes .

Chicago,IL:UniversityofChicagoPress.

Gee,J.P.(2001).Identityasananalyticlensforresearchineducation. Review of

Research in Education, 25 ,pp.99125.

163

Gee,J.P.(2004).Languageinthescienceclassroom:Academicsociallanguagesasthe

heartofschoolbasedliteracy.InE.W.Saul(Ed.), Crossing borders in literacy

and science instruction: Perspectives on theory and practice (1332).Newark,

DE:InternationalReadingAssociation.

Guzzetti,B.J.(2004).Girlsinscience:Creatingsymmetricalopportunitiesforacquiring

scientificliteracy.InE.W.Saul(Ed.), Crossing borders in literacy and science

instruction: Perspectives on theory and practice (1332).Newark,DE:

InternationalReadingAssociation.

Heath,S.B.,&Street,B.V.(2008). On ethnography: Approaches to language and

literacy research .NewYork:TeachersCollegePress.

Hill,C.,Corbett,C.&St.Rose,A.(2010). Why so few?: Women in science technology,

engineering, and mathematics. Washington,DC:AAUW.

Kanter,D.E.&Konstantopoulos,S.(2010).Theimpactofaprojectbasedscience

curriculumonminoritystudentachievement,attitudes,andcareers:Theeffectsof

teachercontentandpedagogicalcontentknowledgeandinquirybasedpractices.

Science Education, 855887.

Lemke,J.L.(1990). Talking science: Language, learning, and values .Norwood,N.J.:

Ablex.

Maxwell,J.A.,(2005). Qualitative research design: An interactive approach (2nded.).

ThousandOaks,CA:SagePublications.

Moje,E.B.(1995).Talkingaboutscience:Aninterpretationoftheeffectsofteachertalk

inahighschoolscienceclassroom. Journal of Research in Science Teaching,

32 (4),349371.

164

Moje,E.B.(2008).Foregroundingthedisciplinesinsecondaryliteracyteachingand

learning:Acallforchange. Journal of Adolescent and Adult Literacy, 52 (2),96–

107.

NationalCenterforEducationStatistics.(2012). The nation’s report card: Science 2011

(NCES2012–465).Washington,DC:InstituteofEducationSciences,US

DepartmentofEducation.

NationalCenterforEducationStatistics(2013).TheNationsReportCard:Trendsin

AcademicProgress2012(NCES2013456).InstituteofEducationSciences,U.S.

DepartmentofEducation,Washington,D.C.

NationalGovernorsAssociationCenterforBestPractices&CouncilofChiefState

SchoolOfficers.(2010). Common Core State Standards for English language arts

and literacy in history/social studies, science, and technical subjects .Washington,

DC:Authors.Retrievedfrom

www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf

Reveles,J.M.(2009).Academicidentityandscientificliteracy.InK.R.Bruna&K.

Gomez(Eds.), The work of language in multicultural classrooms: Talking

science, writing science (pp.93114).NewYork:Routledge.

Seidman,I.(1998). Interviewing as qualitative research: A guide for researchers in

education and the social sciences (2nded.).NewYork,NY:TeachersCollege

Press.

Wong,B.(2012).Identifyingwithscience:Acasestudyoftwo13yearold‘high

achievingworkingclass’BritishAsiangirls. International Journal of Science

Education, 34 (1),4365.doi:10.1080/09500693.2010.551671

165

Yin,R.K.(2009). Case study research design and methods (4thed).ThousandOaks,

CA:SagePublications.

166

Table 1 .Summaryofdemographicandscienceidentitydataforthreecasestudystudents. Effie Mandy Gloria Grade 6 5 6 Race/Ethnicity Black MultiRacial Latina BirthCountry Cameroon US US HomeLanguage(s) Mostly English Spanish, English,Some English French EligibleforFreeor Yes No Yes ReducedPriceLunch TeacherClassificationof Above AboveAverage BelowAverage ScienceAchievement Average StrengthofBeliefsabout Medium High Low AccessibilityofScience StrengthofBeliefsabout High Medium Low HowInteresting/Useful ScienceIs CareerAspirations Gymnast,then “SomethingCreative,” Hairstylist, Doctoror likeanAuthor;used Chef, Surgeon towanttobea Basketball Scientist Playeror Mechanic SelfAssessmentof Yes “Kindof” No WhetherCareer AspirationsAreRelatedto Science a Allnamesarepseudonyms.

167

Table 2. DescriptivestatisticsforsurveyitemsrelatedtoLyonAcademystudents’( n= 50) beliefsaboutaccessibilityofscienceandinterestin/importanceofscience.

Construct Item Median(IQR) Question Q1 3(1) Howeasyisitforpeoplelikeyoutobecomescientists? Q2 3(1) Howoftenarepeoplelikeyouwhowanttobescientists abletobecomescientists? Q3 4(1) Howoftendothingsyoucannotcontrolgetintheway

ofyourunderstandingscience? Q4 4(0) Howdifficultdoyouthinkscienceis? Accessibility of Science Science Accessibility of Q5 2(1) Howsmartdoyouhavetobetobeascientist? Q6 4(1) Howinterestingdoyouthinkscienceis? Q7 4(1) Howusefuldoyouthinkscienceis? Q8 3(2) Howhelpfulislearningsciencetomeetingyourgoals foryourself? Science Q9 3(2) Howoftendoyouusethingsyoulearninscienceclass outsideofschool? Q10 3(1) Howimportantislearningscienceforyourfuture? Interest in and Importance of Importance inInterest and Note: Allsurveyquestionsareona5pointscale.

168

Figure 1.ComparisonofthreecasestudystudentsandmedianLyonAcademystudent responseforsurveyitemsrelatedto beliefs about accessibility of science to people like them .

5

4

Median 3 Effie Mandy 2 Gloria

1

0 Q1 Q2 Q3 Q4 Q5

Figure 2.ComparisonofthreecasestudystudentsandmedianLyonAcademystudent responseforsurveyitemsrelatedto beliefs about how interesting and important science is .

5

4

Median 3 Effie Mandy 2 Gloria

1

0 Q6 Q7 Q8 Q9 Q10

169

AppendixA:FullStudentInterviewProtocol

YOUTH ASSENT

As you know, I have been observing your science class this year. One of the things I would like to learn more about is what middle schoolers like you think science is all about. Today I would like to hear your ideas about that. I would like to ask you some questions and do a reading activity with you. This will help me to learn about how to make science instruction better for other kids like you. But your participation is completely voluntary. You do not have to participate if you do not want to, and you will not be in trouble if you decide you do not want to participate.

Are you interested in participating?

I would like to video record our conversation so that I do not have to take so many notes. I will keep this video locked up and will only use it for my research. Is that okay?

At any point, we can stop. Just tell me that you would like to stop and I will let you go back to class.

PROTOCOL

WARM UP

(1) To start out, I’d like you to imagine yourself in 20 years and describe what kind of work you will be doing. Tell me about it. Is there any part of what you will be doing that is related to science?

Now I am going to start asking you some questions about science. There are no right or wrong answers, I would just like to know what you think.

PART A: SCIENTIFIC IDENTITIES

I. SCIENTISTS DOING SCIENCE

(2) First of all, I would like you to picture in your mind a scientist who is doing scientific work. Think about what the scientist is doing, where the scientist is, and what the scientist is like. I’ll give you a minute to get that picture in your mind. Tell me when you are ready.

170

Can you tell me about what you pictured in your mind?

GENERAL PROBE IF NEED MORE INFORMATION: • Can you tell me a little more about that?

PROBE IF NOT ALREADY COVERED: • What is the scientist doing? • Why is he or she doing this? • Where is the scientist working? • Is the scientist working with anyone else? IF YES, who else is the scientist working with? What are they doing? IF NO, do you think the scientist ever works with anyone else? Who is it? What do they do? • Is there a certain type of person who usually becomes a scientist?

II. YOU DOING SCIENCE

(3) Now I want you to get a new picture in your mind. Picture yourself doing science in science class. Think about what you are doing, where you are, and how you feel. I’ll give you a minute to get that picture in your mind. Tell me when you are ready.

Can you tell me about what you pictured in your mind?

GENERAL PROBE IF NEED MORE INFORMATION: • Can you tell me a little more about that?

PROBE IF NOT ALREADY COVERED: • What are you doing? • Why are you doing that? • Where are you doing it? • Are you working with anyone else? IF YES, who else are you working with? What are they doing? IF NO, do you ever work with other people when you do science? Who is it? What do you do together?

171

(4) Do you like science? Why or why not?

(5) Are you good at science? Why or why not?

(6) Do you ever use the things you learn in science class outside of school? Can you give me an example?

PART B: SCIENCE-SPECIFIC WAYS OF GENERATING AND CHALLENGING KNOWLEDGE

Now I would like to talk to you a little bit more about how scientists think and what scientists do.

(7) First, I’m going to show you a bunch of pictures. I want you to take a look at them and tell me whether they show something that has to do with science or not. How do you know this is/isn’t science?

(8) What makes someone a good scientist?

(9) Take a minute to think of a science experiment. It can be an experiment you did or heard about in school or it can be something you did or heard about outside of school. It can also be something you make up that you think would be an interesting experiment. Describe the experiment for me.

(9a) What could you find out by doing this experiment?

(9b) What would happen if you did this experiment and it turned out differently from what you expected?

(9c) What are some reasons why you might have gotten a different result than you expected?

172

(10) Imagine that two different people did the experiment you just told me about. What would happen if they disagreed about the results of an experiment?

(10a) What are some reasons why they might disagree with each other about the results of an experiment?

(10b) What should they do if they disagree?

PART C: SCIENCE-SPECIFIC WAYS OF INTERACTING WITH TEXT

The last thing I would like to talk to you about is reading science. You already read this short article for homework.

I. TEXT SPECIFIC (11) Where should we start reading? Why?

(12) What is the next part we should read? Why?

(13) Read just to the place I have marked. What were you thinking about as you read?

(14) Who do you think wrote this? Why do you think that?

(15) The author of this text put in diagrams, pictures, and definitions. Why do you think they are there? What might we use them for?

(15a) Are they telling us the same thing or different things?

(15b) Are these all equally important for understanding what this means or is one part the most important?

173

(16) The author also put in titles like this and headings like this (point). Why do you think they are there? What might we use them for?

II. GENERAL

(17) What is the purpose of reading science articles like these? Why might you read this kind of article?

(18) If you did the experiment that the article talks about and the results were not the same as what the article said, what would you do? Why?

(19) Do you ever use other information (things you already have in your head) when you are reading for science? How/why?

(20) What do you do when something you already know is not the same as what you read in a science article?

174

Images for Question 7

175

176

177

178

179

180

181

AppendixB:FullStudentSurveyMeasure

SCHOOL SCIENCE SURVEY

DIRECTIONS

As you know, I am a researcher from the Harvard Graduate School of education, who is interested in what students like you think about learning science. This information is important for helping students at your school and other schools to do better in science class. The first section asks you questions about what scientists are like and how you feel about science. The second section asks your opinion about learning new things in science. The last section asks you about reading science books and articles. Because I want to make sure that I know as much as possible about your opinions, it is important that you answer all of these questions. Please think about one question at a time and circle the answer that best matches your idea. There are no right or wrong answers. If you are unsure of your answer, just take your best guess. Thank you for your thoughtful answers and helping me to learn more about what students think about science.

NAME______

DATE______

GRADE______

182

Section 1: Please circle the response that best matches your opinion about what scientists are like and how you feel about science (questions 1- 15)

1. How easy is it for people like you to become scientists? Not Easy A Little Somewhat Very Extremely at All Easy Easy Easy Easy

2. How often are people like you who want to be scientists able to become scientists? Never Once in a While Sometimes Most of the Almost All the Time Time

3. How often do things you cannot control get in the way of your understanding science? Never Once in a While Sometimes Most of the Almost All the Time Time

4. How difficult do you think science is? Not Difficult A Little Somewhat Very Extremely at All Difficult Difficult Difficult Difficult

5. How often do scientists make mistakes? Never Once in a While Sometimes Most of the Almost All the Time Time

6. How smart do you have to be to be a scientist? Not Smart A Little About as Smart Very A lot Smarter at All Smart as Most People Smart than Most People

183

7. How easy is it to challenge what expert scientists say? Not Easy A Little Somewhat Very Extremely at All Easy Easy Easy Easy

8. How interesting do you think science is? Not Interesting A Little Somewhat Very Extremely at All Interesting Interesting Interesting Interesting

9. How useful do you think science is? Not Useful A Little Somewhat Very Extremely at All Useful Useful Useful Useful

10. How helpful is learning science to meeting your goals for yourself? Not Helpful A Little Somewhat Very Extremely at All Helpful Helpful Helpful Helpful

11. How often do you use things you learn in science class outside of school? Never Once in a While Sometimes Most of the Almost All the Time Time

12. How important is learning science for your future? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

13. How important is it to learn to talk like a scientist? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

184

14. How often do you try to talk like a scientist in science class ? Never Once in a While Sometimes Most of the Almost All the Time Time

15. How often do you try to talk like a scientist even though you might not be saying it right? Never Once in a While Sometimes Most of the Almost All the Time Time

***

Section 2: Please circle the response that best matches your opinion about learning new things in science (questions 16- 30).

16. How important is evidence to learning new things in science? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

17. How useful is it to do the same science experiment more than one time? Not Useful A Little Somewhat Very Extremely at All Useful Useful Useful Useful

18. How important is it to test ideas in science? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

19. In science, how easy is it to prove something is true so that it never needs to be tested again? Not Easy A Little Somewhat Very Extremely at All Easy Easy Easy Easy

185

20. How often do scientists disagree with each other? Never Once in a While Sometimes Pretty Often Most of the Time

21. How often do scientists challenge each other’s ideas? Never Once in a While Sometimes Pretty Often Most of the Time

22. How important is it to make sure there are no disagreements in science? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

23. How likely is it that if two scientists disagree, one of them did something wrong? Not likely A Little Somewhat Very Extremely at All likely likely likely likely

24. In science, how likely is it that ideas will change over time? Not likely A Little Somewhat Very Extremely at All likely likely likely likely

25. How important is it that scientists rethink their ideas when new evidence is found? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

26. How important is it for scientists to spend a lot of time thinking about how to design their experiments? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

186

27. In science, how much does an experiment’s design matter for understanding the results? Doesn’t Matter Matters Somewhat Matters Pretty Matters a at All A Little Matters Much Whole Lot

28. How often do scientists work with other people? Never Once in a While Sometimes Pretty Often Most of the Time

29. How important are other people’s ideas to a scientist’s work? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

30. In science, how important is it to know the year when an experiment was done? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

***

Section 3: Please circle the response that best matches your ideas about reading science books and articles (questions 31- 45).

31. In science books and articles, how important is it to look at pictures, charts, and graphs in addition to reading the words on the page? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

187

32. In science books and articles, how easy is it to get all of the information by reading the words but skipping over any pictures, charts, and graphs? Not Easy A Little Somewhat Very Extremely at All Easy Easy Easy Easy

33. When reading science books and articles, how often should you move back and forth between the words on the page and any pictures, charts, and graphs? Never Once in a While Sometimes Pretty Often Most of the Time

34. When reading science books and articles, how important is it to think about how what you are reading fits in with what you already know? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

35. When reading science books and articles about a topic you know a lot about , how important is it to think about the evidence that the author presents? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

36. When reading science books and articles about a topic you do not know much about , how important is it to try to learn from the text? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

37. When reading science books and articles, how important is it to think about whether you agree or disagree with what the author is saying? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

188

38. When reading science books and articles, how important is it to think about whether the author agrees or disagrees with other things you have read? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

39. When reading science books and articles, how important is it to think about whether the author agrees or disagrees with the ideas you already had? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

40. When reading science books and articles, how often do you think about why authors might disagree with each other? Never Once in a While Sometimes Pretty Often Most of the Time

41. When reading science books and articles, how important is it to use the titles and headings to decide which section to read first? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

42. When reading science books and articles, how important is it to use the titles and headings to decide which sections to read most carefully? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

43. When reading science books and articles, how important is it to pay attention to how the text is organized? Not Important A Little Somewhat Very Extremely at All Important Important Important Important

189

44. When reading science books and articles, how much does it matter who the author is? Doesn’t Matter Matters Somewhat Matters Pretty Matters a at All A Little Matters Much Whole Lot

45. When reading science books and articles, how much does it matter when the text was written? Doesn’t Matter Matters Somewhat Matters Pretty Matters a at All A Little Matters Much Whole Lot

190

VITA

SusanElisabethFaller

19992003 BostonUniversity B.A. Boston,MA May2003 20032004 AdultBasicEducationReadingTeacher WashingtonLiteracyCouncil Washington,DC 20042006 ResearchAssistant AmericanInstitutesforResearch Washington,DC 20062007 GraduateSchoolofEducation M.Ed. HarvardUniversity May2007 20072008 ResearchAssociate GraduateSchoolofEducation HarvardUniversity 20072008 EducationalAssessmentSpecialist Children'sHospitalBoston Boston,MA 20082014 DoctorofEducationCandidate GraduateSchoolofEducation HarvardUniversity 20082013 TeachingFellow GraduateSchoolofEducation HarvardUniversity 2012present Instructor GraduateSchoolofEducation HarvardUniversity