Attitudes Toward Science and Scientific Literacy Among Romanian Young Adults

Total Page:16

File Type:pdf, Size:1020Kb

Attitudes Toward Science and Scientific Literacy Among Romanian Young Adults ERD 2016: Education, Reflection, Development, Fourth Edition Attitudes toward Science and Scientific Literacy Among Romanian Young Adults Barz Daniela-Luminițaa* * Corresponding author: Barz Daniela-Luminița, [email protected] aPhD Candidate,”Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 8 Babeş Street, Cluj-Napoca, Romania Abstract http://dx.doi.org/10.15405/epsbs.2016.12.7 The paper explores attitudes toward science and scientific literacy among Romanian young adults, through an online survey following key dimensions - attitudes toward science, integration of science in everyday life, beliefs in pseudoscientific phenomena and knowledge of the scientific method. Moreover, the study focuses especially on healthcare students and professionals’ scientific literacy, exploring the level of scientific reasoning within the medical field. Analysis includes multiple comparisons across different fields of study, professional areas and age groups. The novelty of the study consists in shifting the assessment of scientific literacy from general scientific knowledge toward the understanding of the scientific method. Results of the present study confirmed a deficit in scientific knowledge, but more importantly, demonstrated that the relationship between scientific literacy and attitudes toward science was a non-linear one. In fact, the study found a gap between what people accept to be scientific fact and what they choose to integrate into everyday life. Given these results, we argue that science education’s focus should be on developing scientific reasoning rather than providing scientific knowledge. © 2016 Published by Future Academy www.FutureAcademy.org.uk Keywords: Attitudes toward science; scientific literacy; higher education; medical education. 1. Introduction Scientific literacy refers to an understanding of science and technology, of the scientific process and scientific facts. Even more so, scientific literacy requires “scientific knowledge and use of that knowledge to identify questions, acquire new knowledge, to explain scientific phenomena and to draw evidence-based conclusions about science related issues”, as PISA defined it. Scientific literacy is This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. eISSN: 2357-1330 Selection & Peer-review under responsibility of the Conference Organization Committee pivotal in today’s society, especially given the complexity of modern medicine, one has to be science and health literate to be able to make informed decisions “about themselves and their family as consumers and patients” (Miller, 2011). Integration of science into everyday life proves to be the most challenging task for science education, which impacts the individual throughout his lifespan. Studies have demonstrated that most people understand scientific research and value its benefits for society, but at the same time, hold beliefs in pseudoscientific phenomena, which do not seem to be swayed over time by engaging in formal scientific training. Pseudoscientific beliefs influence the decision-making process and become increasingly important in the context of public policy, views on climate change, vaccines, stem cell research and all technological innovations. The present study focused on the current level of scientific literacy among Romanian students, but also young adults, with special attention given to the medical field. In line with research on scientific literacy until the present time, we developed a survey which focused on attitudes toward science, integration of science in everyday life, beliefs in pseudoscientific phenomena and knowledge of the scientific method. 2. Paper theoretical foundation and related literature 2.1. Overview on defining and measuring scientific literacy Scientific literacy has been defined as a collection of skills and knowledge which allow the individual to understand how scientific knowledge is gained and be able to distinguish between scientific facts and other type of information (Impey et al., 2011). Scientific literacy emerged as an interdisciplinary field, which centered on science education, but also drew knowledge from philosophy of science, history of science, pedagogy, sociology and linguistics (Duit, 2007). If we looked at the history of science education, we would find at least nine separate goals of science education which were set to develop scientific literacy (DeBoer, 2000). Defining scientific literacy has been a challenging endeavor ever since the first comprehensive attempt to quantify the public level of scientific understanding in the 1957 pioneering survey study commissioned by the National Association of Science Writers in the United States (Miller, 2010, Ed. Meinwald & Hildebrand). The 1957 research by Davis provided an initial conceptual framework for the study of scientific literacy and involved the measurement of public understanding regarding issues such as interest in science, sources of scientific information, understanding of scientific concepts and attitudes toward the benefits and limitations of science (Pardo & Calvo, 2002). This framework has been adopted by several empirical studies of public understanding of science worldwide, including the Eurobarometer. The Eurobarometer has been a source of data and insight for educational reforms and analyses for the past several decades. Apart from the Eurobarometer, PISA (The Programme for International Student Assessment) has been the most renowned large-scale survey study to focus on reading, mathematical and scientific literacy. Romania’s mean score in PISA 2012 for the science section placed us as low achievers below the OECD average. The low performance with respect to scientific literacy was also confirmed in the 2009 study “STISOC – Science and Society. Interests and 49 http://dx.doi.org/10.15405/epsbs.2016.12.7 eISSN: 2357-1330 / Corresponding Author: Barz Daniela-Luminița Selection and peer-review under responsibility of the Organizing Committee of the conference perceptions of the public regarding scientific research and research results.”, funded by the National Authority for Scientific Research. However, results on this type of large scale-monitoring studies have fueled debate with regard to educational and methodological aspects of assessment. In addition, Pardo & Calvo (2002) accused the lack of theory in studies of the public understanding of science and claimed they are based on “conceptually fuzzy scales and indicators that fall short of the standards generally applied in other areas of social-scientific research”. 2.2. Scientific literacy in higher education Although much of the attention in research on scientific literacy has been given to pre-highschool and highschool students, studies on attitudes toward science and scientific literacy in higher education have yielded meaningful insights. Results from a 20-year survey of basic scientific knowledge and attitudes toward science among nearly 10,000 undergraduate students have shown that there is little difference between first year students and general public with regard to scientific knowledge. Gains over time, up to graduation, have been estimated at 10%-15%, even though curriculum included two or three science courses. The study also found high belief in pseudoscience and were not able to identify predictors of scientific literacy (Impey et al., 2011). Prediction of scientific literacy has proven to be strenuous, most research showed no significant difference in terms of gender, academic level or field of study (Holden, 2012). According to Miller (2010), the most reliable predictors of scientific literacy were attending at least three courses of science during the undergraduate programme, followed by obtaining a college degree and staying in touch with scientific news through media sources. In line with these findings, research showed that medical students demonstrate the same low level of scientific literacy, albeit the importance of scientific reasoning in healthcare (Peña, 2004). These systematic findings of low levels of scientific literacy have led to what has come to be termed as “the deficit model” (Sturgis & Allum, 2004). According to this model, the “deficient” level of scientific literacy has been directly linked to skepticism toward science. Currently, critique against the simplistic deficit model has highlighted the more complex nature of the relationship between scientific knowledge and attitudes toward science. Health literacy in the general public and scientific literacy in medical education are crucial components for the welfare of a society. In light of the continuous technological developments and the massive amounts of data emerging every day, research in medical education has brought forth a need for change in terms of science learning and education. Aysan (2015) proposed three stages of the change process: the first stage referred to ”persuading scientists of the necessity to change science education”; the second stage involved changing scientists’ perspective, “they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields”; the third stage introduced the need for scientists to “condense the bulk of information on their hands to a manageable size”. Based on the conceptualization of scientific
Recommended publications
  • Teaching Scientific Literacy Through a Science Technology and Society Course: Prospective Elementary Science Teachers’ Case
    The Turkish Online Journal of Educational Technology – TOJET October 2004 ISSN: 1303-6521 volume 3 Issue 4 Article 8 TEACHING SCIENTIFIC LITERACY THROUGH A SCIENCE TECHNOLOGY AND SOCIETY COURSE: PROSPECTIVE ELEMENTARY SCIENCE TEACHERS’ CASE Dr. Esra MACAROGLU AKGUL Ataturk Faculty Of Education Marmara University, Goztepe Campus Istanbul-Turkey e-address: [email protected] phone: 05365268728 (mobile) mail address: Mandıra Cad. Onay Sitesi 3. blok D:3 Merdivenkoy 34732 Istanbul-Turkey ABSTRACT The study examines Turkish pre-service elementary science teachers’ scientific literacy levels. The research took place in Marmara University, in 2001-2002 academic year. The research participants were twenty randomly chosen students among all senior classes of the university mentioned above. The research data were gathered with the documents, i.e. class assignments and activities, collected in science-technology and society course performance portfolios. Interviews with students and field notes from the class were used for data triangulation. Participants’ definitions of scientific literacy were determined with document analysis and open coding of data. Then, assertions to explain findings were formed. The assertions displayed that participants define scientific literacy in relation with thinking and inquiry. However; they are having problems to define the term scientific. Documents displayed that although participants had some traditional understandings about science, they hold more contemporary views about scientific literacy. INTRODUCTION Almost all developing and developed countries have the purpose of increasing scientific literacy level of public among their educational goals. This purpose also takes place in Turkish educational agenda. The first step to reach that purpose is to define scientific literacy. There is no consensus on the definition of scientific literacy concept in literature.
    [Show full text]
  • Promoting Scientific Literacy: Science Education Research in Transaction
    Promoting Scientific Literacy: Science Education Research in Transaction Proceedings of the Linnaeus Tercentenary Symposium held at Uppsala University, Uppsala, Sweden, May 28-29, 2007 Cedric Linder, Leif Östman and Per-Olof Wickman (Eds.) Geotryckeriet, Uppsala 2007 ISBN 978-91-633-1892-4 PREFACE This proceedings volume is a documentation of a symposium that was part of the Linnaeus Tercentenary 2007 Celebrations held at Uppsala University. Gaalen Erickson and Douglas Roberts received Honorary Doctorates in the area of Science Education and to celebrate this, a special symposium entitled Promoting Scientific Literacy: Science Education Research in Transaction was held. A large group of invited speakers presented a diversity of perspectives as they explored a future vision for science education research and practice by articulating a more expansive notion of scientific literacy than has previously been the case. These explorations involved discussions of both theoretical and practical issues in relation to questions regarding the teaching and learning of this 'revised' notion of scientific literacy at both the individual and the societal levels. We would like to thank the people and financial sponsors without whom this symposium would not have been possible: Symposium Committee: Ulf Lundgren (Uppsala University), Doris Jorde (University of Oslo), Ulf Lindahl (Uppsala University), and Kristina Edström (Uppsala University). Financial assistance: Educational Sciences (UVK) section of the Swedish Research Council Faculty of Educational Sciences,
    [Show full text]
  • Scientific Literacy in Science Lesson
    PROSIDING ICTTE FKIP UNS 2015 ISSN: 2502-4124 Vol 1, Nomor 1, Januari 2016 Halaman: SCIENTIFIC LITERACY IN SCIENCE LESSON Budi Utamia, Sulistyo Saputrob, Ashadib, Mohammad Masykurib a,b Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta, Indonesia Corresponding e-mail: [email protected] Abstract: The aim of this study was to determine: 1) definition of scientific literacy, 2) aspects of scientific literacy. 3) kinds of scientific literacy, 4) the role of curriculum in 2013 to develop scientific literacy. The method of this paper is research note paper, with a literature review of research journals about scientific literacy in science learning. The Curriculum 2013 has emphasized scientific literacy on the learning process by suggesting the utilize of the scientific approach. The scientific approach provides an opportunity for students to perform contextual learning, therefore the learning experiences that students got becomes more meaningful. The scientific approach provides an opportunity for students to connect between the previous concept, the concept being studied and its relationship with other materials that are expected able to improve the scientific literacy of students. The scientific approach to learning science developed from the scientific method commonly known as the science process skills. Keywords: scientific literacy, curriculum, scientific approach, learning science 1 INTRODUCTON Understanding the nature of science, including 'Literacy science' term has been used in the its relationship to culture; i) Appreciation of literature for more than four decades and comfort with the science, including the (Gallagher & Harsch, 1997), though not wonder and curiosity; j) Knowledge of the always with the same meaning (Bybee, 1997 risks and benefits of science; and k) The in Holbrook and Rannikmae, 2009).
    [Show full text]
  • The Crisis of the “Public Understanding of Science” in Great Britain
    JCOM 2 (1), March 2003 The crisis of the “Public Understanding of Science” in Great Britain Nico Pitrelli Master’s Degree Course in Scientific Communication – ISAS – Trieste – Italy Introduction In a brief article published by Science1 last October, British scientists stated that the expression “Public Understanding of Science”(PUS), which was traditionally employed in Anglosaxon societies to refer to the issue of the relationship between science, technology and society, is out-of-date. It should be replaced by “Public Engagement with Science and Technology” (PEST), a new acronym that clearly invites to reconceptualise the relationship between science and the public. The new approach involves the engagement of the public – or rather the publics – of science, through dialogue, in particular through an open and equal-to-equal discussion between scientists and non-experts that would enable non-experts to become the actual protagonists in the scientific decisions producing social effects. It is not just a matter of terminology. The shift from merely promoting the understanding of science – as indicated by PUS – to emphasising the need for public engagement is seen as necessary to obtain public confidence in science. Indeed, there is a general perception that public opinion is increasingly losing confidence in science. However, the initiative of the British researchers does not stand alone. In the last few years politicians, scientists, scholars and media operators in the UK have been insisting 1 “From PUS to PEST”, Science, vol. 298, 4th October 2002, p.49 1 on revising the role of the public in PUS communication theories and practice2,3,4,5,6,7.
    [Show full text]
  • (Science) Education a NARST Symposium Strand 08
    Relations between Science Education and Environmental (Science) Education A NARST Symposium Strand 08 (History, Philosophy, Epistemology) March 27, 2001, 8:30-10:00 AM Yvonne Meichtry (Organizer), School of Education, Northern Kentucky University, Highland Heights, KY 41099, [email protected] Michaela Zint (Co-organizer), School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, [email protected] Panelists: (In order of appearance) William Carlsen, College of Education, The Pennsylvania State University, Universit Park, PA16802, [email protected] Paul Hart, University of Regina, Regina, Canada SK S4S 0A2, [email protected] Ali Sammel, University of Western Ontario, London, Ontario NSG 1G7, [email protected] David Zandvliet, Simon Frasier University, Burnaby, BC V5A 1S6, [email protected] Justin Dillon, School of Education, King’s College London, London SE1 8WA, [email protected] Introduction Yvonne Meichtry, Northern Kentucky University This symposium is an outcome of a NARST 2000 meeting held for interested participants to discuss their interests in environmental education, relevant support networks, and potential roles for NARST. Participants of NARST who attended the meeting concluded that it was necessary to pursue the 2 establishment of an environmental science education special interest group within NARST. An Ad Hoc Committee on Environmental Science Education (ESE) has subsequently been established. Other efforts made to promote and support the work of environmental (science) educators include the organization of conference sessions which focus on ESE, the development of ties to other groups within NARST with relevant interests, and the creation of a listserv to share information and dialogue. The challenges faced by science educators and environmental educators in respect to the distinctions and interrelationships between the two fields have been many.
    [Show full text]
  • Assessing Scientific Literacy Levels Among Secondary School Science Students of District Lahore
    Bulletin of Education and Research December 2020, Vol. 42, No. 3 pp. 1-21 Assessing Scientific Literacy Levels among Secondary School Science Students of District Lahore Iram Shahzadi* and Abida Nasreen** __________________________________________________________________ Abstract The purpose of this quantitative study was to assess the scientific literacy levels among the government secondary school science students of district Lahore. Proportionate stratified random sampling and purposive sampling were used for selection of 16 government secondary schools comprised of seven boys’ and nine girls’ schools of district Lahore. The selected schools were taken by five percent of proportion of total population. By using Bybee Scale, the test was designed contained two to ten contextual situations and questions of four scientific literacy levels. Analysis of the study was based on percentage, mean, t-test, and ANOVA. The results revealed that secondary school science students attained the nominal and functional level of scientific literacy which was at the lowest levels. Findings also showed that girls performed better than boys in all levels of scientific literacy. There was no difference in the scores of students related to their mothers’ education and mothers’ skill level. There was a difference in the scores of students related to their fathers’ education, fathers’ skill level and students’ dedicated time for learning of science (hours per day, at school as well as at home). The curriculum developers should plan a course of scientific literacy or merge scientific literacy concepts and activities in science textbooks for secondary schools to increase scientific literacy. The time period for science subjects should be increased in government schools.
    [Show full text]
  • Assessment of Scientific Literacy Skills and Attitudes of Undergraduate
    Paper ID #21494 Assessment of Scientific Literacy Skills and Attitudes of Undergraduate Con- struction Management Students Dr. Andrea Nana Ofori-Boadu, North Carolina A&T State University Andrea Ofori-Boadu, Ph.D. Assistant Professor of Construction Management Department of Built Envi- ronment, School of Technology North Carolina A & T State University Address: 112-A Price Hall Phone: 336-285-3128 Email: [email protected] Dr. Andrea Ofori-Boadu is an Assistant Professor of Construction Management (CM) with the Depart- ment of Built Environment. She has a Ph.D. in Technology Management (Specialization in Construction Management), an M.Sc. in Industrial Technology (Specialization in Construction Management), and a B.Sc. in Building Technology. Dr. Ofori-Boadu has over 20 years of relevant academic and industry experience. Her major areas of research are in quality management, sustainable cement replacement materials, and STEM education. c American Society for Engineering Education, 2018 Assessment of Scientific Literacy Skills and Attitudes of Undergraduate Construction Students Abstract Scientific literacy (SL) skills are critical for technically-trained construction professionals who are capable of transforming built environments through strategic decisions based on evidence- based reasoning. While most undergraduate construction curricula are designed to improve SL, no recent study was found to have assessed undergraduate construction students’ SL skills. Therefore, the purpose of this research was to assess the SL attitudes, skills, and self-efficacy of 46 undergraduate construction students. Data was obtained through students’ completion of the standard 28-item Test of Scientific Literacy Skills (TOSLS) instrument; a student self-reporting SL self-efficacy survey; and focus group discussions.
    [Show full text]
  • LD5655.V855 1993.C655.Pdf (11.60Mb)
    SCIENTIFIC DISCOURSE, SOCIOLOGICALT HEORY, AND THE STRUCTURE OF RHETORIC by James H. Collier Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Science and Technology Studies APPROVED: Y— Joseph C. Pitt, Chair Aone ble EtaaT hone, Steve Fuller Elisworth Fuhrman April, 1993 Blacksburg, VA LD S635 VE5S , DaQa cose} aM’~ Scientific Discourse, Sociological Theory, and the Structure of Rhetoric James H. Collier Graduate Program in Science and Technology Studies Chair: Joseph C. Pitt (ABSTRACT) This thesis examines the rhetorical, analytical and critical efficacy of reflexivity and sociological theory as means for reconciling the normative and descriptive functions of the rhetoric of science. In attempting to define a separate research domain within Science Studies, rhetoric of science has borrowed Strong Program and constructivist principles and descriptions of scientific practice from the Sociology of Scientific Knowledge (SSK) as a basis for analyzing scientific discourse. While epistemological claims in the social sciences have been considered inherently self-referential and subject to reflexive analysis and critique, rhetoricians have generally taken these claims on face value and applied them to a treatment of scientific practice. Accordingly, rhetoricians have maintained a natural ontological attitude to sociological theories and descriptions supporting an understanding of scientific discourse as implicitly rhetorical. Recently, however, the concept of "rhetoric" in rhetoric of science has come under scrutiny. This thesis will connect arguments involving the relation of the "irreducibly social" nature of science, to a concept of scientific discourse as rhetorical "without remainder,” to the philosophical commitments of reflexive analysis.
    [Show full text]
  • Inquiry and Scientific Literacy
    1 Inquiry and Scientific Literacy WHat IS ScieNce? 1 How do you define science? How do you think your students define science, or how would they describe a scientist? Not too long ago, we had a group of seventh-grade students draw scientists. Overwhelmingly, the pictures depicted men (some with Einstein-like hair) standing behind lab tables using flasks or test tubes. The average person might define science as a body of scientific knowledge. Philosophers may regard science as a means to obtain the truth through questioning, while scientists probably see science as a means of exploring a hypothesis by following a set of procedures. In a classroom, the teacher may encourage students to think of science as problem solving, obser- vation and description of the real world, discovery, seeking the truth, studying nature, turning facts into theories, organizing knowledge, using logic, or study- ing the universe. While all of these statements have a connection with science, each is only a part of science—only when they are put together do they begin to represent science. Science is learning about the world. All dimensions of science rather than an emphasis on only science content, support this learning. Knowledge is obtained through observations and investigations that can be substantiated by others. According to the National Research Council (NRC; 1999), explanations that cannot be based on empirical evidence are not part of science. Science is one subject that encourages concrete action (Wright & Wright, 1998). There are three aspects of science knowledge for which scientists are responsible—understand, explain, and apply. Careful observations, designed experimentation, and logical reasoning can accomplish these aspects.
    [Show full text]
  • Moral and Ethical Dimensions of Socioscientific Decision-Making As
    Troy D. Sadler Moral and Ethical Dimensions of Socioscientific Decision-Making as Integral Components of Scientific Literacy An argument is made that socioscientific decision-making occupies a seminal place in scientific literacy and attention to morality and ethics must be included in the science curriculum. Science educators have appropri- of socioscientific issues. This paper reform did not coin the phrase; in fact, it ated many meanings for the phrase reviews how the Science-Technol- has appeared in the literature for almost “scientific literacy” (Champagne & ogy-Society movement has addressed fifty years. Paul Hurd is credited with Lovitts, 1989). This paper advances socioscientific decision-making and first publishing the phrase in 1958, an argument that in order to main- outlines an alternative approach that but the notion that underlies scientific tain the usefulness of such a mal- more explicitly focuses on the moral literacy for all citizens can be traced leable phrase, its users must explicitly and ethical implications of socio- back to at least the beginning of the address the context of its use. Based scientific issues. century (Laugksch, 2000). Despite on the vision of science education (or maybe because of) the fact that articulated in standards documents Scientific Literacy Ambiguity scientific literacy has been a part of from the United States (American In the current era of standards and the landscape of science education Association for the Advancement of reform, the phrase “scientific literacy” for a considerable length of time, its Science, 1990); (National Research has garnered a great deal of attention meaning remains mired in debate. Council, 1996) and abroad (Council from the science education community.
    [Show full text]
  • Appendix B: Test of Scientific Literacy Skills
    Appendix B: Test of Scientific Literacy Skills Directions: There are 28 multiple-choice questions. You will have about 35 minutes to work on the questions. Be sure to answer as many of the questions as you can in the time allotted. You will receive attendance points for completing the entire assignment today. Your grade will depend on completeness and thoroughness, not on correct answers. But, try your best, your honest answers will help us better prepare the materials for the remainder of the semester. Mark your answers on the scantron sheet. Bubble in your #ID on your scantron. Do NOT use a calculator. Thank you for your participation in this project! 1. Which of the following is a valid scientific argument? a. Measurements of sea level on the Gulf Coast taken this year are lower than normal; the average monthly measurements were almost 0.1 cm lower than normal in some areas. These facts prove that sea level rise is not a problem. b. A strain of mice was genetically engineered to lack a certain gene, and the mice were unable to reproduce. Introduction of the gene back into the mutant mice restored their ability to reproduce. These facts indicate that the gene is essential for mouse reproduction. c. A poll revealed that 34% of Americans believe that dinosaurs and early humans co-existed because fossil footprints of each species were found in the same location. This widespread belief is appropriate evidence to support the claim that humans did not evolve from ape ancestors. d. This winter, the northeastern US received record amounts of snowfall, and the average monthly temperatures were more than 2°F lower than normal in some areas.
    [Show full text]
  • Dumbing It Down: Mass Media and Science Literacy in the Usa
    DUMBING IT DOWN: MASS MEDIA AND SCIENCE LITERACY IN THE USA. by Casey Forest Kanode A thesis submitted in partial fulfillment of the requirements for the degree of Master of Fine Arts in Science and Natural History Filmmaking MONTANA STATE UNIVERSITY Bozeman, Montana November 2015 ©COPYRIGHT by Casey Forest Kanode 2015 All Rights Reserved ii DEDICATION This work is dedicated to my amazing parents and my loving sister, for whom I would certainly not be where I am today. Their support has been vital in the pursuit of my passions. I also would like to dedicate this paper to my dog Jackson, for he never judges me and helps me to be a better person everyday. iii TABLE OF CONTENTS 1. INTRODUCTION............................................................................................................1 2. THE IMPORTANCE OF SCIENTIFIC LITERACY......................................................3 A Brief History.................................................................................................................3 Benefits to Individuals..................................................................................................... 4 Individual Risks of Low Scientific Literacy....................................................................6 Benefits to Society........................................................................................................... 7 Societal Risks of Low Scientific Literacy....................................................................... 9 3. NEGATIVE IMPACT OF MASS MEDIA ON PUBLIC
    [Show full text]