High-Yield Hydrogen Production from Biomass by in Vitro Metabolic Engineering: Mixed Sugars Coutilization and Kinetic Modeling

Total Page:16

File Type:pdf, Size:1020Kb

High-Yield Hydrogen Production from Biomass by in Vitro Metabolic Engineering: Mixed Sugars Coutilization and Kinetic Modeling High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling Joseph A. Rollina,b, Julia Martin del Campoa, Suwan Myunga,c, Fangfang Sunb, Chun Youa,b, Allison Bakovicd, Roberto Castroe, Sanjeev K. Chandrayanf, Chang-Hao Wuf, Michael W. W. Adamsf,g, Ryan S. Sengera, and Y.-H. Percival Zhanga,b,c,h,1 aDepartment of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061; bCell-Free Bioinnovations, Blacksburg, VA 24060; cInstitute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061; dDepartment of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202; eDepartment of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX 78363; fDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; gDepartment of Energy BioEnergy Science Center, Oak Ridge, TN 37831; and hTianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved March 10, 2015 (received for review September 13, 2014) The use of hydrogen (H2) as a fuel offers enhanced energy conver- generation technologies, such as microbial fermentation, gasifi- sion efficiency and tremendous potential to decrease greenhouse cation, steam reforming, and aqueous phase reforming (6, 10– gas emissions, but producing it in a distributed, carbon-neutral, 13), suffer from low product yields. For example, the hydrogen low-cost manner requires new technologies. Herein we demon- yield from microbial fermentations is limited to 4 H2/mol of strate the complete conversion of glucose and xylose from plant glucose. However, much higher hydrogen yields (>4H2/glucose) biomass to H2 and CO2 based on an in vitro synthetic enzymatic are critical to achieve their production economics because sugars pathway. Glucose and xylose were simultaneously converted to H2 usually account for more than half of biofuel production costs (14). with a yield of two H2 per carbon, the maximum possible yield. In vitro metabolic engineering is the construction of synthetic Parameters of a nonlinear kinetic model were fitted with experi- enzymatic pathways without cell membranes to carry out com- mental data using a genetic algorithm, and a global sensitivity plex biochemical reactions. In addition to its fundamental role in ENGINEERING analysis was used to identify the enzymes that have the greatest elucidating complicated cellular metabolism and regulation (15), impact on reaction rate and yield. After optimizing enzyme load- this field is emerging as a promising alternative biomanufactur- ings using this model, volumetric H2 productivity was increased ing platform, especially for the production of low-value and high- · −1· −1 3-fold to 32 mmol H2 L h . The productivity was further en- impact biofuels and biochemicals (16–18). In vitro metabolic · −1· −1 hanced to 54 mmol H2 L h by increasing reaction temperature, engineering has a number of advantages over whole-cell bio- substrate, and enzyme concentrations—an increase of 67-fold systems: high product yield without the formation of by-products compared with the initial studies using this method. The produc- or the synthesis of cell mass (19, 20); fast reaction rates, due to SCIENCES tion of hydrogen from locally produced biomass is a promising elimination of transport across a cell membrane (21, 22); easy APPLIED BIOLOGICAL means to achieve global green energy production. product separation (21, 23); tolerance of compounds that would be toxic to intact cells (24); broad reaction conditions (25); and hydrogen | biomass | in vitro metabolic engineering | metabolic network modeling | global sensitivity analysis Significance nlocking the tremendous potential of the hydrogen (H2) Hydrogen (H2) has great potential to be used to power pas- Ueconomy depends on the availability of low-cost, distributed senger vehicles. One solution to these problems is to distribute hydrogen produced in a carbon-neutral manner. Approximately and store renewable carbohydrate instead, converting it to 50 million metric tons of hydrogen produced from fossil fuels hydrogen as required. In this work more than 10 purified en- annually are used mainly for oil refining and ammonia synthesis zymes were combined into artificial enzymatic pathways and a (1). However, current thermochemical production options are high yield from both glucose and xylose to hydrogen was prohibitively expensive, especially for distributed production sys- achieved. Also, gaseous hydrogen can be separated from aque- tems, when infrastructure costs are considered (1, 2). Water elec- ous substrates easily, greatly decreasing product separation costs, trolysis is scalable and potentially renewably powered, but this and avoid reconcentrating sugar solutions. This study describes technology remains expensive (3). Water splitting powered by solar high-yield enzymatic hydrogen production from biomass sugars energy (4, 5) suffers from low solar-to-chemical energy conversion and an engineered reaction rate increase achieved through the efficiencies and low volumetric productivities and is far from use of kinetic modeling. Distributed hydrogen production based practical applications (5, 6). For the hydrogen economy to become on evenly distributed less-costly biomass could accelerate the reality, new technologies must be developed to meet increasing implementation of the hydrogen economy. needs while keeping both production costs and capital costs low and simultaneously reducing greenhouse gas emissions (7). Author contributions: J.A.R., R.S.S., and Y.-H.P.Z. designed research; J.A.R., J.M.d.C., S.M., Biomass is the most abundant renewable resource and is far F.S., C.Y., A.B., R.C., S.K.C., and C.-H.W. performed research; C.Y., S.K.C., C.-H.W., M.W.W.A., and R.S.S. contributed new reagents/analytic tools; J.A.R., R.S.S., and Y.-H.P.Z. analyzed data; more evenly distributed worldwide than fossil fuels. A 2011 and J.A.R., M.W.W.A., R.S.S., and Y.-H.P.Z. wrote the paper. biomass resource report suggested that over 1 billion tons of dry Conflict of interest statement: Y.-H.P.Z. and J.A.R. are cofounders and officers of Cell-Free biomass could be harvested sustainably in the United States by Bioinnovations. Y.-H.P.Z. is the coinventor of the enzymatic hydrogen production tech- 2050 and that farm gate prices of $60 per dry ton are feasible (8). nology (US patent 8211681). The predominant biomass sugars are glucose (C6) and xylose This article is a PNAS Direct Submission. (C5), accounting for more than 90% of the fermentable sugars in Freely available online through the PNAS open access option. plant cell walls. Microbial cofermentation of C6 and C5 sugars 1To whom correspondence should be addressed. Email: [email protected]. usually results in diauxic growth due to carbon catabolite re- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. pression, resulting in low volumetric productivity (9). Hydrogen 1073/pnas.1417719112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1417719112 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 nonnatural reactions, such as the enzymatic transformation of has been used to identify the key operating bottlenecks of kinetic cellulose to starch (23). If the half-life times of all enzymes in an and agent-based models (30, 31). Importantly, the predictions in vitro enzymatic pathway were similar to that of industrial made in this research were validated experimentally, and an glucose isomerase, which can produce more than 1,000,000 kg of improved volumetric hydrogen productivity rate was achieved. product per kilogram of enzyme, the catalyst cost of this bio- transformation would be a small fraction of product price, en- Results abling the production of biofuels and biochemicals at very low Two approaches were used to demonstrate (i) simultaneous, costs (16, 26). high-yield utilization of C5 and C6 biomass sugars and (ii) ra- In this study, we demonstrate for the first time to our knowl- tional metabolic engineering of the system for increased reaction edge the production of hydrogen directly from pretreated plant rate through the use of a kinetic model. For high-yield biomass biomass containing C5 and C6 sugars via in vitro metabolic en- utilization, one mesophilic enzyme, polyphosphate glucokinase gineering. In addition, a kinetic model was formulated using (PPGK) (discussed below), had to be used as a thermophilic multiple experimental datasets and was used to optimize the source and was not available. Because activity of this enzyme overall reaction rate and hydrogen yield. The relative simplicity significantly decreases above 40 °C (32), biomass utilization ex- of in vitro synthetic enzymatic pathways compared with whole periments were conducted at 40 °C to ensure complete conver- cells makes the overall system far easier to simulate and use sion. For reaction rate increase experiments, a simplified path- for predictions (15). Kinetic models for enzymatic hydrogen way was used, where phosphorylation enzymes were eliminated production have been used previously to optimize the reactor and glucose-6-phosphate was used as the substrate. Due to the design; however, experimental validation had not yet been use of only thermophilic enzymes in this pathway, the reaction performed (27). The problem of fitting kinetic parameters of temperature was 50 °C for these experiments.
Recommended publications
  • Microbial Structure and Energy Generation in Microbial Fuel Cells Powered with Waste Anaerobic Digestate
    energies Article Microbial Structure and Energy Generation in Microbial Fuel Cells Powered with Waste Anaerobic Digestate Dawid Nosek * and Agnieszka Cydzik-Kwiatkowska Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-89-523-4144; Fax: +48-89-523-4131 Received: 19 July 2020; Accepted: 7 September 2020; Published: 10 September 2020 Abstract: Development of economical and environment-friendly Microbial Fuel Cells (MFCs) technology should be associated with waste management. However, current knowledge regarding microbiological bases of electricity production from complex waste substrates is insufficient. In the following study, microbial composition and electricity generation were investigated in MFCs powered with waste volatile fatty acids (VFAs) from anaerobic digestion of primary sludge. Two anode sizes were tested, resulting in organic loading rates (OLRs) of 69.12 and 36.21 mg chemical oxygen demand (COD)/(g MLSS d) in MFC1 and MFC2, respectively. Time of MFC operation affected the microbial · structure and the use of waste VFAs promoted microbial diversity. High abundance of Deftia sp. and Methanobacterium sp. characterized start-up period in MFCs. During stable operation, higher OLR in MFC1 favored growth of exoelectrogens from Rhodopseudomonas sp. (13.2%) resulting in a higher and more stable electricity production in comparison with MFC2. At a lower OLR in MFC2, the percentage of exoelectrogens in biomass decreased, while the abundance of genera Leucobacter, Frigoribacterium and Phenylobacterium increased. In turn, this efficiently decomposed complex organic substances, favoring high and stable COD removal (over 85%).
    [Show full text]
  • Photosynthetic Electron Partitioning Between [Fefe]- Hydrogenase and Ferredoxin:Nadpþ-Oxidoreductase (FNR) Enzymes in Vitro
    Photosynthetic electron partitioning between [FeFe]- hydrogenase and ferredoxin:NADPþ-oxidoreductase (FNR) enzymes in vitro Iftach Yacobya,1, Sergii Pochekailova, Hila Toporikb, Maria L. Ghirardic, Paul W. Kingc,1, and Shuguang Zhanga,1 aCenter for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; cBiosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3305; and bDepartment of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel Edited by Alan R. Fersht, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom, and approved April 28, 2011 (receivedfor review March 5, 2011) Photosynthetic water splitting, coupled to hydrogenase-catalyzed hydrogen production, is considered a promising clean, renewable source of energy. It is widely accepted that the oxygen sensitivity of hydrogen production, combined with competition between hydrogenases and NADPH-dependent carbon dioxide fixation are the main limitations for its commercialization. Here we provide evi- dence that, under the anaerobic conditions that support hydrogen production, there is a significant loss of photosynthetic electrons toward NADPH production in vitro. To elucidate the basis for com- petition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADPþ-oxidoreductase (FNR), and NADPþ. Replacing BIOCHEMISTRY the hydrogenase with a ferredoxin-hydrogenase fusion switched the bias of electron transfer from FNR to hydrogenase and resulted in an increased rate of hydrogen photoproduction. These results suggest a new direction for improvement of biohydrogen produc- tion and a means to further resolve the mechanisms that control partitioning of photosynthetic electron transport.
    [Show full text]
  • Hydrogen Production Through Biocatalyzed Electrolysis [Phd Thesis]
    Hydrogen production through biocatalyzed electrolysis René Alexander Rozendal Promotor: Prof.dr.ir. C.J.N. Buisman Hoogleraar Biologische Kringlooptechnologie Sectie Milieutechnologie Co-promotor: Dr.ir. H.V.M. Hamelers Universitair Docent bij de sectie Milieutechnologie Promotiecommissie: Prof.dr. B.E. Logan Pennsylvania State University, USA Dr. R. Mulder Paques bv, Balk Prof.dr.ir. A.J.M. Stams Wageningen Universiteit Prof.dr.ing. M. Wessling Universiteit Twente Dit onderzoek is uitgevoerd binnen de onderzoekschool SENSE (Socio- Economic and Natural Sciences of the Environment). Hydrogen production through biocatalyzed electrolysis René Alexander Rozendal Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.dr. M.J. Kropff, in het openbaar te verdedigen op woensdag 24 oktober 2007 des namiddags te vier uur in het Auditorium van Hogeschool Van Hall Larenstein te Leeuwarden Rozendal, R.A., 2007. Hydrogen production through biocatalyzed electrolysis. PhD thesis Wageningen University, Wageningen, the Netherlands – with references – with summary in Dutch. ISBN 978-90-8504-731-5 “Imagination is more important than knowledge. For knowledge is limited to all we now know and understand, while imagination embraces the entire world, and all there ever will be to know and understand.” Albert Einstein Opgedragen aan Agnes Catharina Rozendal-Sjamaar (12/05/1917 - 04/08/2000) Abstract Rozendal, R.A, 2007. Hydrogen production through biocatalyzed electrolysis. PhD thesis Wageningen University, Wageningen, The Netherlands. Up till now, many wastewaters were unsuitable for biological hydrogen production due to the slightly endothermic nature of many of the involved reactions. This PhD thesis describes the first steps in the development of a novel technology for hydrogen production that is capable of overcoming this thermodynamic barrier.
    [Show full text]
  • Photobiological Hydrogen Production: Photochemical E Ciency and Bioreactor Design
    International Journal of Hydrogen Energy 27 (2002) 1195–1208 www.elsevier.com/locate/ijhydene Photobiological hydrogen production: photochemical e)ciency and bioreactor design Ida Akkermana; ∗, Marcel Janssenb, Jorge Rochac, RenÃe H. Wij1elsd aThe New Delta, Laan 1933-1, 6711 NX Ede, Netherlands bFood and Bioprocess Engineering Group, Wageningen University, Netherlands cChemical Engineering Department, University of Coimbra, Portugal dFood and Bioprocess Engineering Group, Wageningen University, Netherlands Abstract Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few e)ciencies reported on the conversion of light energy into hydrogen energy are low, less than 1.5% on a solar spectrum basis. However, these can be increased to 3–10%, by the immediate removal of produced oxygen. The photochemical e)ciency of hydrogen production can be calculated theoretically, and is estimated to be 10% (on solar spectrum basis) for the photoheterotrophic process. With use of the theoretical photochemical e)ciency, and the climatic data on sunlight irradiance at a certain location at a certain moment of the year, the theoretical maximum hydrogen production can be estimated. Data on H2 yields and photochemical e)ciency from experiments reported in the literature are summarized. Photochemical e)ciencies, essentially based on artiÿcial light, can reach 10% or even more, but only at low light intensities, with associated low-H2 production rates. Some re<ections on possible photobioreactors lead to two types of (modiÿed) photobioreactors that might be successful for a large-scale biological hydrogen production.
    [Show full text]
  • Photosynthetic Hydrogen and Oxygen Production by Green Algae
    -. PHOTOSYNTHETIC HYDROGEN AND OXYGEN PRODUCTION BY GREEN ALGAE E. Greenbaum and J. W. Lee Oak Ridge National Laboratory* P. 0. Box 2008 Oak Ridge, TN 37831 Submitted for Publication in the Proceedings of the International Conference on Biological Hydrogen Production BioHydrogen ‘97 June 23-26,1997 Waikoloa, HE Keywords: Photosystem I, Photosystem 11, reaction center, stoichiometricratios, saturating flash yields, hydrogen, oxygen, chlorophyll antenna size, Z-scheme, mutants, Chlamydomonas, energy conversion effrciency, hydrogenase, oxygen sensitivity *Managed by Lockheed Martin Energy Research Corp., for the US. Department of Energy under contract DE-AC05-960R22464. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or prwdisclosed. or represents that its use would not infringe privately owned rights. Reference herein to any sp cific commercial product, process, or service by trade name, trademark, manufac- turer, or otherwise does not nectssarily constitute or imply its endorsement, recorn- mendation, or favoring by the United States Government or any agency thenof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible electronic image products. images are produced from the best available original document. Summary An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented.
    [Show full text]
  • Inhibition of Respiration and Nitrate Assimilation Enhances Photohydrogen Evolution Under Low Oxygen Concentrations in Synechocystis Sp
    Biochimica et Biophysica Acta 1767 (2007) 161–169 www.elsevier.com/locate/bbabio Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803 ⁎ Franziska Gutthann, Melanie Egert, Alexandra Marques, Jens Appel Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, 24118 Kiel, Germany Received 19 October 2006; received in revised form 9 December 2006; accepted 12 December 2006 Available online 21 December 2006 Abstract In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII).
    [Show full text]
  • Enhancing Hydrogen Productivity of Photosynthetic Bacteria from the Formulated Carbon Components of Lignocellulose
    Enhancing Hydrogen Productivity of Photosynthetic Bacteria from the Formulated Carbon Components of Lignocellulose Chuan Zhang ( [email protected] ) North China University of Water Resource and Electric Power Guihong Wang North China University of Water Resources and Electric Power Shuaishuai Ma North China University of Water Resources and Electric Power Hao Huang North China University of Water Resources and Electric Power Yixiao Ma North China University of Water Resources and Electric Power Zhaoran Li North China University of Water Resources and Electric Power Research Article Keywords: Photofermentative hydrogen production, lignocellulose, photosynthetic bacterial growth, nitrogenase activity, response surface methodology (RSM) Posted Date: July 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-708580/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Enhancing hydrogen productivity of photosynthetic bacteria from the formulated carbon components of lignocellulose Chuan Zhanga,b*, Guihong Wanga, Shuaishuai Maa, Hao Huanga, Yixiao Maa, Zhaoran Lia,b a School of Electric Power, North China University of Water Resource and Electric Power, No.36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People’s Republic of China b Key Laboratory of Low-grad Energy Utilization Technologies and Systems (Ministry of Education), Chongqing Universtity, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, People’s Republic of China ABSTRACT To develop an efficient photofermentative
    [Show full text]
  • Hybrid Strategies to Combine Dark Fermentation and Photo
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Archive, E-prints Repository Redwood et al. - Dual systems for Bio-H2 – Reviews in Environ. Sci. Bio/Technol. 8:149 1 http://dx.doi.org/10.1007/s11157-008-9144-9 Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy Mark D. Redwood, Marion Paterson-Beedle and Lynne E. Macaskie School of Biosciences, University of Birmingham Correspondence should be addressed to Dr Mark D. Redwood, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Tel: +44 1214145889 Fax: +44 1214145925 e-mail: [email protected] Keywords: bio-hydrogen, bioenergy, renewable energy, hydrogen economy, dark fermentation, dual systems, photosynthesis. Abstract Biological methods of hydrogen production are preferable to chemical methods because of the possibility to use sunlight, CO2 and organic wastes as substrates for environmentally benign conversions, under moderate conditions. By combining different microorganisms with different capabilities, the individual strengths of each may be exploited and their weaknesses overcome. Mechanisms of bio-hydrogen production are described and strategies for their integration are discussed. Dual systems can be divided broadly into wholly light-driven systems (with microalgae/cyanobacteria as the 1st stage) and partially light-driven systems (with a dark, fermentative initial reaction). Review and evaluation of published data suggests that the latter type of system holds greater promise for industrial application. This is because the calculated land area required for a wholly light-driven dual system would be too large for either centralised (macro-) or decentralised (micro-)energy generation.
    [Show full text]
  • H2 Production Pathways in Nutrient-Replete Mixotrophic
    González‑Ballester et al. Biotechnol Biofuels (2017) 10:117 DOI 10.1186/s13068-017-0801-5 Biotechnology for Biofuels COMMENTARY Open Access H2 production pathways in nutrient‑replete mixotrophic Chlamydomonas cultures under low light. Response to the commentary article “On the pathways feeding the ­H2 production process in nutrient‑replete, hypoxic conditions,” by Alberto Scoma and Szilvia Z. Tóth David González‑Ballester* , Jose Luis Jurado‑Oller, Aurora Galván, Emilio Fernández and Alexandra Dubini Abstract Background: A recent Commentary article entitled “On the pathways feeding the H­ 2 production process in nutrient- replete, hypoxic conditions” by Dr. Scoma and Dr. Tóth, Biotechnology for Biofuels (2017), opened a very interesting debate about the ­H2 production photosynthetic-linked pathways occurring in Chlamydomonas cultures grown in acetate-containing media and incubated under hypoxia/anoxia conditions. This Commentary article mainly focused on the results of our previous article “Low oxygen levels contribute to improve photohydrogen production in mixo‑ trophic non-stressed Chlamydomonas cultures,” by Jurado-Oller et al., Biotechnology for Biofuels (7, 2015; 8:149). Main body: Here, we review some previous knowledge about the ­H2 production pathways linked to photosynthesis in Chlamydomonas, especially focusing on the role of the PSII-dependent and -independent pathways in acetate- containing nutrient-replete cultures. The potential contributions of these pathways to ­H2 production under anoxia/ hypoxia are discussed. Conclusion: Despite the fact that the PSII inhibitor DCMU is broadly used to discern between the two diferent pho‑ tosynthetic pathways operating under ­H2 production conditions, its use may lead to distinctive conclusions depend‑ ing on the growth conditions. The diferent potential sources of reductive power needed for the PSII-independent ­H2 production in mixotrophic nutrient-replete cultures are a matter of debate and conclusive evidences are still missing.
    [Show full text]
  • Hydrogenase and Ferredoxin:NADP -Oxidoreductase (FNR)
    Photosynthetic electron partitioning between [FeFe]- hydrogenase and ferredoxin:NADPþ-oxidoreductase (FNR) enzymes in vitro Iftach Yacobya,1, Sergii Pochekailova, Hila Toporikb, Maria L. Ghirardic, Paul W. Kingc,1, and Shuguang Zhanga,1 aCenter for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; cBiosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3305; and bDepartment of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel Edited by Alan R. Fersht, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom, and approved April 28, 2011 (receivedfor review March 5, 2011) Photosynthetic water splitting, coupled to hydrogenase-catalyzed hydrogen production, is considered a promising clean, renewable source of energy. It is widely accepted that the oxygen sensitivity of hydrogen production, combined with competition between hydrogenases and NADPH-dependent carbon dioxide fixation are the main limitations for its commercialization. Here we provide evi- dence that, under the anaerobic conditions that support hydrogen production, there is a significant loss of photosynthetic electrons toward NADPH production in vitro. To elucidate the basis for com- petition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADPþ-oxidoreductase (FNR), and NADPþ. Replacing the hydrogenase with a ferredoxin-hydrogenase fusion switched the bias of electron transfer from FNR to hydrogenase and resulted in an increased rate of hydrogen photoproduction. These results suggest a new direction for improvement of biohydrogen produc- tion and a means to further resolve the mechanisms that control partitioning of photosynthetic electron transport.
    [Show full text]
  • Dark Fermentation (4 H2 /Glucose + 2 Acetates);
    Overview of microbial hydrogen production Carolina Zampol Lazaro Stagiaire postdoctoral – Université de Montréal Supervisor: Prof. Dr. Patrick Hallenbeck Senior Research Associate, National Research Council Department of Biology, US Air Force Academy Reduction of CO2 with Hydrogen Actual hydrogen production: natural gas via steam methane reforming (> 90%) Barrier to overcome: sustainable hydrogen production - electrolysis of water and biomass processing (using a variety of technologies ranging from reforming to fermentation). Biological hydrogen producing microorganisms Great diversity! Metabolic versatility! Source: Chandrasekhar, K., Lee, Y.-J., & Lee, D.-W. (2015). Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. International Journal of Molecular Sciences, 16(4). Overview of the 50-L horizontal tubular photobioreactor Biophotolysis used for outdoor experiments with C. reinhardtii • Abundant substrate = H2O • Abundant energy source = sun light • Simple products: H2 and O2 • Oxygen sensitive hydrogenase • Low light conversion efficiencies Source: Scoma, A., Giannelli, L., Faraloni, C., & Torzillo, G. (2012). Outdoor H(2) production in a 50-L tubular photobioreactor by means of a sulfur-deprived • Expensive hydrogen impermeable culture of the microalga Chlamydomonas reinhardtii. J Biotechnol, 157(4), 620- photobioreactors required 627. Indirect biophotolysis by Nonheterocystous Cyanobacteria • Separation of the H2 and O2 evolution reactions 1- Production of the biomass (carbohydrates) -
    [Show full text]
  • Waste Biomass Based Biorefinery
    Biofuels (H2, CH4, Ethanol) Waste Biomass Energy and Waste based Environmental Treatment Biorefnery Sustainability Biochemicals (organic acids) Anish Ghimire Joint PhD degree in Environmental Technology Docteur de l’Université Paris-Est Spécialité : Science et Technique de l’Environnement Dottore di Ricerca in Tecnologie Ambientali Degree of Doctor in Environmental Technology Thèse – Tesi di Dottorato – PhD thesis Anish Ghimire Dark fermentative biohydrogen production from organic waste and application of by-products in a biorefinery concept Defended on December 17th, 2015 In front of the PhD committee Prof. Dr. Ing. Massimiliano Fabbricino Reviewer Prof. Dr. Ing. Raffaella Pomi Reviewer Dr. Hab. E.D. van Hullebusch Examiner Prof. Dr. Ing. Giovanni Esposito Promotor Prof. Dr. Ir. Piet N.L. Lens Co-promotor Prof. Dr. Ing. Francesco Pirozzi Co-promotor Prof. Michel Madon Co-promotor Erasmus Joint doctorate programme in Environmental Technology for Contaminated Solids, Soils and Sediments (ETeCoS3) i Thesis committee Thesis Promotor Prof. Dr. Ing. G. Esposito, Associate Professor of Sanitary and Environmental Engineering University of Cassino and Southern Lazio, Cassino, Italy Thesis co-promotors and supervisors Prof. Dr. Ir. P.N.L. Lens Professor of Biotechnology UNESCO-IHE, Delft, The Netherlands Prof. Dr. Ing. Francesco Pirozzi Professor of Sanitary and Environmental Engineering University of Naples Federico II, Naples, Italy Dr. Ing. L. Frunzo Assistant Professor in Applied Mathematics University of Naples “Federico II”, Naples, Italy Dr. R. Escudié Research Scientist Laboratory of Environmental Biotechnology (LBE), INRA, Narbonne, France Dr. E. Trably Research Scientist Laboratory of Environmental Biotechnology (LBE), INRA, Narbonne, France Prof. Michel Madon Professor University of Paris-Est, France Other members Prof.
    [Show full text]