Imaging Nucleic Acid Gels on the Odyssey Fc Imager
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gelred® and Gelgreen® Safety Report
Safety Report for GelRed® and GelGreen® A summary of mutagenicity and environmental safety test results from three independent laboratories for the nucleic acid gel stains GelRed® and GelGreen® www.biotium.com General Inquiries: [email protected] Technical Support: [email protected] Phone: 800-304-5357 Conclusion Overview GelRed® and GelGreen® are a new generation of nucleic acid gel stains. Ethidium bromide (EB) has been the stain of choice for nucleic acid gel They possess novel chemical features designed to minimize the chance for staining for decades. The dye is inexpensive, sufficiently sensitive and very the dyes to interact with nucleic acids in living cells. Test results confirm that stable. However, EB is also a known powerful mutagen. It poses a major the dyes do not penetrate latex gloves or cell membranes. health hazard to the user, and efforts in decontamination and waste disposal ultimately make the dye expensive to use. To overcome the toxicity problem In the AMES test, GelRed® and GelGreen® are noncytotoxic and of EB, scientists at Biotium developed GelRed® and GelGreen® nucleic acid nonmutagenic at concentrations well above the working concentrations gel stains as superior alternatives. Extensive tests demonstrate that both used in gel staining. The highest dye concentrations shown to be non-toxic dyes have significantly improved safety profiles over EB. and non-mutagenic in the Ames test for GelRed® and GelGreen® dyes are 18.5-times higher than the 1X working concentration used for gel casting, and 6-times higher than the 3X working concentration used for gel staining. This Dye Design Principle is in contrast to SYBR® Safe, which has been reported to show mutagenicity At the very beginning of GelRed® and GelGreen® development, we made a in several strains in the presence of S9 mix (1). -
Comparison of Nucleic Acid Gel Stains Cell Permeability, Safety, And
Glowing Products for Science™ www.biotium.com February 1, 2017 Comparison of Nucleic Acid Gel Stains Cell permeability, safety, and sensitivity of ethidium bromide alternatives Mikhail Guzaev, Xue Li, Candice Park, Wai-Yee Leung, and Lori Roberts Biotium, Inc., Fremont, CA Introduction Chemical analysis Nucleic acid gel stains were analyzed by thin layer chromatography (TLC). Dye Ethidium bromide has been used for decades to detect nucleic acids in agarose gels absorbance spectra were measured using a Beckman Coulter DU-800 UV-visible because it is inexpensive, sensitive enough for routine applications, and simple to spectrophotometer. Dye fluorescence emission spectra were measured in the presence use. However, because ethidium bromide has been shown to be mutagenic in the of double stranded DNA using a Hitachi F-4500 fluorescence spectrophotometer. Mass Ames test, it is potentially hazardous to laboratory workers and the environment, and spectrometry (LC-MS) was performed on an Agilent 6130 Quadrupole System. C18 institutions commonly require it to be disposed of as hazardous waste. Because of this, reverse phase HPLC was performed on an Agilent 1100 Series System. DAPI (catalog many users seek to find safer alternatives to ethidium bromide for gel electrophoresis. no. 40011), propidium iodide (catalog no. 40016), and acridine orange (catalog no. Biotium developed red fluorescent GelRed™ and green fluorescent GelGreen™ as 40039) from Biotium were used as reference dyes. Acridine orange from Sigma-Aldrich safer replacements for ethidium bromide. GelRed™ and GelGreen™ are non-toxic and (catalog no. 235474) also was used for reference. non-mutagenic because they do not bind DNA in living cells due to their membrane impermeability. -
(12) United States Patent (10) Patent No.: US 9,102,835 B2 Mao Et Al
US009102835B2 (12) United States Patent (10) Patent No.: US 9,102,835 B2 Mao et al. (45) Date of Patent: *Aug. 11, 2015 (54) METHODS OF USING DYES IN (56) References Cited ASSOCATION WITH NUCLECACD STAINING ORDETECTION AND U.S. PATENT DOCUMENTS ASSOCATED TECHNOLOGY 4,883,867 A 11/1989 Lee et al. 5,118,801 A 6/1992 Lizardi et al. (71) Applicant: Biotium, Inc., Hayward, CA (US) 5,210,015 A 5/1993 Gelfand et al. 5,312,728 A 5/1994 Lizardi et al. 5,321,130 A 6/1994 Yue et al. (72) Inventors: Fei Mao, Fremont, CA (US); Wai-Yee 5,401,847 A 3, 1995 Glazer et al. Leung, San Ramon, CA (US) 5,403,928 A 4/1995 Arrhenuis 5,410,030 A 4/1995 Yue et al. (73) Assignee: BIOTIUM, INC., Hayward, CA (US) 5,436,134 A 7/1995 Haugland et al. 5,445,946 A 8, 1995 Roth et al. 5,534.416 A 7/1996 Millard et al. (*) Notice: Subject to any disclaimer, the term of this 5,538,848 A 7/1996 Livak et al. patent is extended or adjusted under 35 5,545,535 A 8, 1996 Roth et al. U.S.C. 154(b) by 0 days. 5,582,977 A 12/1996 Yue et al. 5,646,264 A 7/1997 Glazer et al. This patent is Subject to a terminal dis 5,656,449 A 8, 1997 Yue claimer. 5,658,751 A 8, 1997 Yue et al. 5,691,146 A 1 1/1997 Mayrand 5,763,162 A 6/1998 Glazer et al. -
Imaging Nucleic Acid Gels on Odyssey® Imagers
Application Guide Imaging Nucleic Acid Gels on Odyssey® Imagers Published July 2021. The most recent version of this document is posted at licor.com/bio/support. Page 2 - Imaging Nucleic Acid Gels on Odyssey® Imagers Table of Contents Page I. Background 2 II. Introduction 3 III. Stain Comparison 4 IV. Separation and Detection Protocol 5 Suggested Materials 5 In-Gel Prestaining 6 Post-Electrophoresis Staining 7 E-Gel® Pre-Cast Agarose Gels 8 V. Imaging Protocol 8 I. Background A common method for separating and analyzing nucleic acid molecules is nucleic acid gel electrophoresis. Nucleic acid gel electrophoresis separates nucleic acids based on molecular size and subsequent ability to move through an agarose gel. Depending on the experiment, a nucleic acid sample can be stained during or after separation. The gel is placed in the electrophoresis apparatus and buffer added to submerge the gel. Nucleic acid samples and size markers are loaded then separated on the gel using an electric field. The stained and separated nucleic acid molecules are visualized in the gel then compared to the band markers to estimate their sizes. There are numerous commercial stains that may be appropriate for imaging the results of nucleic acid electrophoresis. Common stains include Ethidium Bromide (EtBr), SYBR® Safe DNA stain, SYTO™ 60 Nucleic Acid Stain, and GelRed® Nucleic Acid Stain. Note: Always verify that a stain’s excitation and emission wavelengths are compatible with the intended instrument prior to use. Imaging Nucleic Acid Gels on Odyssey® Imagers - Page 3 II. Introduction This technical note explains the respective stain imaging capabilities of each Odyssey® Imager and the D-DiGit® Gel Scanner and how to effectively detect and image results.