Omega-3 Polyunsaturated Fatty Acid Status and Frontoparietal Cortex Structure

Total Page:16

File Type:pdf, Size:1020Kb

Omega-3 Polyunsaturated Fatty Acid Status and Frontoparietal Cortex Structure Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: http://www.tandfonline.com/loi/ynns20 Determinants of fluid intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure Marta K. Zamroziewicz, Erick J. Paul, Chris E. Zwilling & Aron K. Barbey To cite this article: Marta K. Zamroziewicz, Erick J. Paul, Chris E. Zwilling & Aron K. Barbey (2017): Determinants of fluid intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure, Nutritional Neuroscience, DOI: 10.1080/1028415X.2017.1324357 To link to this article: http://dx.doi.org/10.1080/1028415X.2017.1324357 Published online: 11 May 2017. Submit your article to this journal Article views: 1708 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Download by: [179.179.188.14] Date: 16 June 2017, At: 19:25 Determinants of fluid intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure Marta K. Zamroziewicz 1,2,3, Erick J. Paul1,2, Chris E. Zwilling 1,2, Aron K. Barbey 1,2,3,4,5,6,7 1Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, 2Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, 3Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, 4Department of Psychology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, 5Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL 61801, USA, 6Department of Internal Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, 7Institute for Genomic Biology, University of Illinois Urbana- Champaign, Champaign, IL 61801, USA Introduction: Accumulating evidence indicates that cognitive decline depends not only upon changes in brain health, but critically, also upon nutritional status. Decline in fluid intelligence, one of the most debilitating aspects of cognitive aging, has been linked to omega-3 polyunsaturated fatty acid (PUFA) status; however, it is not known whether this phenomenon results from specific omega-3 PUFAs acting on particular aspects of brain health. Therefore, this study aims to explore whether particular patterns of omega-3 PUFAs influence fluid intelligence by supporting specific neural structures. Methods: We measured six plasma phospholipid omega-3 PUFAs, fluid intelligence, and regional gray matter volume in the frontal and parietal cortices in 100 cognitively intact older adults (65–75 years old). A four-step mediation analysis was implemented using principal component analysis and multivariate linear regressions, adjusted for age, gender, education, and body mass index. Results: The mediation analysis revealed that one pattern of omega-3 PUFAs, consisting of alpha-linolenic acid, stearidonic acid, and eicosatrienoic acid, was linked to fluid intelligence, and that total gray matter volume of the left frontoparietal cortex (FPC) fully mediated the relationship between this omega-3 PUFA pattern and fluid intelligence. Discussion: These data demonstrate that fluid intelligence may be optimally supported by specific omega-3 PUFAs through preservation of FPC gray matter structure in cognitively intact older adults. This report provides novel evidence for the benefits of particular omega-3 PUFA patterns on fluid intelligence and underlying gray matter structure. Keywords: Nutrient biomarkers, Nutrient biomarker patterns, Cognitive performance, Cognitive aging, Cortical integrity, Brain aging, Nutritional cognitive neuroscience Introduction growth in the proportion of older adults, the search Nutrition has increasingly been recognized for its for effective strategies to promote healthy brain ability to help prevent and protect against disease, aging provides a catalyst for research to investigate and at the frontiers of this effort is research within the beneficial effects of nutrition on the aging brain. the emerging interdisciplinary field of Nutritional In the absence of neurodegenerative disease, decline Cognitive Neuroscience. This line of work demon- in fluid intelligence presents as one of the most debil- strates that cognitive decline depends not only upon itating aspects of cognitive aging.2 Fluid intelligence changes in brain structure and brain function, but cri- refers to the intellectual abilities required for adaptive tically, also upon dietary intake and nutritional problem solving in novel situations, and reflects the status.1 As the United States experiences rapid capacity to creatively and flexibly grapple with the world in ways that do not rely on prior knowledge.3 Correspondence to: Aron K. Barbey, Decision Neuroscience Laboratory, A fundamental issue in the study of cognitive aging Beckman Institute for Advanced Science and Technology, University of has historically been whether fluid intelligence can Illinois, Urbana, IL 61801, USA. 4 Email: [email protected]; http://DecisionNeuroscienceLab.org/ be maintained in late adulthood. Indeed, recent ©2017InformaUKLimited,tradingasTaylor&FrancisGroup DOI 10.1080/1028415X.2017.1324357 Nutritional Neuroscience 2017 1 Zamroziewicz et al. Determinants of fluid intelligence in healthy aging evidence indicates that age-related decline in fluid cognitive training or dietary intervention studies, and intelligence is mediated by nervous system health, contraindications for magnetic resonance imaging highlighting the potential for intervention by neuro- (MRI). All participants were right handed with protective nutrients.5 normal, or corrected to normal vision and no contra- Increasing evidence suggests that omega-3 (n-3) indication for MRI. Of these 122 participants, 22 par- polyunsaturated fatty acids (PUFAs) benefit the ticipants did not have a complete dataset, which aging brain.6 PUFAs are known to contribute to included neuropsychological testing, MRI, and structural integrity of neuronal membranes, control blood biomarker analysis. Therefore, 100 participants inflammation and oxidation, and promote energy were considered in the current analysis. metabolism.7 Omega-3 PUFAs have been linked to the preservation of cognitive functions vulnerable to Standard protocol approval and participant age-related decline, including fluid intelligence.8 consent However, it is not known which brain structures n-3 This study was approved by the University of Illinois PUFAs may act upon to support fluid intelligence, Institutional Review Board and the Carle Hospital and whether particular patterns of n-3 PUFAs prefer- Institutional Review Board and, in accordance with entially provide support. the stated guidelines, all participants read and signed Fluid intelligence engages a distributed brain circuit informed consent documents. within the frontal and parietal cortex.9,10 Specifically, fluid intelligence is linked to structural integrity and Biomarker acquisition and analysis neural activity within the lateral prefrontal and Plasma lipids were extracted by the method of Folch posterior parietal cortices, regions cumulatively et al.16 Briefly, the internal standard (25 μgeachof referred to as the frontoparietal cortex (FPC).11,12 PC17:0) was added to 200 μl of serum, followed by Importantly, n-3 PUFAs slow age-related structural 6 ml of choloroform:methanol:BHT (2:1:100 v/v/w). decline in the FPC,13,14 and in this way, could The protein precipitate was removed by centrifugation prevent age-related decline in fluid intelligence. Thus, (2500 g, 5 minutes, 4°C). Then 1.5 ml of 0.88% KCl the FPC plays a critical role in fluid intelligence and was added to the supernatant, shaken vigorously and is amenable to n-3 PUFAs, making it a target region the layers were allowed to settle for 5 minutes. The of interest for investigating the impact of n-3 PUFAs upper layer was discarded and 1 ml of distilled water: on the cognitive and neural mechanisms of fluid methanol (1:1 v/v) was added, the tube was shaken intelligence. again and the layers were allowed to settle for 15 In summary, one of the most debilitating aspects of minutes. The lower layer was transferred into a clean cognitive aging, decline in fluid intelligence and tube and evaporated to dryness under nitrogen. The degeneration of the underlying FPC, may be amelio- phospholipid subfraction was separated by solid- rated by n-3 PUFA intake. However, it is not known phase extraction using aminopropyl columns, as whether particular patterns of n-3 PUFAs influence described by Aryen et al.17 Then the phospholipid core brain regions to support fluid intelligence. fraction was methylated by adding 2 ml of 14% BF3- Therefore, this study aims to (i) identify nutritional MeOH and incubating at 95°C for 1 hour.18 The biomarkers of fluid intelligence by empirically deriv- supernatant containing the fatty acid methyl esters ing patterns of n-3 PUFAs and (ii) distinguish the (FAMEs) was dried down under nitrogen, resuspended neural structures that mediate the beneficial effect of in 100 μl of hexane, transferred into amber GC vials, n-3 PUFAs on fluid intelligence. and stored at −20°C until the time of analysis. The phospholipid FAMEs were analyzed by a Materials and methods CLARUS 650 gas chromatograph (Perkin Elmer, Study participants Boston, MA, USA) equipped with a 100 m × This cross-sectional
Recommended publications
  • Dietary Recommendations for the Prevention of Depression
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: https://www.tandfonline.com/loi/ynns20 Dietary recommendations for the prevention of depression R.S. Opie, C. Itsiopoulos, N. Parletta, A. Sanchez-Villegas, T.N. Akbaraly, A. Ruusunen & F.N. Jacka To cite this article: R.S. Opie, C. Itsiopoulos, N. Parletta, A. Sanchez-Villegas, T.N. Akbaraly, A. Ruusunen & F.N. Jacka (2017) Dietary recommendations for the prevention of depression, Nutritional Neuroscience, 20:3, 161-171, DOI: 10.1179/1476830515Y.0000000043 To link to this article: https://doi.org/10.1179/1476830515Y.0000000043 Published online: 02 Mar 2016. Submit your article to this journal Article views: 2048 View Crossmark data Citing articles: 15 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Dietary recommendations for the prevention of depression R.S. Opie1,2, C. Itsiopoulos1,2, N. Parletta2,3, A. Sanchez-Villegas2,4,5, T.N. Akbaraly2,6,7,8,9, A. Ruusunen2,10,11, F.N. Jacka2,12,13,14,15 1School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia, 2International Society for Nutritional Psychiatry Research (ISNPR), Melbourne, Australia, 3Sansom Institute of Health Research, Division of Health Sciences, University of South Australia, Adelaide, Australia, 4Nutrition Research Group, Research Institute of Biomedical and Health Sciences,
    [Show full text]
  • Eating on Purpose 1__1__1__1__1
    EATING ON PURPOSE: CREATING RECIPES FROM THE SCIENTIFIC EFFECTS OF FOOD ON THE MIND AND BODY Thesis Supervisor: ________________________________ Dhiraj Vattem, Ph.D. Department of Family and Consumer Sciences Second Reader: __________________________________ Sylvia Crixell, Ph.D. Department of Family and Consumer Sciences Approved: ____________________________________ Heather C. Galloway, Ph.D. Director of the University Honors Program EATING ON PURPOSE: CREATING RECIPES FROM THE SCIENTIFIC EFFECTS OF FOOD ON THE MIND AND BODY HONORS THESIS Presented to the Honors Committee of Texas State University-San Marcos in Partial Fulfillment of the Requirements for Graduation in the University Honors Program by Karissa Michelle Reiter San Marcos, Texas May 2011 Abstract The industrial revolution introduced significant advances in the healthcare system, extending average life expectancy through the elimination or control of acute diseases. However, our food system was industrialized as well, replacing fresh foods with processed food products and omega-3 with omega-6 fatty acids in the diet, aggravating chronic disease. As interest the relationship between nutrition and health has risen among scientific study and in the public, the benefits of eating particular foods has become a hot topic in the media. However, media claims tend to be suggestive and lacking in hard evidence, so my project became an investigation of these suggestions for efficacy in peer-reviewed journal articles. I then compiled the scientific evidence for the effects of food on the mind and body and created purposeful recipes for the conscious eater. Eating on Purpose Nutritional neuroscience is the scientific examination of the relationships between human behavior and nutrition (Lieberman 2005).
    [Show full text]
  • NUTB 243 – Nutrition, Brain & Behavior
    NUTB 243 – Nutrition, Brain & Behavior Tufts University, Friedman School of Nutrition Science and Policy Fall 2020 Instructor: Grace E. Giles, PhD Contact Information: [email protected], Skype or Zoom by arrangement Graduate Credits: 1.5 Semester hour units (SHUs) Prerequisites: NUTB 205 and NUTB 305, or permission of instructor Course Description: This course examines the bidirectional relationship between food consumption and human behavior, i.e. how our dietary choices influence behavior and vice versa. The semester will be divided into two components: (1) how nutrition impacts the brain and behavior and (2) how cognitions impact food choice and intake. Topics to be discussed during the semester include how macronutrients (carbohydrate, protein, fat) and micronutrients (vitamins and minerals) influence brain function, as well as how we choose how much and what to eat, and in relation to normal and “disordered” eating. Course Objectives: ❖ Critically read peer-reviewed articles: By this point in your graduate career, you likely have experience reading and interpreting peer-reviewed articles. In this course, you will build on this skill by analyzing individual articles for strengths and weaknesses beyond those stated in the Discussion section, and learn how to synthesize the findings from a particular area of interest. ❖ Become a jack of all trades, and a master of one: In order to get a taste of the scope of research in the field of nutrition and behavior, you will read articles on a variety of topics, ranging from caffeine and cognitive performance to eating disorders and food restriction. You will also choose one topic you find interesting and delve into it in more depth.
    [Show full text]
  • Effect of Nutrition on Neurodegenerative Diseases. a Systematic Review
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: https://www.tandfonline.com/loi/ynns20 Effect of nutrition on neurodegenerative diseases. A systematic review Vittorio Emanuele Bianchi, Pomares Fredy Herrera & Rizzi Laura To cite this article: Vittorio Emanuele Bianchi, Pomares Fredy Herrera & Rizzi Laura (2019): Effect of nutrition on neurodegenerative diseases. A systematic review, Nutritional Neuroscience, DOI: 10.1080/1028415X.2019.1681088 To link to this article: https://doi.org/10.1080/1028415X.2019.1681088 Published online: 04 Nov 2019. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ynns20 NUTRITIONAL NEUROSCIENCE https://doi.org/10.1080/1028415X.2019.1681088 REVIEW Effect of nutrition on neurodegenerative diseases. A systematic review Vittorio Emanuele Bianchi a, Pomares Fredy Herrerab and Rizzi Laurac aEndocrinology and Metabolism, Clinical Center Stella Maris Falciano, Falciano, San Marino; bDirector del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia; cMolecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy ABSTRACT KEYWORDS Neurodegenerative diseases are characterized by the progressive functional loss
    [Show full text]
  • Dietary Neurotransmitters: a Narrative Review on Current Knowledge
    nutrients Review Dietary Neurotransmitters: A Narrative Review on Current Knowledge Matteo Briguglio 1,* ID , Bernardo Dell’Osso 2,3, Giancarlo Panzica 4 ID , Antonio Malgaroli 5, Giuseppe Banfi 6, Carlotta Zanaboni Dina 1, Roberta Galentino 1 and Mauro Porta 1 1 Tourette’s Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; [email protected] (C.Z.D.); [email protected] (R.G.); [email protected] (M.P.) 2 Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA 4 Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy; [email protected] 5 Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 6 Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; banfi[email protected] * Correspondence: [email protected]; Tel.: +39-338-608-7042 Received: 13 April 2018; Accepted: 8 May 2018; Published: 13 May 2018 Abstract: Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs.
    [Show full text]
  • The Role of Polar Lipids in Brain & Cognitive Development
    The Role of Polar lipids in brain & cognitive development Pascal Steiner PhD March 10, 2020 Brain Development and Cognition Optimal brain development is a foundation for a prosperous and sustainable society Center for the Developing Child, HARVARD UNIVERSITY Cognitive Potential Promote Cognitive Development Support Cognitive Performance Lifelong Benefits Cognitive Performance Cognitive Infant/Child Adult Elderly 2 07.04.2020 Presentation Outline • Brain development and maturation • Importance of myelin formation for cognition • Role of polar lipids in brain and cognitive development 3 07.04.2020 Ramón y Cajal & the “neuron doctrine” (1891) STRUCTURE (1a) The brain is composed of discrete individual signaling elements (neurons) (1b) Information passes from neuron to neuron across gaps (synapses) (2) Information is polarized Ramón y Cajal (1893–1894) FUNCTION (3) “It is feasible that mental exercise leads to increase growth of neuronal branches and cell junctions (synapse)” SYNAPTIC PLASTICITY The brain is more than neurons Neuron • Neuron: information transmission and processing • Astrocyte: brain energy provider Blood vessel information transmission modulator Oligodendrocyte Astrocyte • Microglia: guardian of the brain Myelin • Oligodendrocyte: information transmission facilitator Synapse • Endothelial cell / pericyte: (blood vessels) Microglia filter/supplier 5 07.04.2020 • 90 billion neurons (100,000,000,000)3 • 100 billion non-neuron cells (100,000,000,000) • 1 quadrillion synapses (1,000,000,000,000,000) • 100 km of nerves • 600 km of blood vessels3 • Adult brain comprises 2% of total body weight but consumes 20% of total energy4 .1. Leuret and Gratiolet, 1854; 2. Kasthuri N, et al. Cell 2015;162:648–681; 3. Wong A, et al. Front Neuroengineering 2013;6:1–22; 4.
    [Show full text]
  • Evaluation of Dietary Intake in Children and College Students with and Without Attention-Deficit/ Hyperactivity Disorder
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: http://www.tandfonline.com/loi/ynns20 Evaluation of dietary intake in children and college students with and without attention-deficit/ hyperactivity disorder Kathleen F. Holton, Jeanette M. Johnstone, Elizabeth T. Brandley & Joel T. Nigg To cite this article: Kathleen F. Holton, Jeanette M. Johnstone, Elizabeth T. Brandley & Joel T. Nigg (2018): Evaluation of dietary intake in children and college students with and without attention- deficit/hyperactivity disorder, Nutritional Neuroscience, DOI: 10.1080/1028415X.2018.1427661 To link to this article: https://doi.org/10.1080/1028415X.2018.1427661 Published online: 23 Jan 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Evaluation of dietary intake in children and college students with and without attention- deficit/hyperactivity disorder Kathleen F. Holton 1*, Jeanette M. Johnstone 2,3*, Elizabeth T. Brandley4, Joel T. Nigg 3 1Center for Behavioral Neuroscience, Department of Health Studies, American University, Washington, DC, USA, 2Department of Neurology, Oregon Health & Science University, Portland, OR, USA, 3Department of Child and Adolescent Psychiatry, Oregon Health & Science University, Portland, OR, USA, 4Department of Health Studies, American University, Washington, DC, USA Objectives: To evaluate dietary intake among individuals with and without attention-deficit hyperactivity disorder (ADHD), to evaluate the likelihood that those with ADHD have inadequate intakes. Methods: Children, 7–12 years old, with (n = 23) and without (n = 22) ADHD, and college students, 18–25 years old, with (n = 21) and without (n = 30) ADHD comprised the samples.
    [Show full text]
  • TITLE Prefrontal Cortex Neuromodulation Enhances Frontal
    TITLE Prefrontal cortex neuromodulation enhances frontal asymmetry and reduces caloric intake in patients with morbid obesity. AUTHOR NAMES AND AFFILIATIONS Laura Forcano a, b*, Marta Castellano c*, Aida Cuenca-Royo a, Albert Goday-Arnod, Antoni Pastor a, b, Klaus Langohr a, Olga Castañer a, b, Karla Alejandra Pérez-Vega e, Carme Serrad, Giulio Ruffini c, f, Miguel Alonso-Alonso g, Aureli Soria-Frisch c, Rafael de la Torre a, b a Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain. b CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain. c Starlab Barcelona SL, Barcelona, Spain d Morbid Obesity Care Unit, Hospital del Mar, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain. e Unit of Cardiovascular Risk and Nutrition, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain f Neuroelectrics Corporation, Cambridge, MA, USA gLaboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA * These authors contributed equally to this work Keywords: Morbid obesity, tDCS, neuromodulation, cognitive training, caloric intake Running title: Neuromodulation of dlPFC reduces caloric intake Corresponding author: Rafael de la Torre Hospital del Mar Medical Research Institute Neurosciences Program Integrative pharmacology and systems neuroscience group C/Doctor Aiguader, 88 Barcelona, 08003 Telephone: +34 93 316 Email: [email protected] Word count: 3990 Clinical trial registration: This trial is registered with ClinicalTrials.gov, number NCT03943979. AUTHOR CONTRIBUTIONS RT, ASF, GR, LF and AC contributed to the conception and design of the study.
    [Show full text]
  • Satiety and Memory Enhancing Effects of a High-Protein Meal Depend on the Source of Protein, Nutritional Neuroscience, DOI: 10.1080/1028415X.2016.1277055
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: http://www.tandfonline.com/loi/ynns20 Satiety and memory enhancing effects of a high- protein meal depend on the source of protein Kristy Du, Edward Markus, Mariel Fecych, Justin S. Rhodes & J. Lee Beverly To cite this article: Kristy Du, Edward Markus, Mariel Fecych, Justin S. Rhodes & J. Lee Beverly (2017): Satiety and memory enhancing effects of a high-protein meal depend on the source of protein, Nutritional Neuroscience, DOI: 10.1080/1028415X.2016.1277055 To link to this article: http://dx.doi.org/10.1080/1028415X.2016.1277055 Published online: 16 Jan 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Download by: [The UC San Diego Library] Date: 17 January 2017, At: 21:24 Satiety and memory enhancing effects of a high-protein meal depend on the source of protein Kristy Du1,2, Edward Markus3, Mariel Fecych 3, Justin S. Rhodes1,2,4, J. Lee Beverly2,3,5 1Beckman Institute for Advanced Science and Technology, Urbana, IL, USA, 2Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 3Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, USA, 4Department of Psychology, University of Illinois at Urbana- Champaign, Champaign, IL USA, 5Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL USA Objective: High- protein diets have become increasingly popular with various touted benefits.
    [Show full text]
  • Internal States Drive Nutrient Homeostasis by Modulating Exploration-Exploitation Trade-Off
    Corrales-Carvajal et al., 2016 Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off Verónica María Corrales-Carvajal1,2, Aldo A Faisal2,3,4, Carlos Ribeiro1,* 1 Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal. 2 Department of Bioengineering, Imperial College London, SW7 2AZ London, United Kingdom. 3 Department of Computing, Imperial College London, SW7 2AZ London, United Kingdom. 4 Integrative Biology Division, MRC Clinical Sciences Centre, Hammersmith Hospital Campus, W12 0NN London, United Kingdom. *Correspondence: [email protected] ABSTRACT Internal states can profoundly alter the behavior of animals. A quantitative understanding of the behavioral changes upon metabolic challenges is key to a mechanistic dissection of how animals maintain nutritional homeostasis. We used an automated video tracking setup to characterize how amino acid and reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila melanogaster. We find that these two states have specific effects on the decisions to stop at and leave proteinaceous food patches. Furthermore, the internal nutrient state defines the exploration-exploitation trade-off: nutrient deprived flies focus on specific patches while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient recognition of yeast as an appropriate protein source in mated females and that octopamine is specifically required to mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states therefore modulate specific aspects of exploitation and exploration to change nutrient selection. INTRODUCTION becomes particularly relevant in value-based decision making, such as nutrient balancing, where the value of the Nutrition is key for optimizing the evolutionary fitness of available options is dependent on the current needs of the animals.
    [Show full text]
  • Diet in Brain Health and Neurological Disorders: Risk Factors and Treatments
    brain sciences Editorial Diet in Brain Health and Neurological Disorders: Risk Factors and Treatments Jason Brandt Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; [email protected] Received: 11 September 2019; Accepted: 11 September 2019; Published: 13 September 2019 The role of nutrition in health and disease has been appreciated from time immemorial. Around 400 B.C., Hippocrates wrote: “Let food be thy medicine and medicine be thy food.” In the 12th century, the great philosopher and physician Moses Maimonides wrote “any disease that can be treated by diet should be treated by no other means.” Now, in the 21st century, we are bombarded by claims in the media of “superfoods,” wondrous nutritional supplements, and special diets that promise to cure or prevent disease, improve health, and restore functioning. Much of the focus has been on neurological disease, brain health, and psychological functioning (behavior, cognition, and emotion). The hyperbole aside, the past two decades have seen considerable progress in our understanding of the role of specific nutrients and dietary patterns to brain development, physiology, and functioning [1–4]. The chapters in this volume are but a sampling of the latest research on the role of specific compounds and nutrients in brain function and dysfunction, and use of diet for the prevention and treatment of neurological and psychological disorders. The !-3 and !-6 polyunsaturated fatty acids (PUFAs) have long been recognized as essential to cell membranes and normal neuronal function. Deficiencies !-3 PUFAs have been associated with everything from mood disorders to schizophrenia to Alzheimer’s disease. Fuentes-Albero and colleagues [5] report that Spanish schoolchildren with attention-deficit hyperactivity disorder (ADHD) consume diets that are lower in !-3 PUFAs than their peers without ADHD.
    [Show full text]
  • Fermented Foods, the Gut and Mental Health: a Mechanistic Overview with Implications for Depression and Anxiety
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ynns20 Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety Hajara Aslam , Jessica Green , Felice N. Jacka , Fiona Collier , Michael Berk , Julie Pasco & Samantha L. Dawson To cite this article: Hajara Aslam , Jessica Green , Felice N. Jacka , Fiona Collier , Michael Berk , Julie Pasco & Samantha L. Dawson (2020) Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety, Nutritional Neuroscience, 23:9, 659-671, DOI: 10.1080/1028415X.2018.1544332 To link to this article: https://doi.org/10.1080/1028415X.2018.1544332 Published online: 11 Nov 2018. Submit your article to this journal Article views: 1280 View related articles View Crossmark data Citing articles: 13 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety Hajara Aslam 1,2, Jessica Green1,2,3, Felice N. Jacka 1,2,4, Fiona Collier 5,6, Michael Berk 1,7, Julie Pasco1, Samantha L. Dawson 1,2,8 1IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia, 2Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia, 3Austin
    [Show full text]