Nitroxyl Gets to the Heart of the Matter

Total Page:16

File Type:pdf, Size:1020Kb

Nitroxyl Gets to the Heart of the Matter Nitroxyl gets to the heart of the matter Martin Feelisch* Louisiana State University Health Sciences Center, Department of Molecular and Cellular Physiology, 1501 Kings Highway, Shreveport, LA 71130 eart failure (HF) is a progres- arterial dilatation, allowing to stimulate oxygen consumption and energetics. sively disabling and ultimately cardiac output without increasing oxy- Taken together, these results suggest fatal disease, which is charac- gen consumption. Although conceptually that nitroxyl donors represent a novel terized by a decline in the ideal compounds, currently used inodila- class of inodilator with potential for the Hheart’s ability to pump blood efficiently tors (compounds with positive inotropic treatment of HF. enough to meet the body’s metabolic and vasodilatior properties) tend to in- In most cases, not a single cause but demands. Despite substantial advances crease myocardial oxygen demand at a combination of systolic dysfunction in our understanding of the underlying higher doses, precipitating ischemia in (inability to contract and eject blood pathophysiology (1) and the therapeutic patients with coronary artery disease. normally) and͞or diastolic dysfunction management of acute and chronic HF Clearly, there is room for improvement (inability to relax and fill normally), en- (2) in recent years, the outlook of pa- in HF management, in particular with ergetic and vascular loading factors, tients with these conditions remains regard to quality of life and survival. contributes to the manifestation of HF. poor. Not only are mortality and mor- In this issue of PNAS, Paolocci et al. The type of cardiac dysfunction prevail- bidity discouragingly high, but also the (9) describe the beneficial cardiovascular ing and the accompanying hemodynamic patients’ quality of life remains impaired effects of nitroxyl (HNO)† in the failing situation of the patient have an obvious because of a substantial symptom bur- heart. A well characterized canine impact on the choice of pharmacological den. In the United States alone, HF is model of chronic heart failure was used treatment. The analysis of pressure- responsible for almost 1 million hospital in which cardiac dysfunction is produced volume loops obtained at different load- admissions (more than for all forms of by rapid ventricular pacing over a period ing conditions is among the best of all cancer combined) and Ͼ50,000 deaths of weeks. The authors used sophisti- current approaches to assess the con- each year, with estimated annual costs cated hemodynamic analyses suited to tractile behavior of the heart in vivo. exceeding $20 billion (3, 4). Despite im- discriminate direct cardiac effects from This approach, which also formed the proved patient information, beneficial indirect effects secondary to changes in basis of the present studies by Paolocci changes in lifestyle and better treatment preload and afterload to demonstrate et al. (9), has a long-standing history in options, HF remains to be a major pub- that nitroxyl increases myocardial con- experimental physiology, but its diagnos- lic health problem in industrialized na- tractility and enhances relaxation (posi- tic power in animal studies and clinical tions and the leading cause of hospital- tive lusitropic effect) in failing hearts. investigations has only been realized in ization in people older than 65 years. At These effects were accompanied by ar- the last two decades. In the past, effects a time when other cardiovascular dis- terial and venous dilation. Paolocci’s on myocardial contractility have been eases are on the decline, HF is rising finding that the cardiotonic action of difficult to evaluate because of the load ␤ and likely to further escalate over the HNO was unaffected by -receptor dependence of conventional measures of coming decades because of an aging blockade and additive to that of dobut- ventricular function. Since a couple of population and increased survival from amine is therapeutically significant not years ago, left ventricular end-systolic the underlying causes such as coronary only because the action of dopaminergic pressure-volume relationships can be heart disease and hypertension. A broad agonists and phosphodiesterase inhibi- assessed in the setting of a routine car- spectrum of different drugs and various tors are often attenuated in HF, but diac catheterization procedure. Using a guidelines for the treatment of HF exist also in view of the recent advent of ␤ conductance catheter with a microma- (5, 6). In the past, HF was mainly -blockers and their negative inotropic nometer tip for continuous measure- viewed as a problem of diminished car- effects in certain clinical settings. In ment of intraventricular volume and diac output. Maximization of the latter contrast to nitric oxide (NO)-generating pressure in combination with an occlud- with positive inotropic (contractility en- compounds, HNO production was not ing device to rapidly vary venous inflow, hancing) agents led to therapies that associated with increased plasma levels a largely load-independent measure of initially improved functional capacity, of the second messenger, cGMP. In- cardiac contractility can be obtained but increased mortality. Today, the ther- stead, enhanced concentrations of calci- without altering the status of the heart apeutic focus is on reducing elevated tonin gene-related peptide (CGRP) (11). In addition to the assessment of filling pressures that lead to the symp- were detected during HNO, but not NO systolic and diastolic function, additional toms of congestion (7). Although most administration, suggesting that the parameters allow estimation of the rela- recommendations agree on the major former may exert its favorable action, at tive effects of vasodilation on cardiac drug classes for the first-line and ad- least in part, via this endogenous neu- performance. In their studies, Paolocci junct therapy of HF, there is consider- ropeptide. Although the same group et al. (9) used a nitrate (nitroglycerin) able controversy about the role of posi- had previously observed positive inotro- and a NONOate (DEA͞NO) to gener- tive inotropic agents (8). Despite a pic effects of HNO in healthy hearts ate NO and Angelis’ salt to generate documented negative impact on survival, (10), the study outcome with this com- HNO. Although all three compounds these agents are still widely used, often pound in the setting of HF was not were used at equieffective doses as combined with vasodilators, to limit se- obvious. Numerous experimental and vere episodes of HF or as a bridge to clinical studies in the past have demon- transplantation. The rationale for com- strated that the same pharmacological See companion article on page 5537. bining vasodilatation with positive ino- principle capable of increasing contrac- *E-mail: [email protected]. tropic intervention lies in the possibility tility in the normal heart can produce †Not to be confused with nitroxyl radicals, which are to ‘‘unload’’ the heart, i.e., to reduce its negative inotropy in the failing heart spin traps for the detection of radical species by EPR preload and afterload by venous and due to unfavorable effects on cardiac spectroscopy. 4978–4980 ͉ PNAS ͉ April 29, 2003 ͉ vol. 100 ͉ no. 9 www.pnas.org͞cgi͞doi͞10.1073͞pnas.1031571100 Downloaded by guest on September 27, 2021 COMMENTARY judged by the degree of reduction in vertable species (24), NOϪ may not be ing ischemia, nicotine, capsaicin (35), systolic pressure, the cardiac effects of readily oxidized to NO under all condi- nitroglycerin, and a nitroxyl donor (but NO were dramatically different from tions. Select nitroxyl donors, but not not other NO generating compounds) those of HNO. This is most likely due Angeli’s salt, have been shown to un- (36). An alternative way to increase to differences in the chemical properties dergo facile oxidative conversion to re- plasma CGRP is to slow down its enzy- of these two species, which dictates their lax vascular tissue and inhibit platelet matic breakdown by inhibiting neutral reactivity with endogenous biomolecules aggregation in a manner indistinguish- endopeptidase, but this is bound to af- and the signaling pathways affected. able from NO (25). The clear-cut di- fect numerous other pathways. It ap- NO is a ubiquitous endogenous mes- chotomy between the pharmacological pears fair to assume that the HNO- senger and modulator of cell function, profile of Angeli’s salt and that of NO induced CGRP increase in Paolocci’s which is produced from L-arginine by a donors observed by Paolocci et al. (9), study (9) originated from perivascular family of isoenzymes, the NO synthases however, indicates that HNO to NO nerves. It would be interesting to see (NOS) (12). HF is associated with re- conversion does not take place in every whether the inotropic effects of HNO duced expression of endothelial NOS tissue. This conclusion is further sup- are blunted in dogs depleted of endoge- and increased vascular oxidative stress, ported by their cGMP and CGRP mea- nous CGRP by prolonged infusion of which translates into diminished NO surements, which suggest that the car- capsaicin (37). Further insight may also availability, endothelial dysfunction and diac effects of HNO and NO are be gained from studies in CGRP-defi- reduced vasodilator capacity (13). NO is mediated by different signaling path- cient mice (33). Such investigations also the pharmacological principle of a ways. Besides the significance of these would not only confirm the cardiotonic number of drugs
Recommended publications
  • A Biochemical Rationale for the Discrete Behavior of Nitroxyl and Nitric Oxide in the Cardiovascular System
    A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system Katrina M. Miranda*†‡, Nazareno Paolocci§, Tatsuo Katori§, Douglas D. Thomas*, Eleonora Ford¶, Michael D. Bartbergerʈ, Michael G. Espey*, David A. Kass§, Martin Feelisch**, Jon M. Fukuto¶, and David A. Wink*† *Radiation Biology Branch, Building 10, Room B3-B69, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; §Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287; ¶Department of Molecular and Medical Pharmacology, Center for the Health Sciences, University of California, Los Angeles, CA 90095; ʈDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and **Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130 Edited by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA, and approved May 20, 2003 (received for review February 20, 2003) The redox siblings nitroxyl (HNO) and nitric oxide (NO) have often cellular thiol functions (14, 15). Conversely, NO reacts only indi- been assumed to undergo casual redox reactions in biological sys- rectly with thiols after RNOS formation (17). tems. However, several recent studies have demonstrated distinct Contrasting effects are also apparent in vivo or ex vivo,for pharmacological effects for donors of these two species. Here, infu- example in models of ischemia reperfusion injury. Exposure to NO sion of the HNO donor Angeli’s salt into normal dogs resulted in donors at the onset of reperfusion provides protection against elevated plasma levels of calcitonin gene-related peptide, whereas reperfusion injury in the heart and other organs (18–20).
    [Show full text]
  • Download Product Insert (PDF)
    Product Information DEA NONOate Item No. 82100 CAS Registry No.: 372965-00-9 Formal Name: Diethylammonium (Z)-1-(N,N- diethylamino)diazen-1-ium-1,2-diolate O Synonyms: DEA/NO, Diethylamine NONOate N MF: C4H10N3O2 • C4H12N + N N • H N FW: 206.3 2 Purity: ≥98% O- Stability: ≥1 year at -80°C Supplied as: A crystalline solid l UV/Vis.: max: 250 nm Laboratory Procedures For long term storage, keep DEA NONOate sealed under nitrogen at -80°C. It should be stable for at least one year. The crystals are sensitive to moisture and become discolored on exposure to air. Keep the vial sealed until use unless your laboratory is equipped with a glove box with an inert atmosphere for the handling of air sensitive compounds. DEA NONOate is supplied as a crystalline solid. A stock solution may be made by dissolving the DEA NONOate in an organic solvent purged with an inert gas. DEA NONOate is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of DEA NONOate is approximately 25 mg/ml in ethanol and 2 mg/ml in DMSO and DMF. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of DEA NONOate can be prepared by directly dissolving the crystalline compound in aqueous buffers. The solubility of DEA NONOate in PBS (pH 7.2) is approximately 10 mg/ml.
    [Show full text]
  • Hidden Complexities in the Reaction of H2O2 and HNO Revealed by Ab Initio Quantum Chemical Cite This: Phys
    PCCP PAPER Hidden complexities in the reaction of H2O2 and HNO revealed by ab initio quantum chemical Cite this: Phys. Chem. Chem. Phys., 2017, 19, 29549 investigations† Daniel Beckett, Marc Edelmann, Jonathan D. Raff and Krishnan Raghavachari* Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H2O2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO2) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal molÀ1. The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree–Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal molÀ1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree–Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal molÀ1, in much better agreement with the Received 29th August 2017, NEVPT2 result.
    [Show full text]
  • Nitroaromatic Antibiotics As Nitrogen Oxide Sources
    Review biomolecules Nitroaromatic Antibiotics as Nitrogen Oxide Sources Review Allison M. Rice, Yueming Long and S. Bruce King * Nitroaromatic Antibiotics as Nitrogen Oxide Sources Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; Allison M. Rice , Yueming [email protected] and S. Bruce (A.M.R.); King [email protected] * (Y.L.) * Correspondence: [email protected]; Tel.: +1-336-702-1954 Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; [email protected]: Nitroaromatic (A.M.R.); [email protected] antibiotics (Y.L.) show activity against anaerobic bacteria and parasites, finding * Correspondence: [email protected]; Tel.: +1-336-702-1954 use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the Abstract: Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding usedevelopment in the treatment of new of Heliobacter treatments pylori forinfections, these conditio tuberculosis,ns, the trichomoniasis, associated toxicity human Africanand lack of clear trypanosomiasis,mechanisms of action Chagas have disease limited and their leishmaniasis. therapeutic Despite development. this activity Nitroaro and a clearmatic need antibiotics for require thereductive development bioactivation of new treatments for activity for theseand this conditions, reductive the associatedmetabolism toxicity can convert
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Nitroglycerin Sublingual Tablets, USP)
    NDA 021134/S-004 Page 4 Nitrostat® (Nitroglycerin Sublingual Tablets, USP) DESCRIPTION Nitrostat is a stabilized sublingual compressed nitroglycerin tablet that contains 0.3 mg , 0.4 mg , or 0.6 mg nitroglycerin; as well as lactose monohydrate, NF; glyceryl monostearate, NF; pregelatinized starch, NF; calcium stearate, NF powder; and silicon dioxide, colloidal, NF. Nitroglycerin, an organic nitrate, is a vasodilating agent. The chemical name for nitroglycerin is 1, 2, 3 propanetriol trinitrate and the chemical structure is: NO2 O O N O CH2CHCH2 O NO 2 2 C3H5N309 Molecular weight: 227.09 CLINICAL PHARMACOLOGY The principal pharmacological action of nitroglycerin is relaxation of vascular smooth muscle. Although venous effects predominate, nitroglycerin produces, in a dose-related manner, dilation of both arterial and venous beds. Dilation of postcapillary vessels, including large veins, promotes peripheral pooling of blood, decreases venous return to the heart, and reduces left ventricular end-diastolic pressure (preload). Nitroglycerin also produces arteriolar relaxation, thereby reducing peripheral vascular resistance and arterial pressure (afterload), and dilates large epicardial coronary arteries; however, the extent to which this latter effect contributes to the relief of exertional angina is unclear. Therapeutic doses of nitroglycerin may reduce systolic, diastolic, and mean arterial blood pressure. Effective coronary perfusion pressure is usually maintained, but can be compromised if blood pressure falls excessively, or increased heart rate decreases diastolic filling time. Elevated central venous and pulmonary capillary wedge pressures, and pulmonary and systemic vascular resistance are also reduced by nitroglycerin therapy. Heart rate is usually slightly increased, presumably due to a compensatory response to the fall in blood pressure.
    [Show full text]
  • On the Distinction Between Nitroxyl and Nitric Oxide Using Nitronyl Nitroxides
    Published on Web 05/26/2010 On the Distinction between Nitroxyl and Nitric Oxide Using Nitronyl Nitroxides Uri Samuni,† Yuval Samuni,‡ and Sara Goldstein*,§ Department of Chemistry and Biochemistry, Queens College, City UniVersity of New York, Flushing, New York 11367, and Department of Prosthodontics, School of Dental Medicine, and Institute of Chemistry, The Accelerator Laboratory, The Hebrew UniVersity of Jerusalem, Jerusalem 91904, Israel Received March 8, 2010; E-mail: [email protected] Abstract: A better understanding of the origins of NO and HNO and their activities and biological functions requires accurate methods for their detection and quantification. The unique reaction of NO with nitronyl nitroxides such as 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO), which yields the corresponding imino nitroxides, is widely used for NO detection (mainly by electron paramagnetic resonance spectroscopy) and for modulation of NO-induced physiological functions. The present study demonstrates that HNO readily reacts with nitronyl nitroxides, leading to the formation of the respective imino nitroxides and hydroxylamines via a complex mechanism. Through the use of the HNO donor Angeli’s salt (AS) with metmyoglobin as a competing agent, the rate constant for C-PTIO reduction by HNO has been determined to be (1.4 ( 0.2) × 105 M-1 s-1 at pH 7.0. This reaction yields the corresponding nitronyl • hydroxylamine C-PTIO-H and NO, which is trapped by C-PTIO to form NO2 and the corresponding imino • nitroxide, C-PTI. NO2 oxidizes the nitronyl and imino nitroxides to their respective oxoammonium cations, which decay mainly via comproportionation with the nitronyl and imino hydroxylamines.
    [Show full text]
  • Nitric Oxide Attenuates Hypoxia-Induced 5-FU Resistance
    Sasabe et al. Int J Cancer Clin Res 2015, 2:2 DOI: 10.23937/2378-3419/2/2/1014 International Journal of Cancer and Clinical Research ISSN: 2378-3419 Original Article: Open Access Nitric Oxide Attenuates Hypoxia-Induced 5-FU Resistance of Oral Squamous Cell Carcinoma Cells Eri Sasabe*, Ayumi Tomomura, Mayuko Hamada, Naoya Kitamura, Tomohiro Yamada and Tetsuya Yamamoto Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University Kohasu, Japan *Corresponding author: Eri Sasabe, Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan, Tel: +81-88-880-2423, Fax: +81-88-880-2424, E-mail: [email protected] to development and progression of malignancies, and resistance Abstract to cancer therapy. The heterodimeric transcription factor Hypoxia Hypoxic environments in tumors induce expression of hypoxia- inducible factor (HIF) is a master regulator that can adapt tumor cells inducible factor (HIF). HIF contributes to the development of the to hypoxic conditions [1]. Overexpression of HIF has been observed malignant progression through the induction of various target genes. in many different cancers, including head and neck squamous cell We previously reported that treatment with chemotherapeutic drugs and γ-rays enhances expression and nuclear translocation carcinomas, and is associated with increased patient mortality [2-4]. of HIF-1α under normoxic conditions; susceptibility of oral HIF consists of an oxygen-regulated α-subunit and a constitutively squamous cell carcinoma (OSCC) cells to the drugs and γ-rays expressed β-subunit, also known as aryl hydrocarbon receptor is negatively correlated with expression of HIF-1α protein.
    [Show full text]
  • Nitroxyl-Mediated Peroxide Modification of Polypropylene
    Nitroxyl-Mediated Peroxide Modification of Polypropylene by Benjamin Rhys Jones A thesis submitted to the Department of Chemical Engineering In conformity with the requirements for the degree of Master of Applied Science Queen’s University Kingston, Ontario, Canada (May 2021) Copyright ©Benjamin Rhys Jones, 2021 Abstract The thermal stability of alkoxyamine derivatives of polypropylene (PP) is examined through studies of model hydrocarbon systems and atactic-PP substrates. Primary, secondary and tertiary alkoxyamines are integral to modern techniques for modifying the architecture of linear PP materials, and detailed knowledge of their stability at polymer processing temperatures is needed to further understand the underlying principles of nitroxyl-based formulations. GC analysis of alkoxyamines derived from 2,4-dimethylpentane + TEMPO show that the tertiary regioisomer is susceptible to disproportionation to alkene + HOTEMPO at temperatures as low as 140 oC. Extension of these thermolysis experiments to atactic PP-g-HOTEMPO mirrored the model compound results, with appreciable extents of nitroxyl generation observed over a 20 min timescale at 180 oC. This reaction extent is not expected to dramatically alter the performance of nitroxyl-based formulations that modify the structure and composition of PP homopolymers. The yield of H-atom abstraction by peroxide-derived alkoxy radicals is another fundamental reaction that underlies polyolefin modifications. Indirect measures based on analysis of peroxide byproducts are supplemented with a fluorescence spectroscopy method that quantifies polymer- bound alkoxyamines. H-atom transfer from high density polyethylene (HDPE) and poly(ethylene-co-propylene) (EPR) was gained by using napthoyloxy-TEMPO, whose fluorophore supports a highly sensitive analytical method. This technique is extended to studies of reactive HDPE/EPR blending to ascertain the extent of peroxide migration from one phase to the other during the compounding process.
    [Show full text]
  • NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE Criteria for a Recommended Standard OCCUPATIONAL EXPOSURE to NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE TO NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE criteria for a recommended standard OCCUPATIONAL EXPOSURE TO NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health June 1978 For »ale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company name or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-167 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) evaluates all available research data and criteria and recommends standards for occupational exposure. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in promulgating regulatory standards. NIOSH will periodically review the recommended standards to ensure continuing protection of workers and will make successive reports as new research and epidemiologic studies are completed and as sampling and analytical methods are developed. The contributions to this document on nitroglycerin (NG) and ethylene glycol dinitrate (EGDN) by NIOSH staff, other Federal agencies or departments, the review consultants, the reviewers selected by the American Industrial Hygiene Association, and by Robert B. O ’Connor, M.D., NIOSH consultant in occupational medicine, are gratefully acknowledged. The views and conclusions expressed in this document, together with the recommendations for a standard, are those of NIOSH.
    [Show full text]
  • Oxidative Stress and the Guanosine Nucleotide Triphosphate Pool: Implications for a Biomarker and Mechanism of Impaired Cell Function
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION Celeste Maree Bolin The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bolin, Celeste Maree, "OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 728. https://scholarworks.umt.edu/etd/728 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION By Celeste Maree Bolin B.A. Chemistry, Whitman College, Walla Walla, WA 2001 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Toxicology The University of Montana Missoula, Montana Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Fernando Cardozo-Pelaez,
    [Show full text]
  • Sustained Formation of Nitroglycerin-Derived Nitric Oxide
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2018/01/22/mol.117.110783.DC1 1521-0111/93/4/335–343$35.00 https://doi.org/10.1124/mol.117.110783 MOLECULAR PHARMACOLOGY Mol Pharmacol 93:335–343, April 2018 Copyright ª 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. Sustained Formation of Nitroglycerin-Derived Nitric Oxide by Aldehyde Dehydrogenase-2 in Vascular Smooth Muscle without Added Reductants: Implications for the Development of Nitrate Tolerance s Marissa Opelt, Gerald Wölkart, Emrah Eroglu, Markus Waldeck-Weiermair, Roland Malli, Wolfgang F. Graier, Alexander Kollau, John T. Fassett, Astrid Schrammel, Bernd Mayer, and Antonius C. F. Gorren Downloaded from Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria Received October 4, 2017; accepted January 18, 2018 molpharm.aspetjournals.org ABSTRACT According to current views, oxidation of aldehyde dehydrogenase-2 ALDH2, thiol-refractive inactivation was observed, particularly under (ALDH2) during glyceryltrinitrate (GTN) biotransformation is essen- high-turnover conditions. Organ bath experiments with rat aortas tially involved in vascular nitrate tolerance and explains the de- showed that relaxation by GTN lasted longer than that caused by the pendence of this reaction on added thiols. Using a novel fluorescent NO donor diethylamine/NONOate, in line with the long-lasting intracellular nitric oxide (NO) probe expressed in vascular smooth nanomolar NO generation from GTN observed in VSMCs.
    [Show full text]