Zoologische Verhandelingen Leiden 126: 1-242

Total Page:16

File Type:pdf, Size:1020Kb

Zoologische Verhandelingen Leiden 126: 1-242 The genus Bathyporeia Lindström, 1855, in western Europe (Crustacea: Amphipoda: Pontoporeiidae) C. d’Udekem d’Acoz Udekem d’Acoz, C. d’. The genus Bathyporeia Lindström, 1855, in western Europe (Crustacea: Amphipoda: Pontoporeiidae). Zool. Verh. Leiden 348, 28.v.2004: 3-162, figs. 1-76.— ISSN 0024-1652, ISBN 90-73239-90-7. C. d’Udekem d’Acoz, Tromsø Museum (Department of Zoology), University of Tromsø, 9037 Tromsø, Norway (e-mail: [email protected]). Key words: Crustacea; Amphipoda; Bathyporeia; Atlantic, Europe; taxonomy; ecology. The amphipod genus Bathyporeia Lindström, 1855, on the European Atlantic coasts is revised and new identification keys are provided. The importance of new characters such as the morphology of the first uropod is stressed. The following species are fully redescribed and illustrated: B. elegans Watkin, 1938, B. gracilis G.O. Sars, 1891, B. guilliamsoniana (Bate, 1857), B. nana Toulmond, 1966, B. pelagica (Bate, 1857), B. pilosa Lindström, 1855, B. sarsi Watkin, 1938, and B. tenuipes Meinert, 1877. B. elegans exhibits unusual variation, of which the taxonomical significance is still unclear. It has been observed for the first time that all species of the genus exhibit an unusual sexual dimorphism on the mandibular palp: in the adult males, the ventral border of the terminal article has a comb of stiff setae which is lacking in females and immature males. Furthermore, a locking system holding together the inner plates of the maxilliped is described and illustrated. A previously overlooked vestigial dactylus on the second and the fifth pereiopod is described. Contents 1. Introduction ............................................................................................................................................... 4 2. Historical review ...................................................................................................................................... 4 3. Ecology and biology ............................................................................................................................... 9 4. Material and methods ......................................................................................................................... 12 4.1. Dissection, microscopical preparations, illustrations and descriptions ............. 12 4.2. Terminology and abbreviations ............................................................................................ 14 4.3. Practical recommendations for preservation and identification ............................ 16 5. Systematic account ............................................................................................................................... 19 5.1. Genus Bathyporeia Lindström, 1855 ...................................................................................... 19 5.2. Diagnostic importance of characters ................................................................................... 23 5.3. Keys to species ............................................................................................................................... 28 5.3.1. Simplified key ..................................................................................................................... 28 5.3.2. Diagnostic key .................................................................................................................... 29 5.4. Description of species ................................................................................................................. 32 5.4.1. Bathyporeia elegans Watkin, 1938 ................................................................................. 32 5.4.2. Bathyporeia gracilis G.O. Sars, 1891 ............................................................................ 42 5.4.3. Bathyporeia guilliamsoniana (Bate, 1857) ................................................................... 46 5.4.4. Bathyporeia nana Toulmond, 1966 .............................................................................. 52 5.4.5. Bathyporeia pelagica (Bate, 1856) .................................................................................. 56 5.4.6. Bathyporeia pilosa Lindström, 1855 ............................................................................. 61 5.4.7. Bathyporeia sarsi Watkin, 1938 ...................................................................................... 68 4 d’Udekem d’Acoz. The genus Bathyporeia Lindström in W. Europe. Zool. Verh. Leiden 348 (2004) 5.4.8. Bathyporeia tenuipes Meinert, 1877 .............................................................................. 75 6. Acknowledgements .............................................................................................................................. 79 7. References .................................................................................................................................................. 80 8. Taxonomic index .................................................................................................................................... 89 1. Introduction In his well-known monograph, Lincoln (1979) expressed the feeling that in the North East Atlantic area, there was scarcely a single amphipod species that was ade- quately described and defined at that time. Today, his statement remains largely true, although the difficulties with identification vary considerably from group to group. In this context, the genus Bathyporeia Lindström, 1855, of which a typical representative is illustrated on fig. 1, is certainly one of the most problematic taxa. This genus comprises many species, very closely related to each other, that exhibit considerable sexual dimorphism, allometric variation, and sometimes significant intraspecific varia- tion. B. nana Toulmond, 1966 is the only species, that has been fully described and illustrated. Other species are known incompletely, by short descriptions and by semi- diagrammatic illustrations of some parts only. This situation is particularly deplorable since many species are common or even abundant, and therefore often present in the samples of ecologists working on the benthos of soft bottoms. Several benthos specialists, such as Junoy & Viéitez (1990), Cattrijse et al. (1993) and Ysebaert et al. (1998) report serious difficulties in identification. Misidentifications are probably not uncommon, as is the case for the material of Dörjes & Reineck (1977), that has been re- examined during the present study. In the present paper, all species found in western Europe, from the North Cape to southern Spain are redescribed. This is the first paper in a world-scale revision of the genus Bathyporeia. Adult specimens are fully illustrated for the first time and new identification keys are provided. It is hoped that this work will facilitate their identifi- cation considerably, although Bathyporeia will undoubtedly remain a difficult genus. Unfortunately, some questions remain open concerning B. elegans Watkin, 1938, which exhibits considerable geographic variation. 2. Historical review The history of the genus Bathyporeia is rather complicated, especially with regard to the period before Watkin’s (1938) revision. For this reason, a detailed historical account is given here, the first part of it being largely a re-transcription of Watkin’s excellent review. The genus Bathyporeia was created by Lindström (1855) with the description of the type species of the genus: Bathyporeia pilosa Lindström, 1855, from specimens from the Baltic Sea. Bate (1856; 1857a) described two further species, for which he erected a new genus, Thersites Bate, 1856: Thersites pelagica Bate, 1856 and Thersites Guilliamsoniana Bate, 1857. Later, Bate (1857b) discovered he had overlooked Lindström’s (1855) paper. He sub- sequently adopted the genus proposed by the Swedish naturalist (misspelling it as Bathyporea) but erroneously considered his species Guilliamsoniana (spelled this time d’Udekem d’Acoz. The genus Bathyporeia Lindström in W. Europe. Zool. Verh. Leiden 348 (2004) 5 Fig. 1. Bathyporeia elegans Watkins, 1938 forma A, female, Grindøen, 23.viii.1884, TMU 1395. Complete animal. Composite drawing; mostly after an exuvium, except eye and third uropod: after another female mounted on the same slide. 6 d’Udekem d’Acoz. The genus Bathyporeia Lindström in W. Europe. Zool. Verh. Leiden 348 (2004) as Guilliamsonia) a junior synonym of B. pilosa. Bate (1862) gave more detailed descrip- tions of his ‘B. pilosa’ and B. pelagica, and described a further species, B. Robertsonii. His illustrations however are crude, inaccurate and very difficult to interpret. It should be noted that Thersites Bate, 1857 is a junior homonym of a mollusc genus. Bate and West- wood (1863) treated the three species B. pelagica, ‘B. pilosa’ and B. Robertsonii again in their monograph of British sessile-eyed crustaceans. Marcusen (1867: 359) described a new species from the Black Sea, B. pontica, in a minimalist diagnosis: “ähnlich der B. Robertsonii Sp. Bate, mit calceola am unteren Fühler, aber auch einer calceola am oberen.” Stebbing (1875) placed all West European species in synonymy, only recognizing the nominal species B. pilosa as a valid species. Meinert (1877) accepted Stebbing’s point of view but described one further species: B. tenuipes Meinert, 1877. Blanc (1884) too accepted Stebbing’s point of view. Later, Chevreux (1887) resurrected B. Robertsoni but suspected that B. pilosa and B. pelagica would indeed be identical. Robertson (1888) considered B. Robertsoni a junior
Recommended publications
  • Benthic Amphipod (Crustacea) Fauna of the Bandırma and Erdek Gulfs and Some Environmental Factors Affecting Their Distribution
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 56(2): 171 - 188, 2015 Benthic amphipod (Crustacea) fauna of the Bandırma and Erdek Gulfs and some environmental factors affecting their distribution Ayşegül MÜLAYİM*1, Hüsamettin BALKIS1 and Murat SEZGİN2 1 Istanbul University, Faculty of Science, Department of Biology, 34134 Istanbul,Turkey 2Sinop University, Fisheries Faculty, Department of Hydrobiology 57000 Sinop, Turkey *Corresponding author, e-mail: [email protected] This study aims to determine the environmental factors affecting the fauna and distribution of benthic amphipod species inhabiting in the Bandırma and Erdek Gulfs which are located on the south of the Marmara Sea. Total of 66 species belonging to 22 families were identified after analyzing the samples collected seasonally from the depths ranging between 1 and 30 m between 2007- 2008. According to the data gathered from the literature, it was determined that one species (Bathyporeia elegans Watkin, 1938) was a new record for the Turkish seas and 37 species for the Marmara Sea. In the Bandırma Gulf, of the ecological variables of the environment temperature was determined to range between 6.6-27°C, salinity between 21.32-36.03 psu, dissolved oxygen between 4.04-11.26 mg l-1and pH between 8.00-8.38. In the Erdek Gulf, temperature ranged between 6.7 and 27°C, salinity between 21.93-35.54‰, dissolved oxygen between 3.67-13.26 mg l-1and pH between 8.06-8.36. In the surface sediment at the sampling stations of the Bandırma Gulf, total organic carbon values were between 0.07-4.42%, total calcium carbonate between 0.88-84.82%, total phosphorus between 609-12740 μg g-1 and mud percentage between 1.38-79.93%.
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • University of Groningen Marine Benthic Metabarcoding
    University of Groningen Marine benthic metabarcoding Klunder, Lise Margriet DOI: 10.33612/diss.135301602 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Klunder, L. M. (2020). Marine benthic metabarcoding: Anthropogenic effects on benthic diversity from shore to deep sea; assessed by metabarcoding and traditional taxonomy. University of Groningen. https://doi.org/10.33612/diss.135301602 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-12-2020 CHAPTER 2 Diversity of Wadden Sea macrofauna and meiofauna communities highest in DNA from extractions preceded by cell lysis Lise Klunder Gerard C.A. Duineveld Marc S.S. Lavaleye Henk W. van der Veer Per J. Palsbøll Judith D.L. van Bleijswijk Manuscript published in Journal of Sea Research 152 (2019) Chapter 2 ABSTRACT Metabarcoding of genetic material in environmental samples has increasingly been employed as a means to assess biodiversity, also of marine benthic communities.
    [Show full text]
  • The National Marine Biological Analytical Quality Control Scheme
    The National Marine Biological Analytical Quality Control Scheme Macrobenthic Exercise Results – MB19 Jessica Taylor & David Hall [email protected] June 2012 Thomson Unicomarine Ltd. 7 Diamond Centre Works Road Letchworth Hertfordshire SG6 1LW www.unicomarine.com EXERCISE DETAILS Macrobenthos #19 Type/Contents – Natural marine sample from southern North Sea; approx. 0.5 litres of shell debris; 1 mm sieve mesh processing. Circulated – 05/09/2011 Completion Date – 02/12/2011 Number of Participating Laboratories – 9 Number of Results Received – 7 ______________________________________________________________________________ Contents Results Sheets 1 - 7. NMBAQC Scheme Interim Results – Macrobenthic exercise (MB19). Tables Table 1. Results from the analysis of Macrobenthic sample MB19 by the participating laboratories. Table 2. Comparison of the efficiency of extraction of fauna by the participating laboratories for the major taxonomic groups present in sample MB19. Table 3. Comparison of the estimates of biomass made by the participating laboratories with those made by Thomson Unicomarine Ltd. for the major taxonomic groups present in sample MB19. Table 5. Variation in faunal content reported for the artificial replicate samples distributed as MB19. Figures Figure 1. MB19 data from participating laboratories (raw - untransformed). Cluster dendrogram showing plotted data from participating laboratories as supplied. Figure 2. MB19 data reanalysed by Thomson Unicomarine Ltd. Cluster dendrogram showing plotted data from participating laboratories following reanalysis by Thomson Unicomarine Ltd. (untransformed). All residues and fauna have been reanalysed. No data truncation – all faunal groups included. Appendices Appendix 1 MB19 Instructions for participation. NMBAQC Scheme Interim Results LabCode LB1802 Summary Data SampleCode MB19 Diff. In No. Taxa -6 Sample Received 16/01/2012 Diff.
    [Show full text]
  • (Crustacea : Amphipoda) of the Lower Chesapeake Estuaries
    W&M ScholarWorks Reports 1971 The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries James Feely Virginia Institute of Marine Science Marvin L. Wass Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Feely, J., & Wass, M. L. (1971) The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries. Special papers in marine science No.2. Virginia Institute of Marine Science, College of William and Mary. http://doi.org/10.21220/V5H01D This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 VIRGIN IA INSTITUTE OF MARINE SC IE NCE Gloucester Point, Virginia 23062 1971 THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER 1 CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 1971 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 This document is in part a thesis by James B. Feeley presented to the School of Marine Science of the College of William and Mary in Virginia in partial fulfillment of the requirements for the degree of Master of Arts.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • Colonization of Novel Algal Habitats by Juveniles of a Marine Tube-Dwelling Amphipod
    Colonization of novel algal habitats by juveniles of a marine tube-dwelling amphipod Marilia Bueno1, Glauco B.O. Machado1,2 and Fosca P.P. Leite1 1 Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil 2 Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brazil ABSTRACT Background: Dispersal is an important process affecting population dynamics and connectivity. For marine direct developers, both adults and juveniles may disperse. Although the distribution of juveniles can be initially constrained by their mothers’ choice, they may be able to leave the parental habitat and colonize other habitats. We investigated the effect of habitat quality, patch size and presence of conspecific adults on the colonization of novel habitats by juveniles of the tube-dwelling amphipod Cymadusa filosa associated with the macroalgal host Sargassum filipendula. Methods: We tested the factors listed above on the colonization of juveniles by manipulating natural and artificial plants in both the field and laboratory. Results: In the laboratory, juveniles selected high-quality habitats (i.e., natural alga), where both food and shelter are provided, when low-quality resources (i.e., artificial alga) were also available. In contrast, habitat quality and algal patch size did not affect the colonization by juveniles in the field. Finally, the presence of conspecific adults did not affect the colonization of juveniles under laboratory condition but had a weak effect in the field experiment. Our results suggest that C. filosa juveniles can select and colonize novel habitats, and that such process can be partially affected by habitat Submitted 6 August 2020 quality, but not by patch size.
    [Show full text]
  • Environmental Correlates with Amphipod Distribution in a Scottish Sea Loch
    Cah. Biol. Mar. (1989),30 : 243-258 Roscoff Environmental correlates with amphipod distribution in a Scottish sea loch M.R. Robertson, S.J. Hall & A. Eleftheriou DAFS Marine Laboratory, PO Box 1° l, Victoria Road Aberdeen AB9 8 DB. Scotland. Abstract : Over the period 1969 to 1980, 34 stations (both inter and subtidal) were visited in Loch Ewe, a fjordic sea loch on the west coast of Scotland. Amphipod densities were determined along with sediment parti cie size and levels of organic carbon and chlorophyll a. Multivariate analysis of the se data indicates that depth and sediment organic carbon levels are the major determinants of amphipod assemblages in the loch, in contrast to previous stu­ dies which have variously implicated temperature, sediment granulometry and food availability. Résumé: Au cours de la période 1969-1980, on a visité 34 stations (intertidales ou subtidales) dans le loch Ewe, bras de mer comparable aux fjords situés sur la côte occidentale de l'Écosse. Les densités d'amphipodes ont été déterminées, ainsi que, comme paramètres sédimentaires, la taille des particules et les teneurs en carbone orga­ nique et en chlorophylle a. Le traitement de ces données a l'aide de l'analyse factorielle multivariée indique que la profondeur et le contenu en carbonne organique des sédiments constituent les déterminants majeurs des assem­ blages d'Amphipodes se produisant dans le loch Ewe, ce qui est en désaccord avec les résultats d'études antérieures qui ont impliqué de diverses manières la température, la granulométrie sédimentaire et la disponibilité d'aliments. INTRODUCTION The factors which determine the distribution of amphipods, a dominant component of intertidal and shallow subtidal habitats, have been discussed by a number of authors.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Journal of Sea Research 85 (2014) 508–517 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Dietary analysis of the marine Amphipoda (Crustacea: Peracarida) from the Iberian Peninsula J.M. Guerra-García a,b,⁎, J.M. Tierno de Figueroa b,c,C.Navarro-Barrancoa,b,M.Rosa,b, J.E. Sánchez-Moyano a,J.Moreirad a Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain b Jun Zoological Research Center, C/Los Jazmines 15, 18213 Jun, Granada, Spain c Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain d Departamento de Zoología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain article info abstract Article history: The gut contents of 2982 specimens of 33 amphipod families, 71 genera and 149 species were examined, Received 30 March 2013 representing a high percentage of amphipod diversity in the Iberian Peninsula. Material was collected mainly Received in revised form 29 July 2013 from sediments, algae and hydroids along the whole coast of the Iberian Peninsula from 1989 to 2011. Although Accepted 10 August 2013 detritus was the dominant food item in the majority of amphipods, gammarideans also included carnivorous Available online 23 August 2013 (mainly feeding on crustaceans) and herbivorous species (feeding on macroalgal tissues). Our study revealed that general assignment of a type of diet for a whole family is not always adequate. Some families showed a con- Keywords: Feeding Habits sistent pattern in most of the studied species (Corophiidae, Pontoporeiidae =detritivorous; Oedicerotidae, Amphipods Phoxocephalidae, Stenothoidae = carnivorous; Ampithoidae = primarily herbivorous on macroalgae), but Caprellideans others included species with totally different feeding strategies.
    [Show full text]
  • Bacterial Communities
    A DNA (meta)barcoding approach to assess changes in seabed ecosystems related to human- induced pressures Devriese LisaA, De Backer AnneliesA, Maes SaraA, Van Hoey GertA, Haegeman AnneliesB, Ruttink TomB, Wittoeck JanA, Hillewaert HansA, De Tender CarolineA, Hostens KrisA A Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit, Aquatic environment and quality, Ankerstraat 1, 8400 Oostende, Belgium B Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Growth and Development, Caritasstraat 39, 9090 Melle, Belgium Contact: [email protected] I. Aim II. Methodology Macrobenthos communities Development of a DNA metabarcoding • Amplicon sequencing of the V4 fragment of the 18S rDNA using Illumina technology pipeline to assess marine benthic DNA extracts of individual species and artificial mixtures of various species biodiversity in the North Sea. • Sanger sequencing of 4 DNA barcode amplicons: COI (313-319 bp), COI (655-661 bp), V4 18S rDNA (370-582 bp), V7-V8 18S rDNA (281-592 bp) Evaluation of DNA metabarcoding to assess effects of sand extraction on Bacterial communities bacterial species composition in the • Amplicon sequencing of the V3-V4 fragment of the 16S rDNA using Illumina technology Belgian part of the North Sea. (De Tender et al., 2015) DNA extracts of sediment samples (Buiten Ratel sand bank) IV. Macrobenthos III. Macrobenthos Evaluation of the Sanger sequencing Amplicon sequencing, e.g. V4 18S rDNA effectiveness of the barcoding primers (V4 18S) on Taxonomic resolution Species identification OK individual species Failed sequencing of the barcoding Sequence not in public database Identification Genus level and artificial mix primers: Identified as other species * Failed PCR samples.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin 2016-07-01 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1133]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. 2016. [Abra prismatica], [Bathyporeia elegans] and polychaetes in circalittoral fine sand. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1133.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date:
    [Show full text]