NET Technology and Demo Why .NET

Total Page:16

File Type:pdf, Size:1020Kb

NET Technology and Demo Why .NET .NET Technology and Demo Dr. Ranjan K Sen Academic Developer Evangelist Microsoft Corporation Why .NET • Software to be built using components from various sources – Software no longer created by single expert in isolation – Applications not built from scratch on a single machine • Standard Intermediate infrastructure for combining components • Software components need to be network aware – Adapt to changing network conditions – Reliable even when components are untrusted, run in diverse OS platforms and processors 1 Web Service • Loosely coupled distributed application • Can change implementation at either end of a connection and the application continue working • Message based asynchronous technology • Web protocols such as HTTP, SMTP, XML etc • Optional look up service and a public interface for client to invoke service – UDDI, WSDL, SOAP, XML-RPC WS Summary • Benefits of WS – Interoperability • Share data and service across different platforms – Integration • Expose functionality and data of existing application – Efficiency of Implementation • Can reuse existing resource • Legacy code to provide service to external customers – Code Recycling – Modularity • .NET and J2EE – J2EE limited to Java 2 Application Architecture for .NET • Virtual Execution Environment – Combining components from many sources to work correctly and reliably – Control of execution and verification of code at run time – Do not expose physical resources or processor or operating system • Managed components – Software parts that can be developed and deployed independently, yet safely coexist within applications Common Language Infrastructure (CLI) • Standardized specification for a virtual execution environment – Describes data-driven architecture in which language-agnostic blobs of data are brought to life as a self-assembling, type-safe software system – Meta-data drives this process • Used to describe the behavior of software as well as its in-memory characteristics • CLI execution engine uses metadata to enable managed components from many sources to be loaded together safely – Control and flexibility – Enables types from many people, places and platforms to coexist peacefully, while remaining independent 3 Execution engine • Hosts components by interpreting the metadata that describes them at run time – Execution engine is a privileged code that loads, isolate and schedule; provides resources such as memory and IO to managed code • Code that runs in this way is managed code – Managed code can be produced by tools and programming languages that can produce CLI compatible executables • CLI specification covers how unmanaged code can co-exist CLI fundamentals • Expose all programmatic entities using a unified type system • Package types as self describing, portable units • Load types in a way that can be isolated form one another, but share resources • Resolve intertype dependencies at runtime, considering version, culture, admin policies • Type behavior info available to check for type safety • Defer processor specific tasks until at the last moment, do not penalize tools that does this earlier • Execute code under engine that provide accountability and enforce runtime policies • Run time services based on extensible metadata that can accommodate future changes corresponding to new inventions 4 Execution of managed code • Chain of events load metadata from packaging units called assemblies • Convert metadata into executables codes appropriate for machine’s processor and OS – Resembles traditional tool-chain of compiler, linker, and loader, as it performs in-memory layout, compilation, symbol resolution – By default the CLI loads types only as they are needed; linkages are evaluated, resolved, and compiled on demand Common Type System (CTS) • Processor-agnostic intermediate language for describing programs • Common type system that provides the basic data types for the intermediate language • Common Intermediate language (CIL) – Not tied to any hardware architecture – Drives abstract stack machine 5 Assemblies • Portable packages for types – Within CLI packaged as assemblies which can be dynamically loaded into execution engine on demand either from local disk, network or even created on the fly under program control – Defines component model – Types cannot reside outside assemblies – Made up of one or more modules plus a manifest – Assemblies are signed using a cryptographic key pair and a hash of the entire assembly • Signature respected by execution engine and ensures that assemblies are not tampered with and damaged assemblies are not loaded Application domains • Achieves isolation – Protected address space per component • Assemblies are always loaded within the context of an application domain • Types wish to communicate across domains must use special channels and behave according to specific rules • Remoting used for communicating between application domains running on different physical computers and running different OS – Components can be serializable and passed from domain to domain 6 Naming • Version-flexible loading • Assembly names are formed from a standard set of elements • Assembly base name, version number, culture, hash of the public key (distributor) • Binding policy can enforce policy for compilation dependencies • Versioning information on dependent assemblies • Global Assembly Cache (GAC) or a URL search path for assembly JIT compilation and type safety • Compiling high level type description separated from processor specific code generation – Easily adopt code to new OS and processor – Independently version components from many different sources • To amortize cost of transforming CIL into native code layout and code generation is deferred out • JIT compilation allows maintenance of control at runtime and run code efficiently • CIL is verifiably type safe – Type safety can be verified before a new type is loaded and allowed to run – Security policies can be checked and applied at the time CIL is transformed into native code 7 CLI Implementation • .NET Framework – Windows 2003 server • Compact Framework – Small devices • Non-MS – Ximiam (Mono) and DotGNU (Portable .NET) • C# a CLI language – Exploits most of CLI features Building .NET components: Demo C# Command Line • Creates Exe application by default – Has switches to change default – Default reference to mscorelib.dll – /r:<library name> for explicit reference – Using for namespace reference • Multiple source files • Utilities – ILDasm.exe, sk.exe, gacutil.exe 8 Building .NET components: Demo Visual Studio.NET IDE • Common IDE for all Microsoft languages – Regardless of the type of project you create • ATL, MFC, C#, Visual Basic.NET, raw C++ etc. • Class View gives an Object Oriented view of project • Server explorer can integrate multiple machines resources; Database manipulation • XML Editing tools • Other features – Properties Window provides detailed characteristics of selected item – Code blocks may be collapsed for abstracting logic – Referencing external assemblies – IntelliSense – Integrated debugger Compiling into Assemblies • Metadata describes all types within a given module – .NET runtime use this to locate and create objects • Manifest enumerates set of all internal and external files required by the binary – ILDasm.exe to examine assembly • Cross language inheritance – Any language targeting the run time is able to create (and extend) the types described within a given assembly – Demo • Global Assembly Cache (GAC) – For shared assemblies;Version check by .NET runtime – Default policy to allow binding if version major and minor fields match • Application configuration file – Contains XML tags to control binding of launching application – Tells run time locations from where to get binaries to bind – Specify custom version policy 9 AppDomain • Number of related assemblies – System.AppDomain • A process can host one or more AppDomains • AppDomains are insulated from one another • Can communicate using .NET remoting protocol – Assemblies can be loaded, executed, unloaded in AppDomain Demo • C# component for List class • VB component for SortList class – Inherits from C# List class – How references to components are set – How references are put in GAC for sharing by other clients • Console application using SortList • WinForm application using SortList 10.
Recommended publications
  • Ironpython in Action
    IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.
    [Show full text]
  • Domain-Specific Programming Systems
    Lecture 22: Domain-Specific Programming Systems Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2020 Slide acknowledgments: Pat Hanrahan, Zach Devito (Stanford University) Jonathan Ragan-Kelley (MIT, Berkeley) Course themes: Designing computer systems that scale (running faster given more resources) Designing computer systems that are efficient (running faster under constraints on resources) Techniques discussed: Exploiting parallelism in applications Exploiting locality in applications Leveraging hardware specialization (earlier lecture) CMU 15-418/618, Spring 2020 Claim: most software uses modern hardware resources inefficiently ▪ Consider a piece of sequential C code - Call the performance of this code our “baseline performance” ▪ Well-written sequential C code: ~ 5-10x faster ▪ Assembly language program: maybe another small constant factor faster ▪ Java, Python, PHP, etc. ?? Credit: Pat Hanrahan CMU 15-418/618, Spring 2020 Code performance: relative to C (single core) GCC -O3 (no manual vector optimizations) 51 40/57/53 47 44/114x 40 = NBody 35 = Mandlebrot = Tree Alloc/Delloc 30 = Power method (compute eigenvalue) 25 20 15 10 5 Slowdown (Compared to C++) Slowdown (Compared no data no 0 data no Java Scala C# Haskell Go Javascript Lua PHP Python 3 Ruby (Mono) (V8) (JRuby) Data from: The Computer Language Benchmarks Game: CMU 15-418/618, http://shootout.alioth.debian.org Spring 2020 Even good C code is inefficient Recall Assignment 1’s Mandelbrot program Consider execution on a high-end laptop: quad-core, Intel Core i7, AVX instructions... Single core, with AVX vector instructions: 5.8x speedup over C implementation Multi-core + hyper-threading + AVX instructions: 21.7x speedup Conclusion: basic C implementation compiled with -O3 leaves a lot of performance on the table CMU 15-418/618, Spring 2020 Making efficient use of modern machines is challenging (proof by assignments 2, 3, and 4) In our assignments, you only programmed homogeneous parallel computers.
    [Show full text]
  • Top 40 .NET Interview Questions & Answers
    https://career.guru99.com/ Guru99 Provides FREE ONLINE TUTORIAL on Various courses like Java | MIS | MongoDB | BigData | Cassandra | Web Services ------------------------------------------------------------------------------------------------------------------------------- SQLite | JSP | Informatica | Accounting | SAP Training | Python ------------------------------------------------------------------------------------------------------------------------------- Excel | ASP Net | HBase | Testing | Selenium | CCNA | NodeJS ------------------------------------------------------------------------------------------------------------------------------- TensorFlow | Data Warehouse | R Programming | Live Projects | DevOps ------------------------------------------------------------------------------------------------------------------------------- Top 40 .NET Interview Questions & Answers 1) Explain what is .NET Framework? The.Net Framework is developed by Microsoft. It provides technologies and tool that is required to build Networked Applications as well as Distributed Web Services and Web Applications. 2) What does .NET Framework provides? .NET Framework renders the necessary compile time and run time foundation to build and run any language that conforms to the Common Language Specification (CLS). 3) Mention what are main components of .Net framework? The main components of .Net framework are Common Language Runtime (CLR) .Net Framework Class Library (FCL) Application Domains Runtime Host Cross-Language Interoperability Side-by-Side Execution
    [Show full text]
  • Eagle: Tcl Implementation in C
    Eagle: Tcl Implementation in C# Joe Mistachkin <[email protected]> 1. Abstract Eagle [1], Extensible Adaptable Generalized Logic Engine, is an implementation of the Tcl [2] scripting language for the Microsoft Common Language Runtime (CLR) [3]. It is designed to be a universal scripting solution for any CLR based language, and is written completely in C# [4]. Su- perficially, it is similar to Jacl [5], but it was written from scratch based on the design and imple- mentation of Tcl 8.4 [6]. It provides most of the functionality of the Tcl 8.4 interpreter while bor- rowing selected features from Tcl 8.5 [7] and the upcoming Tcl 8.6 [8] in addition to adding en- tirely new features. This paper explains how Eagle adds value to both Tcl/Tk and CLR-based applications and how it differs from other “dynamic languages” hosted by the CLR and its cousin, the Microsoft Dy- namic Language Runtime (DLR) [9]. It then describes how to use, integrate with, and extend Ea- gle effectively. It also covers some important implementation details and the overall design phi- losophy behind them. 2. Introduction This paper presents Eagle, which is an open-source [10] implementation of Tcl for the Microsoft CLR written entirely in C#. The goal of this project was to create a dynamic scripting language that could be used to automate any host application running on the CLR. 3. Rationale and Motivation Tcl makes it relatively easy to script applications written in C [11] and/or C++ [12] and so can also script applications written in many other languages (e.g.
    [Show full text]
  • Moscow ML .Net Owner's Manual
    Moscow ML .Net Owner's Manual Version 0.9.0 of November 2003 Niels Jørgen Kokholm, IT University of Copenhagen, Denmark Peter Sestoft, Royal Veterinary and Agricultural University, Copenhagen, Denmark This document describes Moscow ML .Net 0.9.0, a port of Moscow ML 2.00 to the .Net platform. The focus is on how Moscow ML .Net differs from Moscow ML 2.0. Three other documents, the Moscow ML Owner’s Manual [7], the Moscow ML Language Overview [5] and the Moscow ML Library Documentation [6] describe general aspects of the Moscow ML system. Moscow ML implements Standard ML (SML), as defined in the 1997 Definition of Standard ML, including the SML Modules language and some extensions. Moreover, Moscow ML supports most re- quired parts of the SML Basis Library. It supports separate compilation and the generation of stand-alone executables. The reader is assumed to be familiar with the .Net platform [2]. Contents 1 Characteristics of Moscow ML .Net 2 1.1 Compiling and linking 2 1.2 Command-line options 3 1.3 Additional primitives in the built-in units 3 1.4 The libraries 4 2 Installation 5 3 External programming interface 5 3.1 How external assemblies are found and loaded 5 3.2 How to call a .Net static method from Moscow ML .Net. 6 3.2.1 An example 7 3.2.2 Passing arguments and using results 7 3.2.3 Representation of ML Values 8 3.2.4 Notes 8 3.2.5 An experimental auto-marshalling import mechanism: clr_val 8 3.3 How to call an ML function from .Net 10 3.3.1 Example 10 3.3.2 Experimental, easier export of ML values via exportVal 11 The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html 1 1 Characteristics of Moscow ML .Net Unlike most other ports of Moscow ML, this port is not based on porting the Caml Light runtime, but is based on the creation of a new backend that generates .Net CIL code.
    [Show full text]
  • NET Framework
    Advanced Windows Programming .NET Framework based on: A. Troelsen, Pro C# 2005 and .NET 2.0 Platform, 3rd Ed., 2005, Apress J. Richter, Applied .NET Frameworks Programming, 2002, MS Press D. Watkins et al., Programming in the .NET Environment, 2002, Addison Wesley T. Thai, H. Lam, .NET Framework Essentials, 2001, O’Reilly D. Beyer, C# COM+ Programming, M&T Books, 2001, chapter 1 Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 2 Contents The most important features of .NET Assemblies Metadata Common Type System Common Intermediate Language Common Language Runtime Deploying .NET Runtime Garbage Collection Serialization Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 3 .NET Benefits In comparison with previous Microsoft’s technologies: Consistent programming model – common OO programming model Simplified programming model – no error codes, GUIDs, IUnknown, etc. Run once, run always – no "DLL hell" Simplified deployment – easy to use installation projects Wide platform reach Programming language integration Simplified code reuse Automatic memory management (garbage collection) Type-safe verification Rich debugging support – CLR debugging, language independent Consistent method failure paradigm – exceptions Security – code access security Interoperability – using existing COM components, calling Win32 functions Krzysztof
    [Show full text]
  • Understanding CIL
    Understanding CIL James Crowley Developer Fusion http://www.developerfusion.co.uk/ Overview Generating and understanding CIL De-compiling CIL Protecting against de-compilation Merging assemblies Common Language Runtime (CLR) Core component of the .NET Framework on which everything else is built. A runtime environment which provides A unified type system Metadata Execution engine, that deals with programs written in a Common Intermediate Language (CIL) Common Intermediate Language All compilers targeting the CLR translate their source code into CIL A kind of assembly language for an abstract stack-based machine, but is not specific to any hardware architecture Includes instructions specifically designed to support object-oriented concepts Platform Independence The intermediate language is not interpreted, but is not platform specific. The CLR uses JIT (Just-in-time) compilation to translate the CIL into native code Applications compiled in .NET can be moved to any machine, providing there is a CLR implementation for it (Mono, SSCLI etc) Demo Generating IL using the C# compiler .method private hidebysig static void Main(string[] args) cil managed { .entrypoint // Code size 31 (0x1f) Some familiar keywords with some additions: .maxstack 2 .locals init (int32 V_0, .method – this is a method int32 V_1, hidebysig – the method hides other methods with int32 V_2) the same name and signature. IL_0000: ldc.i4.s 50 cil managed – written in CIL and should be IL_0002: stloc.0 executed by the execution engine (C++ allows IL_0003: ldc.i4.s
    [Show full text]
  • Working with Ironpython and WPF
    Working with IronPython and WPF Douglas Blank Bryn Mawr College Programming Paradigms Spring 2010 With thanks to: http://www.ironpython.info/ http://devhawk.net/ IronPython Demo with WPF >>> import clr >>> clr.AddReference("PresentationFramework") >>> from System.Windows import * >>> window = Window() >>> window.Title = "Hello" >>> window.Show() >>> button = Controls.Button() >>> button.Content = "Push Me" >>> panel = Controls.StackPanel() >>> window.Content = panel >>> panel.Children.Add(button) 0 >>> app = System.Windows.Application() >>> app.Run(window) XAML Example: Main.xaml <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns: x="http://schemas.microsoft.com/winfx/2006/xaml" Title="TestApp" Width="640" Height="480"> <StackPanel> <Label>Iron Python and WPF</Label> <ListBox Grid.Column="0" x:Name="listbox1" > <ListBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Path=title}" /> </DataTemplate> </ListBox.ItemTemplate> </ListBox> </StackPanel> </Window> IronPython + XAML import sys if 'win' in sys.platform: import pythoncom pythoncom.CoInitialize() import clr clr.AddReference("System.Xml") clr.AddReference("PresentationFramework") clr.AddReference("PresentationCore") from System.IO import StringReader from System.Xml import XmlReader from System.Windows.Markup import XamlReader, XamlWriter from System.Windows import Window, Application xaml = """<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" Title="XamlReader Example" Width="300" Height="200"> <StackPanel Margin="5"> <Button
    [Show full text]
  • Starting up an Application Domain
    04_596985 ch01.qxp 12/14/05 7:46 PM Page 1 Initial Phases of a Web Request Before the first line of code you write for an .aspx page executes, both Internet Information Services (IIS) and ASP.NET have performed a fair amount of logic to establish the execution context for a HyperText Transfer Protocol (HTTP) request. IIS may have negotiated security credentials with your browser. IIS will have determined that ASP.NET should process the request and will perform a hand- off of the request to ASP.NET. At that point, ASP.NET performs various one-time initializations as well as per-request initializations. This chapter will describe the initial phases of a Web request and will drill into the various security operations that occur during these phases. In this chapter, you will learn about the following steps that IIS carries out for a request: ❑ The initial request handling and processing performed both by the operating system layer and the ASP.NET Internet Server Application Programming Interface (ISAPI) filter ❑ How IIS handles static content requests versus dynamic ASP.NET content requests ❑ How the ASP.NET ISAPI filter transitions the request from the world of IIS into the ASP.NET world Having an understandingCOPYRIGHTED of the more granular portions MATERIAL of request processing also sets the stage for future chapters that expand on some of the more important security processing that occurs during an ASP.NET request as well as the extensibility points available to you for modifying ASP.NET’s security behavior. This book describes security behavior primarily for Windows Server 2003 running IIS6 and ASP.NET.
    [Show full text]
  • The Zonnon Project: a .NET Language and Compiler Experiment
    The Zonnon Project: A .NET Language and Compiler Experiment Jürg Gutknecht Vladimir Romanov Eugene Zueff Swiss Fed Inst of Technology Moscow State University Swiss Fed Inst of Technology (ETH) Computer Science Department (ETH) Zürich, Switzerland Moscow, Russia Zürich, Switzerland [email protected] [email protected] [email protected] ABSTRACT Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a number of novel programming concepts and constructs. It covers a wide range of programming models from algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular object-oriented languages, Zonnon propagates a symmetric compositional inheritance model. In this paper, we first give a brief overview of the language and then focus on the implementation of the compiler and builder on top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon compiler is an interesting showcase for the .NET interoperability platform because it implements a non-trivial but still “natural” mapping from the language’s intrinsic object model to the underlying CLR. Keywords Oberon, Zonnon, Compiler, Common Compiler Infrastructure (CCI), Integration. 1. INTRODUCTION: THE BRIEF CCI and b) to experiment with evolutionary language HISTORY OF THE PROJECT concepts. The notion of active object was taken from the Active Oberon language [Gut01]. In addition, two This is a technical paper presenting and describing new concurrency mechanisms have been added: an the current state of the Zonnon project. Zonnon is an accompanying communication mechanism based on evolution of the Pascal, Modula, Oberon language syntax-oriented protocols , borrowed from the Active line [Wir88].
    [Show full text]
  • The Microsoft Way: COM, OLE/Activex, COM+, and .NET CLR
    8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 329 CHAPTER FIFTEEN The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR In a sense, Microsoft is taking the easiest route. Instead of proposing a global standard and hoping to port its own systems to it, it continually re-engineers its existing application and platform base. Component technology is intro- duced gradually, gaining leverage from previous successes, such as the original Visual Basic controls (VBX – non-object-oriented components!), object link- ing and embedding (OLE), OLE database connectivity (ODBC), ActiveX, Microsoft Transaction Server (MTS), or active server pages (ASP). In the standards arena, Microsoft focuses mostly on internet (IETF) and web (W3C) standards. More recently, some of its .NET specifications (CLI and C#) where adopted by ECMA – a European standards body with a fast track to ISO (ECMA, 2001a, 2001b). Microsoft is not trying to align its approaches with OMG or Java standards. While Java figured prominently in Microsoft’s strategy for a while, it has been relegated to a mere continuation of support of its older Visual J++ product – in part as a result of a settlement between Sun and Microsoft. In addition, under the name Visual J# .NET, Microsoft offers a migration tool to .NET, primarily targeting users of Visual J++ 6.0. As part of the .NET initiative, Microsoft is promoting language neutrality as a major tenet of CLR and aims to establish a new language, C#. C# adopts many of the successful traits of Java, while adding several distinctive features of its own (such as value types) and not supporting key Java features (such as inner classes).
    [Show full text]
  • Arquitectura .NET
    Distribution and Integration Technologies .NET Architecture Traditional Architectures Web Local Distributed Other applications applications applications applications GUI Network Scripts Data Other Services Services Web Access Services Libraries Execution environment (Posix, Win32, ...) Operating System .NET Architecture 2 Java Architecture Web Local Distributed Other applications applications applications applications Swing Enterprise Java Server JDBC Others Java Beans Pages Standard Java Packages Java Virtual Machine (JVM) Operating System .NET Architecture 3 .NET Architecture Web Local Distributed Other applications applications applications applications Windows Enterprise ASP.NET ADO.NET Others Forms Services .NET Framework Class Library (FCL) Common Language Runtime (CLR) Operating System .NET Architecture 4 Common Language Runtime (CLR) All .NET applications use the CLR The CLR is OO It is independent from high level languages The CLR supports: . A common set of data types for all languages (CTS) . An intermediate language independent from the native code (CIL) . A common format for compiled code files (assemblies) All the software developed using the CLR is known as managed code .NET Architecture 5 Common Type System (CTS) All the languages able to generate code for the CLR make use of the CTS (the CLR implements the CTS) heap There is 2 type categories: string . Value “abcdef” • Simple types stack • Allocated in the stack top class A 41 String: . Reference Double: 271.6 • Complex types • Allocated in the heap • Destroyed automatically
    [Show full text]