Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 6, 505–530, 2012 www.the-cryosphere-discuss.net/6/505/2012/ The Cryosphere doi:10.5194/tcd-6-505-2012 Discussions © Author(s) 2012. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal The Cryosphere (TC). Please refer to the corresponding final paper in TC if available. Quantification of ikaite in Antarctic sea ice M. Fischer1,6, D. N. Thomas2,3, A. Krell1, G. Nehrke1, J. Gottlicher¨ 4, L. Norman2, C. Riaux-Gobin5, and G. S. Dieckmann1 1Alfred Wegener Institute for Polar and Marine Reserach, Bremerhaven, Germany 2Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, UK 3Marine Centre, Finnish Environment Institute (SYKE), Helsinki, Finland 4Institute of Synchrotron Radiation (ISS), Synchrotron Radiation Source ANKA, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany 5USR3278, CRIOBE, CNRS-EPHE, Perpignan, France 6Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany Received: 18 January 2012 – Accepted: 25 January 2012 – Published: 3 February 2012 Correspondence to: M. Fischer (michael.fi
[email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 505 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is 5 known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans.