A Study on the Portability of IoT Operating Systems Renata Martins Gomes Marcel Baunach
[email protected] [email protected] Graz University of Technology Graz University of Technology Graz, Austria Graz, Austria ABSTRACT hardware-specific mechanisms demanding low-level knowl- The IoT is set to permeate our lives as a new and global edge about the hardware. super infrastructure, where billions of devices with an un- The Internet of Things (IoT) is set to permeate our lives as precedented variety of hardware architectures will interact. a new super-infrastructure, with applications ranging from To enable IoT applications and services to run everywhere monitoring our health to controlling our cars and manag- without major adaptation, operating systems (OS) provide ing our cities. Billions of devices are expected to interact in standardized interfaces to the heterogeneous hardware. As the IoT, and we can already see a growing variety of hard- a consequence, an operating system for IoT devices must ware architectures, communication stacks and programming be available for a huge number of target platforms, from paradigms, each specializing on specific purposes and differ- low-end to high-end devices, and it must guarantee differ- ent requirements or constraints. An OS that aims to become ent levels of dependability (e.g., safety, security, real-time, the Linux or Android for the IoT will need to be able to run maintainability) that each application will require. Some of on several platforms, ranging from low-end sensor nodes to these hardware architectures do already exist, others will high-end automotive electronic control units (ECUs), guar- emerge over time and introduce new or improved features anteeing different levels of dependability [4] that each ap- that must be supported or exploited by the OS.