3 Geodesy, Datums, Map Projec- Tions, and Coordinate Systems

Total Page:16

File Type:pdf, Size:1020Kb

3 Geodesy, Datums, Map Projec- Tions, and Coordinate Systems 85 3 Geodesy, Datums, Map Projec- tions, and Coordinate Systems Introduction Geographic information systems are distorted. This distortion may be difficult to different from other information systems detect on detailed maps that cover a small because they contain spatial data. These area, but the distortion is quite apparent on spatial data include coordinates that define large-area maps. Because measurements on the location, shape, and extent of geo- maps are affected by the distortion, we graphic objects. To effectively use GIS, we must use a map projection to reconcile the must develop a clear understanding of how portrayal of the Earth’s curved surface onto coordinate systems are established for the a flat surface. Earth, how these coordinates are measured The second main problem in defining a on the Earth’s curving surface, and how coordinate system results from the irregular these coordinates are converted for use in shape of the Earth. We learn early on that flat maps, either digital or paper. This chap- the Earth is shaped as a sphere. This is a ter introduces geodesy, the science of mea- valid approximation for many uses, how- suring the shape of the Earth, and map ever, it is only an approximation. Past and projections, the transformation of coordi- present natural forces yield an irregularly nate locations from the Earth’s curved sur- shaped Earth. These deformations affect face onto flat maps. how we best map the surface of the Earth, Defining coordinates for the Earth’s and how we define Cartesian coordinate surface is complicated by three main fac- systems for mapping and GIS. tors. First, most people best understand Thirdly, our measurements are rarely geography in a Cartesian coordinate system perfect, and this applies when measuring on a flat surface. Humans naturally per- both the shape of the Earth, and the exact ceive the Earth’s surface as flat, because at position of features on it. All locations human scales the Earth’s curvature is depend on measurements that contain some barely perceptible. Humans have been error, and on analyses that require assump- using flat maps for more than 40 centuries, tions. Our measurements improve through and although globes are quite useful for time, and so does the sophistication of our visualization at extremely small scales, analysis, so our positional estimates they are not practical for most purposes. improve; this evolution means our esti- A flat map must distort geometry in mates of positions change through time. some way because the Earth is curved. Because of these three factors, we When we plot latitude and longitude coor- often have several different sets of coordi- dinates on a Cartesian system, “straight” nates to define the same location on the sur- lines will appear bent, and polygons will be face of the Earth. Remember, coordinates 86 GIS Fundamentals Coordinates for a From Surveyor Data: Point Location Latitude (N) Longitude (W) NAD83(2007) 44 57 23.23074 093 05 58.28007 d Geo an de st ti NAD83(1986) 44 57 23.22405 093 05 58.27471 a c o S C u . r NAD83(1996) 44 57 23.23047 093 05 58.27944 v S . e y U X Y B k SPC MNS 317,778.887 871,048.844 MT ench mar SPC MNS 1,042,579.57 2,857,766.08 sFT UTM15 4,978,117.714 492,150.186 MT From Data Layers: X Y MN-Ramsey 573,475.592 160,414.122 sFT MN-Ramsey 174,195.315 48,893.966 MT SPC MNC 890,795.838 95,819.779 MT SPC MNC 2,922,552.206 314,365.207 sFT LCC 542,153.586 18,266.334 MT Figure 3-1: An example of different coordinate values for the same point. We may look up the coordinates for a well-surveyed point, and we may also obtain the coordinates for the same point from a number of dif- ferent data layers. We often find multiple latitude/longitude values (surveyor data, top), or x and y values for the same point (surveyor data, or from data layers, bottom). are sets of numbers that unambiguously this point. In this case, the three versions dif- define locations. They are usually x and y fer primarily due to differences in the mea- values, or perhaps x, y, and z values, or lati- surements used to establish the point’s tude and longitude values unique to a loca- location, and how measurement errors were tion. But these values are only “unique” to adjusted (the third factor, discussed above). the location for a specified set of measure- The GIS practitioner may well ask, which ments and time. The coordinates depend on latitude/longitude pair should I use? This how we translate points from a curved Earth chapter contains the information that should to a flat map surface (first factor, above), the allow you to choose wisely. estimate we use for the real shape of the Note that there are also several versions Earth (second factor), and what set of mea- of the x and y coordinates for the point in surements we reference our coordinates to Figure 3-1. The differences in the coordinate (the third factor). We may, and often do, values are too great to be due solely to mea- address these three factors in a number of surement errors. They are due primarily to different ways, and the coordinates for the how we choose to project from the curved same point will be different for these differ- Earth to a flat map (the first factor), and in ent choices. part to the Earth shape we adopt and the An example may help. Figure 3-1 shows measurement system we use (the second and the location of a U.S. benchmark, a precisely third factors). surveyed and monumented point. Coordi- We first must define a specific coordi- nates for this point are maintained by federal nate system, meaning we choose a specific and state government surveyors, and result- way to address the three main factors of pro- ing coordinates shown at the top right of the jection distortion, an irregularly shaped figure. Note that there are three different ver- Earth, and measurement imprecision. There- sions of the latitude/longitude location for after the coordinates for a given point are Chapter 3: Geodesy, Projections, and Coordinate Systems 87 fixed, as are the spatial relationships to other measured locations on the Earth’s surface measured points. But it is crucial to realize relative to the Sun or stars, reasoning they that different ways of addressing 1) the provided a stable reference frame. This Earth’s curvature, 2) the Earth’s deviation assumption underlies most geodetic observa- from our idealized shape, and 3) inevitable tions taken over the past 2000 years, and still inaccuracies in measurement, will result in applies today, with suitable refinements. different coordinate systems, and these dif- Eratosthenes, a Greek scholar in Egypt, ferences are the root of much confusion and performed one of the earliest well-founded many errors in spatial analysis. As a rule, measurements of the Earth’s circumference. you should understand the coordinate system He noticed that on the summer solstice the used for all of your data, and convert all data sun at noon shone to the bottom of a deep to the same coordinate system prior to analy- well in Syene, near Tropic of Cancer, so that sis. The remainder of this chapter describes the sun would be exactly overhead during how we define, measure, and convert among the summer solstice. He also observed that coordinate systems. 805 km north in Alexandria, at exactly the same date and time, a vertical post cast a Early Measurements shadow. The shadow/post combination o defined an angle that was about 7 12’, or In specifying a coordinate system, we about 1/50th of a circle (Figure 3-2). must first define the size and shape of the Earth. Humans have long speculated on this. Eratosthenes deduced that the Earth Babylonians believed the Earth was a flat must be 805 multiplied by 50, or about disk floating in an endless ocean, while the 40,250 kilometers in circumference. His cal- Greek Pythagoras, and later Aristotle, rea- culations were all in stadia, the unit of mea- soned that the Earth must be a sphere. He sure of the time, and have been converted observed that ships disappeared over the here to the metric equivalent, using our best horizon, the moon appeared to be a sphere, idea of a stadia length. Eratosthenes’s esti- and that the stars moved in circular patterns, mate differs from our modern measurements all observations consistent with a spherical of the Earth’s circumference by less than Earth. 4%. The Greeks next turned toward estimat- Posidonius, another Greek scholar, ing the size of the sphere. The early Greeks made an independent estimate of the size of the Earth by measuring angles from local Figure 3-2: Measurements made by Eratosthenes to determine the circumfer- ence of the Earth. 88 GIS Fundamentals Figure 3-3: Posidonius approximated the Earth’s radius by simultaneous measurement of zenith angles at two points. Two points are separated by an arc distance d measured on the Earth surface. These points also span an angle defined at the Earth center. The Earth radius is related to d and . Once the radius is calculated, the Earth circumference may be deter- mined. Note this is an approximation, not an exact estimate, but was appro- priate for the measurements avail- able at the time (adapted from Smith, 1997). vertical (plumb) lines to a star near the hori- was adopted by Ptolemy for his world maps.
Recommended publications
  • Navigation and the Global Positioning System (GPS): the Global Positioning System
    Navigation and the Global Positioning System (GPS): The Global Positioning System: Few changes of great importance to economics and safety have had more immediate impact and less fanfare than GPS. • GPS has quietly changed everything about how we locate objects and people on the Earth. • GPS is (almost) the final step toward solving one of the great conundrums of human history. Where the heck are we, anyway? In the Beginning……. • To understand what GPS has meant to navigation it is necessary to go back to the beginning. • A quick look at a ‘precision’ map of the world in the 18th century tells one a lot about how accurate our navigation was. Tools of the Trade: • Navigations early tools could only crudely estimate location. • A Sextant (or equivalent) can measure the elevation of something above the horizon. This gives your Latitude. • The Compass could provide you with a measurement of your direction, which combined with distance could tell you Longitude. • For distance…well counting steps (or wheel rotations) was the thing. An Early Triumph: • Using just his feet and a shadow, Eratosthenes determined the diameter of the Earth. • In doing so, he used the last and most elusive of our navigational tools. Time Plenty of Weaknesses: The early tools had many levels of uncertainty that were cumulative in producing poor maps of the world. • Step or wheel rotation counting has an obvious built-in uncertainty. • The Sextant gives latitude, but also requires knowledge of the Earth’s radius to determine the distance between locations. • The compass relies on the assumption that the North Magnetic pole is coincident with North Rotational pole (it’s not!) and that it is a perfect dipole (nope…).
    [Show full text]
  • UCGE Reports Ionosphere Weighted Global Positioning System Carrier
    UCGE Reports Number 20155 Ionosphere Weighted Global Positioning System Carrier Phase Ambiguity Resolution (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) Department of Geomatics Engineering By George Chia Liu December 2001 Calgary, Alberta, Canada THE UNIVERSITY OF CALGARY IONOSPHERE WEIGHTED GLOBAL POSITIONING SYSTEM CARRIER PHASE AMBIGUITY RESOLUTION by GEORGE CHIA LIU A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOMATICS ENGINEERING CALGARY, ALBERTA OCTOBER, 2001 c GEORGE CHIA LIU 2001 Abstract Integer Ambiguity constraint is essential in precise GPS positioning. The perfor- mance and reliability of the ambiguity resolution process are being hampered by the current culmination (Y2000) of the eleven-year solar cycle. The traditional approach to mitigate the high ionospheric effect has been either to reduce the inter-station separation or to form ionosphere-free observables. Neither is satisfactory: the first restricts the operating range, and the second no longer possesses the ”integerness” of the ambiguities. A third generalized approach is introduced herein, whereby the zero ionosphere weight constraint, or pseudo-observables, with an appropriate weight is added to the Kalman Filter algorithm. The weight can be tightly fixed yielding the model equivalence of an independent L1/L2 dual-band model. At the other extreme, an infinite floated weight gives the equivalence of an ionosphere-free model, yet perserves the ambiguity integerness. A stochastically tuned, or weighted, model provides a compromise between the two ex- tremes. The reliability of ambiguity estimates relies on many factors, including an accurate functional model, a realistic stochastic model, and a subsequent efficient integer search algorithm.
    [Show full text]
  • State Plane Coordinate System
    Wisconsin Coordinate Reference Systems Second Edition Published 2009 by the State Cartographer’s Office Wisconsin Coordinate Reference Systems Second Edition Wisconsin State Cartographer’s Offi ce — Madison, WI Copyright © 2015 Board of Regents of the University of Wisconsin System About the State Cartographer’s Offi ce Operating from the University of Wisconsin-Madison campus since 1974, the State Cartographer’s Offi ce (SCO) provides direct assistance to the state’s professional mapping, surveying, and GIS/ LIS communities through print and Web publications, presentations, and educational workshops. Our staff work closely with regional and national professional organizations on a wide range of initia- tives that promote and support geospatial information technologies and standards. Additionally, we serve as liaisons between the many private and public organizations that produce geospatial data in Wisconsin. State Cartographer’s Offi ce 384 Science Hall 550 North Park St. Madison, WI 53706 E-mail: [email protected] Phone: (608) 262-3065 Web: www.sco.wisc.edu Disclaimer The contents of the Wisconsin Coordinate Reference Systems (2nd edition) handbook are made available by the Wisconsin State Cartographer’s offi ce at the University of Wisconsin-Madison (Uni- versity) for the convenience of the reader. This handbook is provided on an “as is” basis without any warranties of any kind. While every possible effort has been made to ensure the accuracy of information contained in this handbook, the University assumes no responsibilities for any damages or other liability whatsoever (including any consequential damages) resulting from your selection or use of the contents provided in this handbook. Revisions Wisconsin Coordinate Reference Systems (2nd edition) is a digital publication, and as such, we occasionally make minor revisions to this document.
    [Show full text]
  • Geomatics Guidance Note 3
    Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to ‘Geomatics’. 4 April 2006 References to EPSG updated. 3 April 2002 Revised to conform to ISO19111 terminology. 2 November 1997 1 November 1995 First issued. 1. Introduction Contract Areas and Licence Block Boundaries have often been inadequately described by both licensing authorities and licence operators. Overlaps of and unlicensed slivers between adjacent licences may then occur. This has caused problems between operators and between licence authorities and operators at both the acquisition and the development phases of projects. This Guidance Note sets out a procedure for describing boundaries which, if followed for new contract areas world-wide, will alleviate the problems. This Guidance Note is intended to be useful to three specific groups: 1. Exploration managers and lawyers in hydrocarbon exploration companies who negotiate for licence acreage but who may have limited geodetic awareness 2. Geomatics professionals in hydrocarbon exploration and development companies, for whom the guidelines may serve as a useful summary of accepted best practice 3. Licensing authorities. The guidance is intended to apply to both onshore and offshore areas. This Guidance Note does not attempt to cover every aspect of licence boundary definition. In the interests of producing a concise document that may be as easily understood by the layman as well as the specialist, definitions which are adequate for most licences have been covered. Complex licence boundaries especially those following river features need specialist advice from both the survey and the legal professions and are beyond the scope of this Guidance Note.
    [Show full text]
  • PRINCIPLES and PRACTICES of GEOMATICS BE 3200 COURSE SYLLABUS Fall 2015
    PRINCIPLES AND PRACTICES OF GEOMATICS BE 3200 COURSE SYLLABUS Fall 2015 Meeting times: Lecture class meets promptly at 10:10-11:00 AM Mon/Wed in438 Brackett Hall and lab meets promptly at 12:30-3:20 PM Wed at designated sites Course Basics Geomatics encompass the disciplines of surveying, mapping, remote sensing, and geographic information systems. It’s a relatively new term used to describe the science and technology of dealing with earth measurement data that includes collection, sorting, management, planning and design, storage, and presentation of the data. In this class, geomatics is defined as being an integrated approach to the measurement, analysis, management, storage, and presentation of the descriptions and locations of spatial data. Goal: Designed as a "first course" in the principles of geomeasurement including leveling for earthwork, linear and area measurements (traversing), mapping, and GPS/GIS. Description: Basic surveying measurements and computations for engineering project control, mapping, and construction layout. Leveling, earthwork, area, and topographic measurements using levels, total stations, and GPS. Application of Mapping via GIS. 2 CT2: This course is a CT seminar in which you will not only study the course material but also develop your critical thinking skills. Prerequisite: MTHSC 106: Calculus of One Variable I. Textbook: Kavanagh, B. F. Surveying: Principles and Applications. Prentice Hall. 2010. Lab Notes: Purchase Lab notes at Campus Copy Shop [REQUIRED]. Materials: Textbook, Lab Notes (must be brought to lab), Field Book, 3H/4H Pencil, Small Scale, and Scientific Calculator. Attendance: Regular and punctual attendance at all classes and field work is the responsibility of each student.
    [Show full text]
  • Download/Pdf/Ps-Is-Qzss/Ps-Qzss-001.Pdf (Accessed on 15 June 2021)
    remote sensing Article Design and Performance Analysis of BDS-3 Integrity Concept Cheng Liu 1, Yueling Cao 2, Gong Zhang 3, Weiguang Gao 1,*, Ying Chen 1, Jun Lu 1, Chonghua Liu 4, Haitao Zhao 4 and Fang Li 5 1 Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China; [email protected] (C.L.); [email protected] (Y.C.); [email protected] (J.L.) 2 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China; [email protected] 3 Institute of Telecommunication and Navigation, CAST, Beijing 100094, China; [email protected] 4 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China; [email protected] (C.L.); [email protected] (H.Z.) 5 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100094, China; [email protected] * Correspondence: [email protected] Abstract: Compared to the BeiDou regional navigation satellite system (BDS-2), the BeiDou global navigation satellite system (BDS-3) carried out a brand new integrity concept design and construction work, which defines and achieves the integrity functions for major civil open services (OS) signals such as B1C, B2a, and B1I. The integrity definition and calculation method of BDS-3 are introduced. The fault tree model for satellite signal-in-space (SIS) is used, to decompose and obtain the integrity risk bottom events. In response to the weakness in the space and ground segments of the system, a variety of integrity monitoring measures have been taken. On this basis, the design values for the new B1C/B2a signal and the original B1I signal are proposed, which are 0.9 × 10−5 and 0.8 × 10−5, respectively.
    [Show full text]
  • Geodynamics and Rate of Volcanism on Massive Earth-Like Planets
    The Astrophysical Journal, 700:1732–1749, 2009 August 1 doi:10.1088/0004-637X/700/2/1732 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS E. S. Kite1,3, M. Manga1,3, and E. Gaidos2 1 Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA; [email protected] 2 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2008 September 12; accepted 2009 May 29; published 2009 July 16 ABSTRACT We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25–25 M⊕, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing—volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets.
    [Show full text]
  • Part V: the Global Positioning System ______
    PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment.
    [Show full text]
  • Reference Systems for Surveying and Mapping Lecture Notes
    Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©2014­2020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons Attributions­NonCommercial­SharedAlike 4.0 International License (CC BY­NC­SA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BSc­program for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • World Geodetic System 1984
    World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z).
    [Show full text]
  • Geodetic Control
    FGDC-STD-014.4-2008 Geographic Information Framework Data Content Standard Part 4: Geodetic Control May 2008 Federal Geographic Data Committee Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Education, Energy, Health and Human Services, Homeland Security, Housing and Urban Development, the Interior, Justice, Labor, State, and Transportation, the Treasury, and Veteran Affairs; the Environmental Protection Agency; the Federal Communications Commission; the General Services Administration; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; the National Science Foundation; the Nuclear Regulatory Commission; the Office of Personnel Management; the Small Business Administration; the Smithsonian Institution; the Social Security Administration; the Tennessee Valley Authority; and the U.S. Agency for International Development. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of
    [Show full text]