Identifizierung Und Charakterisierung Von Myokinen Und Adipokinen Mit Bedeutung Für Die Körperzusammensetzung Beim Rind

Total Page:16

File Type:pdf, Size:1020Kb

Identifizierung Und Charakterisierung Von Myokinen Und Adipokinen Mit Bedeutung Für Die Körperzusammensetzung Beim Rind Leibniz-Institut für Nutztierbiologie (FBN) Institut für Muskelbiologie und Wachstum Identifizierung und Charakterisierung von Myokinen und Adipokinen mit Bedeutung für die Körperzusammensetzung beim Rind Dissertation zur Erlangung des Doktorgrades der Ernährungswissenschaften (Dr. troph.) der Naturwissenschaftlichen Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik der Martin-Luther-Universität Halle-Wittenberg vorgelegt von Lisa Schering geboren am 24.03.1988 in Lutherstadt Wittenberg Dekan: Prof. Dr. Olaf Christen 1. Gutachter: Prof. Dr. Steffen Maak 2. Gutachterin: Prof. Dr. Gabriele Stangl 3. Gutachterin: Prof. Dr. Susanne Klaus Tag der Verteidigung: 12.12.2016 Inhaltsverzeichnis Abkürzungsverzeichnis ....................................................................................................... IV Abbildungsverzeichnis ........................................................................................................ VI Tabellenverzeichnis ........................................................................................................... VIII 1 Einführung ....................................................................................................................... 1 2 Literaturübersicht ........................................................................................................... 3 2.1 Fettgewebe als endokrines Organ .................................................................... 3 2.2 Skelettmuskelgewebe als endokrines Organ .................................................... 6 2.3 Wechselwirkungen zwischen Skelettmuskel- und Fettgewebe ......................... 7 2.3.1 Adipokine .......................................................................................................... 9 2.3.2 Myokine ........................................................................................................... 11 2.3.3 Adipo-Myokine ................................................................................................ 14 2.4 Zielsetzung ...................................................................................................... 16 3 Material und Methoden ................................................................................................. 17 3.1 Probenmaterial ................................................................................................ 17 3.1.1 Rinder aus einer experimentellen F2-Kreuzung .............................................. 17 3.1.2 Rinderrassen mit differenter IMF-Akkumulation .............................................. 17 3.1.3 Gewebe für molekularbiologische und proteinbiochemische Analysen .......... 17 3.1.4 Zelllinie ............................................................................................................ 18 3.1.5 Primäre bovine Zellen ..................................................................................... 18 3.1.5.1 Isolierung von stromavaskulären Zellen .......................................................... 18 3.1.5.2 Isolierung von bovinen Satellitenzellen ........................................................... 19 3.1.5.3 Gewinnung von Fettgewebe für Explant-Kulturen ........................................... 19 3.1.6 Chemikalien, Puffer, Verbrauchsmaterialien, Software und Geräte ................ 20 3.2 Methoden ........................................................................................................ 20 3.2.1 Datenanalyse .................................................................................................. 20 3.2.2 Lasermikrodissektion ...................................................................................... 21 3.2.3 Molekularbiologische Analysen ....................................................................... 22 3.2.3.1 RNA-Isolierung ................................................................................................ 22 3.2.3.2 Konzentrationsmessung der RNA ................................................................... 22 3.2.3.3 Isolierung von genomischer DNA .................................................................... 22 3.2.3.4 Proteinisolierung ............................................................................................. 23 3.2.3.5 Proteinfraktionierung ....................................................................................... 23 3.2.3.6 Reverse Transkription (cDNA-Synthese) ........................................................ 24 3.2.3.7 Primerdesign ................................................................................................... 24 3.2.3.8 PCR und Agarosegelelektrophorese für Primertests ...................................... 26 3.2.3.9 Quantitative Echtzeit-PCR (RT-qPCR)............................................................ 27 I 3.2.3.10 Strukturelle Analyse des THRSP-Locus ........................................................ 29 3.2.4 Zellkultur .......................................................................................................... 30 3.2.4.1 Kultivierung und Differenzierung von 3T3-L1-Zellen ....................................... 30 3.2.4.2 Kultivierung und Differenzierung von primären bovinen Präadipozyten.......... 31 3.2.4.3 Ölrot-Färbung .................................................................................................. 31 3.2.4.4 Fettexplantkultur aus SCF ............................................................................... 32 3.2.4.5 Kultivierung und Differenzierung von bovinen Satellitenzellen ....................... 32 3.2.5 Proteinbiochemische Methoden ...................................................................... 33 3.2.5.1 Immunhistochemie .......................................................................................... 33 3.2.5.1.1 3T3-L1-Zellen ............................................................................................ 33 3.2.5.1.2 Gewebeschnitte der bovinen Leber, des Skelettmuskels und des subkutanen Fettgewebes .......................................................................... 34 3.2.5.1.3 Kapillarfärbung vom bovinen Muskelquerschnitt ...................................... 35 3.2.5.1.4 Primäre bovine Muskelzellen .................................................................... 36 3.2.5.2 Western Blot .................................................................................................... 36 4 Ergebnisse ..................................................................................................................... 41 4.1 Vergleichende Analyse von Transkriptom-, Proteom- und Sekretomdaten der Spezies Rind, Mensch und Maus .................................................................... 41 4.1.1 Evaluierung different exprimierter Transkripte im Fettgewebe und Skelettmuskel .................................................................................................. 41 4.1.2 Identifizierung von Adipokinen und Myokinen als Teilmenge der Transkripte mit High-Score ................................................................................................ 41 4.1.3 Identifizierung von Adipo-Myokinen ................................................................ 42 4.1.4 Netzwerk-Analyse der Gene mit High-Score .................................................. 44 4.2 Vergleichende Expressionsanalysen von ausgewählten Kandidatengenen im Skelettmuskel- und Fettgewebe von Bullen der SEGFAM-Population ............ 49 4.2.1 Analyse von THBS4 beim Rind ....................................................................... 50 4.2.2 Analyse von THRSP beim Rind ...................................................................... 54 4.2.2.1 mRNA-Expression von THRSP in verschiedenen bovinen Geweben............. 55 4.2.2.2 Analyse und vergleichende Sequenzierung des THRSP-Locus ..................... 56 4.2.2.3 Genexpression von THRSP auf mRNA- und Proteinebene in verschiedenen Zelltypen .......................................................................................................... 56 4.2.2.4 mRNA-Expression während der adipogenen Differenzierung......................... 62 4.2.2.5 Proteinlokalisation in der 3T3-L1-Zelllinie ....................................................... 64 4.3 Etablierung von primären bovinen Zellkulturmodellen für funktionelle Untersuchungen .............................................................................................. 66 II 4.3.1 Kultivierung und adipogene Differenzierung von primären bovinen stromavaskulären Zellen ................................................................................. 66 4.3.2 Relative mRNA-Expression von Genen in bovinen Fettexplants .................... 68 4.3.3 Kultivierung von primären bovinen Myoblasten .............................................. 70 5 Diskussion ..................................................................................................................... 73 5.1 Speziesübergreifende Genexpressionsdaten-Analyse ................................... 73 5.2 Initiale Charakterisierung ausgewählter, putativer Adipokine und Myokine beim Rind ........................................................................................................ 80 5.3 Etablierung von primären bovinen Zellkulturmodellen zur funktionellen Untersuchung von potentiellen Adipokinen und Myokinen ............................. 88 5.4 Fazit ................................................................................................................ 93 6 Zusammenfassung ......................................................................................................
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Mouse Mxra8 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Mxra8 Knockout Project (CRISPR/Cas9) Objective: To create a Mxra8 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Mxra8 gene (NCBI Reference Sequence: NM_024263 ; Ensembl: ENSMUSG00000029070 ) is located on Mouse chromosome 4. 10 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 10 (Transcript: ENSMUST00000030947). Exon 1~10 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Phenotypic analysis of mice homozygous for a gene trap allele indicates this mutation has no notable phenotype in any parameter tested in a high-throughput screen. Exon 1 starts from about 0.08% of the coding region. Exon 1~10 covers 100.0% of the coding region. The size of effective KO region: ~3486 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Legends Exon of mouse Mxra8 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis.
    [Show full text]
  • Functional Annotation of Exon Skipping Event in Human Pora Kim1,*,†, Mengyuan Yang1,†,Keyiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,*
    D896–D907 Nucleic Acids Research, 2020, Vol. 48, Database issue Published online 23 October 2019 doi: 10.1093/nar/gkz917 ExonSkipDB: functional annotation of exon skipping event in human Pora Kim1,*,†, Mengyuan Yang1,†,KeYiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,* 1School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA, 2College of Electronics and Information Engineering, Tongji University, Shanghai, China, 3McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA and 4School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Received August 13, 2019; Revised September 21, 2019; Editorial Decision October 03, 2019; Accepted October 03, 2019 ABSTRACT been used as therapeutic targets (3–8). For example, MET has lost the binding site of E3 ubiquitin ligase CBL through Exon skipping (ES) is reported to be the most com- exon 14 skipping event (9), resulting in an enhanced expres- mon alternative splicing event due to loss of func- sion level of MET. MET amplification drives the prolifera- tional domains/sites or shifting of the open read- tion of tumor cells. Multiple tyrosine kinase inhibitors, such ing frame (ORF), leading to a variety of human dis- as crizotinib, cabozantinib and capmatinib, have been used eases and considered therapeutic targets. To date, to treat patients with MET exon 14 skipping (10). Another systematic and intensive annotations of ES events example is the dystrophin gene (DMD) in Duchenne mus- based on the skipped exon units in cancer and cular dystrophy (DMD), a progressive neuromuscular dis- normal tissues are not available.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Calumenin-15 Facilitates Filopodia Formation by Promoting TGF-Β Superfamily Cytokine GDF-15 Transcription
    Citation: Cell Death and Disease (2013) 4, e870; doi:10.1038/cddis.2013.403 OPEN & 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13 www.nature.com/cddis Calumenin-15 facilitates filopodia formation by promoting TGF-b superfamily cytokine GDF-15 transcription H Feng1,3, L Chen1,3, Q Wang1,3, B Shen1, L Liu1, P Zheng1,SXu1, X Liu1, J Chen1,2 and J Teng*,1 Filopodia, which are actin-rich finger-like membrane protrusions, have an important role in cell migration and tumor metastasis. Here we identify 13 novel calumenin (Calu) isoforms (Calu 3–15) produced by alternative splicing, and find that Calu-15 promotes filopodia formation and cell migration. Calu-15 shuttles between the nucleus and cytoplasm through interacting with importin a, Ran GTPase, and Crm1. The phosphorylation of the threonine at position 73 (Thr-73) by casein kinase 2 (CK2) is essential for the nuclear import of Calu-15, and either Thr-73 mutation or inhibition of CK2 interrupts its nuclear localization. In the nucleus, Calu-15 increases the transcription of growth differentiation factor-15 (GDF-15), a member of the transforming growth factor-b (TGF-b) superfamily, via binding to its promoter region. Furthermore, Calu-15 induces filopodia formation mediated by GDF-15. Together, we identify that Calu-15, a novel isoform of Calu with phosphorylation-dependent nuclear localization, has a critical role in promoting filopodia formation and cell migration by upregulating the GDF-15 transcription. Cell Death and Disease (2013) 4, e870; doi:10.1038/cddis.2013.403; published
    [Show full text]
  • Universidad Nacional Autónoma De México Plan De Estudios Combinados En Medicina Instituto Nacional De Medicina Genómica
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PLAN DE ESTUDIOS COMBINADOS EN MEDICINA INSTITUTO NACIONAL DE MEDICINA GENÓMICA ESTUDIO POST-MORTEM DE LAS ALTERACIONES EN LA EXPRESIÓN DE RNA EN EL CEREBRO DE PACIENTES SUICIDAS TESIS QUE PARA OPTAR POR EL GRADO DE DOCTORA EN MEDICINA PRESENTA: BRENDA CABRERA MENDOZA DIRECTOR DE TESIS: DR. JOSÉ HUMBERTO NICOLINI SÁNCHEZ INSTITUTO NACIONAL DE MEDICINA GENÓMICA COMITÉ TUTOR: DRA. MARTHA PATRICIA OSTROSKY-SHEJET INSTITUTO DE INVESTIGACIONES BIOMÉDICAS DR. DAVID COLIN GLAHN ESCUELA DE MEDICINA DE HARVARD Ciudad Universitaria, CD. MX., diciembre de 2020 TABLA DE CONTENIDOS Resumen ........................................................................................................................................................................ 1 Abstract .......................................................................................................................................................................... 2 Definición y epidemiología del suicidio ............................................................................................................ 3 Epidemiología global del suicidio ..................................................................................................................... 5 Epidemiología del suicidio en América ........................................................................................................... 8 Epidemiología del suicidio en México ............................................................................................................10
    [Show full text]
  • Genome-Wide Approach to Identify Risk Factors for Therapy-Related Myeloid Leukemia
    Leukemia (2006) 20, 239–246 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Genome-wide approach to identify risk factors for therapy-related myeloid leukemia A Bogni1, C Cheng2, W Liu2, W Yang1, J Pfeffer1, S Mukatira3, D French1, JR Downing4, C-H Pui4,5,6 and MV Relling1,6 1Department of Pharmaceutical Sciences, The University of Tennessee, Memphis, TN, USA; 2Department of Biostatistics, The University of Tennessee, Memphis, TN, USA; 3Hartwell Center, The University of Tennessee, Memphis, TN, USA; 4Department of Pathology, The University of Tennessee, Memphis, TN, USA; 5Department of Hematology/Oncology St Jude Children’s Research Hospital, The University of Tennessee, Memphis, TN, USA; and 6Colleges of Medicine and Pharmacy, The University of Tennessee, Memphis, TN, USA Using a target gene approach, only a few host genetic risk therapy increases, the importance of identifying host factors for factors for treatment-related myeloid leukemia (t-ML) have been secondary neoplasms increases. defined. Gene expression microarrays allow for a more 4 genome-wide approach to assess possible genetic risk factors Because DNA microarrays interrogate multiple ( 10 000) for t-ML. We assessed gene expression profiles (n ¼ 12 625 genes in one experiment, they allow for a ‘genome-wide’ probe sets) in diagnostic acute lymphoblastic leukemic cells assessment of genes that may predispose to leukemogenesis. from 228 children treated on protocols that included leukemo- DNA microarray analysis of gene expression has been used to genic agents such as etoposide, 13 of whom developed t-ML. identify distinct expression profiles that are characteristic of Expression of 68 probes, corresponding to 63 genes, was different leukemia subtypes.13,14 Studies using this method have significantly related to risk of t-ML.
    [Show full text]
  • Function in Vertebrates Receptor-Containing Adaptor
    Evidence for Evolving Toll-IL-1 Receptor-Containing Adaptor Molecule Function in Vertebrates This information is current as Con Sullivan, John H. Postlethwait, Christopher R. Lage, of September 30, 2021. Paul J. Millard and Carol H. Kim J Immunol 2007; 178:4517-4527; ; doi: 10.4049/jimmunol.178.7.4517 http://www.jimmunol.org/content/178/7/4517 Downloaded from References This article cites 60 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/178/7/4517.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 30, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Evidence for Evolving Toll-IL-1 Receptor-Containing Adaptor Molecule Function in Vertebrates1 Con Sullivan,* John H. Postlethwait,† Christopher R. Lage,* Paul J. Millard,‡ and Carol H. Kim2* In mammals, Toll-IL-1R-containing adaptor molecule 1 (TICAM1)-dependent TLR pathways induce NF-␬B and IFN-␤ re- sponses.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
    Downloaded from genome.cshlp.org on May 28, 2019 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs).
    [Show full text]