UNIFORM ASYMPTOTIC NORMAL STRUCTURE, THE UNIFORM SEMI-OPIAL PROPERTY, AND FIXED POINTS OF ASYMPTOTICALLY REGULAR UNIFORMLY LIPSCHITZIAN SEMIGROUPS. PART II

MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH

Abstract. In this part of our paper we present several new theorems con- cerning the existence of common fixed points of asymptotically regular uni- formly lipschitzian semigroups.

1. Introduction Let (X, ·) be a and C a subset of X. A mapping T : C → C is said to be uniformly k-lipschitzian if for each x, y ∈ C and every natural number n, T nx − T ny≤k x − y.Ifk = 1, then the mapping T is called nonexpansive. These definitions can also be introduced in metric spaces. The class of uniformly lipschitzian mappings on C is completely characterized as the class of those mappings on C which are nonexpansive with respect to some metric on C which is equivalent to the norm [16]. In this part of our paper we use the new geometric coefficients introduced in its first part to study the existence of (common) fixed points for this class of mappings.

2. Basic notations and facts Throughout this paper we will use the notations from the first part of our paper [6]. However, before we recall several known fixed point theorems we need a few additional notations.

1991 Mathematics Subject Classification. 47H10, 47H20. Key words and phrases. The uniform semi-Opial property, asymptotically regular and uniformly lipschitzian semigroups, fixed points. Received: September 15, 1997.

c 1996 Mancorp Publishing, Inc.

247 248 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH Let (X, ·) denote a Banach space. For x ∈ X and a bounded se- quence {xn} the asymptotic radius of {xn} at x is the number ra (x, {xn}) = lim supn x − xn. Now for a nonempty closed convex subset C of X the asymptotic radius of {xn} in C is the number r (C, {xn}) = inf {ra (x, {xn}): x ∈ C}. The asymptotic center of {xn} in C [13] is the set Ac (C, {xn})= {x ∈ C : ra (x, {xn})=r (C, {xn})} . For more details see [1], [16] and [17]. Let B (0, 1) be the closed unit ball in X. The modulus of convexity of X is the function δ :[0, 2] → [0, 1] defined by   x + y δ () = inf 1 − ; x, y ∈ B (0, 1) , x − y≥ 2

[8]. The characteristic of convexity of X is the number 0 (X)= sup { : δ ()=0} [16]. When 0 (X)=0X is called a uniformly convex space [8]. The Lifshitz characteristic κ (M) of a metric space (M,ρ) is the supremum of all positive real numbers b such that there exists a>1 such that for each x, y ∈ M and r>0 with ρ (x, y) >rthere exists z ∈ M satisfying B (x, br) ∩ B (y, ar) ⊂ B (z,r) [23]. It is obvious that κ (M) ≥ 1. In a Banach space (X, ·) we denote by κ0 (X) the infimum of the numbers κ (C) where C is a closed, convex, bounded and nonempty subset of X.It is known [2] , [16] that 1 (1) ≤ κ (X) ≤ N (X) 1 − δ (1) 0 √ and 0 (X) < 1 if and only κ0 (X) > 1 [12]. Therefore κ0 (X) ≤ 2 [2]. Unfortunately, we know the exact value of κ0 (X) or some lower bounds for κ0 (X) in special spaces only [2]. Therefore it is convenient to introduce a new coefficient which plays a role similar to the one of κ0 (X). In [10] T. Dom´ınguez Benavides and H.K. Xu introduced such a new constant κω (X) in Banach spaces. We give here a slightly different definition of κω (X) from the one given in [10]. Namely, if (X, ·) is a Banach space and C is a nonempty bounded closed convex subset of X, then

(a) a number b ≥ 0 has property (Pω) with respect to C if there exists some a>1 such that for all x, y ∈ C and r>0 with x − y≥r and each weakly convergent sequence {zn} with elements in C such that lim supn x − zn≤ar and lim supn y − zn≤br, there exists z ∈ C such that lim infn z − zn≤r; (b) κω (C) = sup {b>0:b has property (Pω) with respect to C} ; (c) κω (X) = inf {κω (C):C is a nonempty bounded closed convex subset of X}.

It is clear that κω (C) ≥ κ (C) for all nonempty bounded closed convex subsets C ⊂ X. Next let us observe that

κω (X) = inf {κω (C):C is a convex weakly compact subset of X} .

Hence we get that κω (X) ≤ WCS(X) [2]. UNIFORM ASYMPTOTIC NORMAL STRUCTURE 249

Let (M,ρ) be a metric space, where M is not a singleton and T : M → M. Then we will use the symbol |T | to denote the exact Lipschitz constant of T , i.e.,   ρ (Tx,Ty) |T | = sup : x, y ∈ M,x = y . ρ (x, y) Let X be a Banach space, C a nonempty bounded closed convex subset of X , G an unbounded subset of [0, ∞) such that (2) t + h ∈ G for all t, h ∈ G,

(3) t − h ∈ G for all t, h ∈ G with t ≥ h, and T = {Tt : t ∈ G} a family of self-mappings on C . T is called a semigroup of mappings on C if

(i) Ts+tx = TsTtx for all s, t ∈ G and x ∈ C, (ii) for each x ∈ C, the mapping t → Ttx from G into C is continuous when G has the relative topology of [0, ∞). Let us observe that in the particular case G = N we get the semigroups n of iterates T = {Tt : t ∈ G} = {T1 : n ∈ N} . If T satisfies i. - ii. and in addition there exists k>0 such that

Ttx − Tty≤k x − y for all x, y ∈ C and t in G, then we say that T is a uniformly lipschitzian (k-lipschitzian) semigroup of mappings on C. If T satisfies i. - ii. and for each x ∈ C, h ∈ G,

lim Tt+hx − Ttx =0, t→∞ then T is said to be asymptotically regular. The concept of asymptotic regularity is due to F.E. Browder and W.V. Petryshyn [5]. Let us observe that the notions of the asymptotic radius and the as- ymptotic center can be formulated in an obvious way for {xt}t∈G, where G satisfies (2) and (3). The first positive result about fixed points of uniformly lipschitzian map- pings is due to K. Goebel and W.A. Kirk.

Theorem 2.1. [14] Let X be a Banach space with 0 (X) < 1 and let C be a nonempty bounded closed convex subset of X. Suppose T : C → C is uniformly lipschitzian with a constant k<γ,where γ>1 satisfies the equation    1 (4) γ 1 − δ =1. γ Then T has a fixed point in C.

By (1) it is obvious that the constant γ from (4) is strictly less than κ0 (X) [23]. In [30] K.-K. Tan and H.-K. Xu proved the following theorem which is formulated in the same spirit as the previous one. 250 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH Theorem 2.2. [30] Let X be a uniformly convex Banach space, C a non- empty bounded closed convex subset of X and T : C → C a k-lipschitzian mappingwith k<γ1, where γ1 > 1 is the solution of the equation    N (X) (5) γ1 1 − δ 2 =1. γ1 Then T has a fixed point in C.

The constant γ1 given by formula (5) is always bigger than the constant γ defined by (4). In [23] Lifshitz extended the result of Goebel and Kirk in the following way: Theorem 2.3. [23] Let (M,ρ) be a and T : M → M a uniformly lipschitzian mappingwith constant k<κ(M). If there exists n x0 ∈ M such that the orbit {T x0} is bounded, then T has a fixed point in M. Here we must note that in the case of a Banach space we do not know in general how to compare the constant γ1 given by (5) to the constant κ (X) or κ0 (X). In each Banach space we have κ0 (X) ≤ N (X) (see (1)) but in particular cases we can have κ0 (X) < N (X) [7]. Therefore the following result is important. Theorem 2.4. [7] Let X be a Banach space X with uniform normal struc- ture and C a nonempty bounded closed convex subset of X.IfT : C → C is a uniformly k-lipschitzian mappingwith k< N (X), then T has a fixed point.

Now we recall a fixed point theorem in which the coefficients κ0 (X) and N (X) appear simultaneously. Theorem 2.5. [9] Let X be a Banach space, C a nonempty bounded closed convex subset of X and T : C → C.If  1+ 1+4· N (X) · (κ (X) − 1) lim inf |T n| < 0 , n 2 then T has a fixed point. For a discussion of this theorem see [9]. For asymptotically regular mappings we have the following results. Theorem 2.6. [20] Let X be an infinite dimensional uniformly convex Ba- nach space, C a nonempty bounded closed convex separable subset of X and n T : C → C an asymptotically regular mapping with lim inf |T | <γ2, where n γ2 > 1 is the solution of the equation    WCS(X) (6) γ2 1 − δ 2 =1. γ2 Then T has a fixed point in C. UNIFORM ASYMPTOTIC NORMAL STRUCTURE 251

Theorem 2.7. [2, 10] Suppose X is a Banach space. Suppose also C is a convex weakly compact subset of X and T : C → C is asymptotically regular. n If lim inf |T | <κω (C), then T has a fixed point. n Theorem 2.8. [2, 10] Suppose X is a Banach space such that WCS(X) > 1, C is a convex weakly compact subset of X and T : C → C is asymptotically regular. If lim inf |T n| < WCS(X), then T has a fixed point. n Theorem 2.9. [9] Let X be a reflexive Banach space, C a nonempty bounded closed convex subset of X and T : C → C an asymptotically regular mapping. If  1+ 1+4· WCS(X) · (κ (X) − 1) lim inf |T n| < ω , n 2 then T has a fixed point. For a discussion of the connections among the above results see [9, 10]. In [11], [20], [21], [30], [31] and [32] some of the above results were refor- mulated in terms of semigroups. It is also worthwhile to see [4], [15], [18], [19], [22], [24], [25], [26], [27], [28], [29], [33], [34].

3. Existence of fixed points of lipschitzian semigroups of mappings We begin with a generalization of Theorem 2.2.

Theorem 3.1. Let (X, ·) be a Banach space with 0 < 1, C a nonempty bounded closed convex subset of X and T = {Tt : t ∈ G} a uniformly lips- chitzian semigroup of mappings on C with supt |Tt| = k<γ, where γ>1 is the solution of the equation    N (X) (7) γ 1 − δ =1. γ Then there exists a common fixed point of T. Proof. Without loss of generality we can assume that (X, ·) is uniformly convex and k>1. If 0 <0 < 1 we need only make minor changes in the following proof. Let us denote N (X)byN. For each x ∈ C let z be the unique element of Ac (C, {Ttx}). Let us assume that d (x) diam {T x} (8) = a t ≥ r = r (C, {T x}) > 0 N N t and d (z)=diama {Ttz} > 0. Then we can find sequences {sn} and {tn} such that lim sn = lim tn = ∞ n n and lim Tt z − Ts z = diama {Ttz} = d (z) . n n n Next we have

ra (Tsn z,{Ttx}) ≤ k · r 252 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH and

ra (Ttn z,{Ttx}) ≤ k · r. Hence      Tsn z + Ttn z d (z) r ≤ lim inf ra , {Ttx} ≤ 1 − δ · k · r, n 2 k · r       d (z) N · d (z) 1 ≤ 1 − δ · k ≤ 1 − δ · k, k · r d (x) · k and finally    k 1 (9) d (z) ≤ · δ−1 1 − · d (x) . N k

k −1 1 Let us denote N · δ 1 − k by a. Directly from our assumption we get ∞ a<1. Now we define a sequence {xn}n=0 in C in the following way: x0 is an arbitrarily chosen element of C and xn+1 is the unique element of Ac (C, {Ttxn}) for n =0, 1, 2, ... . By (9) we obtain n d (xn) ≤ a · d (x0) , and the inequalities

xn − xn+1≤xn − Tjxn−1 + Tjxn−1 − Tixn + Tixn − xn+1

≤xn − Tjxn−1 + k Tj−ixn−1 − xn + Tixn − xn+1 , which are valid for i

n−1 n xn − xn+1≤(1 + k) d (xn−1)+d (xn) ≤ (1 + k) a + a · d (x0) . ∞ This, in turn, yields the conclusion that {xn}n=0 is norm Cauchy and hence strongly convergent. Let x = limn xn. Then by (8) for each s ∈ G we have

x − Tsx≤lim x − xn+1 + lim sup lim sup xn+1 − Tt+sxn n n t

+ lim sup lim sup Tt+sxn − Tsxn+1 + lim Tsxn+1 − Tsx n t n   d (xn) ≤ lim (1 + k) x − xn+1 + =0. n N This completes the proof. Remark 3.1. The constant γ given by (7) is bigger than the constant γ defined by (5). For our next results we need the following simple fact. Lemma 3.1. Let (X, ·) be a Banach space. 1 1) For each 0 < θ

(i) r (w, {xni }) ≤ θ · diama ({xn}),

(ii) w − y≤ra (y, {xni }) for every y ∈ X. UNIFORM ASYMPTOTIC NORMAL STRUCTURE 253

1 2) For each 0 < θ

{xn} with a weakly compact conv {xn} there exists a subsequence {xni } and a point w ∈ conv {xn} such that

r (w, {xni }) ≤ θ · diama ({xn}) . Proof. 1) ii. It is sufficient to apply the lower semicontinuity of · with respect to the because we have

ra (y, {xni }) = lim sup y − xni i and

y − xni *y− w. We will use the above lemma in the proofs of the next three theorems. Theorem 3.2. Let (X, ·) be an infinite dimensional Banach space with 0 < 1, C a nonempty bounded closed convex subset of X and T = {Tt : t ∈ G} a uniformly k-lipschitzian asymptotically regular semigroup of mappings on C with k<γ, where γ satisfies   w-AN (X) γ2 > max 1, 2 and is the solution of the equation   w-AN (X) (10) γ 1 − δ =1. (γ)2 Then there exists in C a common fixed point of T. Proof. Without loss of generality we can assume that (X, ·) is uniformly 2 w-AN(X) convex, k > 2 and k>1. If 0 <0 < 1 we need only make minor 1 changes in our proof. First we choose θ such that 1 < θ

Next we fix t0,h ∈ G with h>0 and define tn = t0 + nh for n =1, 2, ...

Let us observe that for each x ∈ C the sequence {Ttn x} is asymptotically regular and by Lemma 3.1 for each x ∈ C there exists a weakly convergent subsequence T x with w ∈ conv {T x} such that tni tn   (11) r w, T x ≤ θ · diam ({T x}) . a tni a tn   In other words, for each x ∈ C we can find a subsequence T x and tni w (x) ∈ C which  satisfy the inequality (11). Hence, if z (x) is the unique element of Ac C, T x , then we have tni (12)     r (x)=r z (x) , T x ≤ r w (x) , T x ≤ θ · diam ({T x}) . a tni a tni a tn 254 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH The asymptotic regularity of T leads to    

ra Ttm z (x) , Ttn x ≤ ra Ttm z (x) , Ttn +tm x i  i    + lim sup Ttn +tm x − Ttn x i i i     (13) = r T z (x) , T x ≤ k · r z (x) , T x a tm tni +tm a tni for every m. Now we set

R (x)=ra (x, {Ttn x}) = lim sup x − Ttn x . n We observe that by the asymptotic regularity of T and since

tl = t0 + lh for l =1, 2, ..., we have

diama ({Ttn x}) = lim sup Ttm x − Ttn x m˜ m0     = lim sup sup T x − T x  tm tm+n +l  m˜ m0 0  

≤ lim sup sup Ttm x − Tmhx m˜ m0 0     ≤ k · sup x − Tt x = k · sup x − Tt x n0+l n l>0 n>n0 for n0 ≥ 1. Hence

(14) diama ({Ttn x}) ≤ k · lim sup x − Ttn x = k · R (x) . n

We construct the sequence {xm} in the following way: x0 ∈ C is arbitrary and xm+1 = z (xm) for m =0, 1, ... . By (12) and (14) we get

(15) rm = r (xm) ≤ θ · k · R (xm) .

Now we have to consider two cases. If for some m0 we have rm0 =0, then we get

R (z (xm0 )) = lim sup z (xm0 ) − Ttn z (xm0 ) n     ≤ lim sup lim sup z (xm0 ) − Ttn xm0  n i i         + T x − T x  + T x − T z (x ) =0. tni m0 tn+tni m0 tn+tni m0 tn m0 UNIFORM ASYMPTOTIC NORMAL STRUCTURE 255

In the second case we have rm > 0 for all m ≥ 0. For each m we first choose an arbitrary 0 <

Now we find i0 such that for all i ≥ i0 we have      Tt xm − xm+1 ≤ rm + ni 2 (the subsequence {tn } depends on xm here) and (see (13)) i    T x − T x  ≤ k · (r + ) . tni m tj m+1 m It follows that      1  Tt xm − xm+1 + Tt xm+1  ni 2 j     R (xm+1) − . ≤ k · (rm + ) · 1 − δ . k · (rm + ) Letting i tend to infinity we obtain    R (xm+1) − . rm ≤ k · (rm + ) · 1 − δ . k · (rm + ) Taking now  to0weget    R (xm+1) rm ≤ k · rm · 1 − δ k · rm which after applying the inequality (15) implies that    1 R (x ) ≤ θ · k2 · δ−1 1 − · R (x ) . m+1 k m Let us observe that   1 0 <α= θ · k2 · δ−1 1 − < 1 k and therefore m (16) R (xm) ≤ α · R (x0) for m =1, 2, ... . Hence by (15) and (16) we deduce that         xm+1 − xm≤lim sup xm+1 − Ttn xm + lim sup Ttn xm − xm i i i i   ≤ r x , T x + R (x )=r + R (x ) a m+1 tni m m m m m ≤ (θ · k +1)· R (xm) ≤ (θ · k +1)· α · R (x0)

(the subsequence {tni } depends on xm here) and therefore the sequence {xn} is strongly convergent to some x ∈ C. By the inequality |R (x) − R (y)|≤(1 + k) ·x − y , which is valid for all x, y ∈ C, we have R (x)=0. Thus in both cases we can find y ∈ C with R (y)=0. This means that

y = lim Tt y n n 256 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH and by the asymptotic regularity of T we have

Tty = lim Tt+t y = lim Tt y = y n n n n for each t ∈ G. This completes the proof. Theorem 3.3. Let C be a convex weakly compact subset of a Banach space X with w-SOC (X) > 1. Then every asymptotically regular uniformly k-lipschitzian semigroup T = {Tt : t ∈ G} of mappings on C with k< 1 [w-SOC (X)] 2 has a common fixed point. Proof. Let k ≥ 1 and let us fix θ such that 1 k2 < 0 and consider the sequence {tn} = {t0 + nh}. For each x ∈ C we define R (x)by

R (x)=ra (x, {Ttn x}) = lim sup x − Ttn x . n

Let us observe that for each x ∈ C the sequence {Ttn x} is asymptotically regular and by Lemma 3.1 for each x ∈ C there is a weakly convergent to w subsequence Ttn x such that  i  (i) ra w, Tt x ≤ θ · diama ({Tt x}), ni   n (ii) y − w≤r y, T x for every y ∈ X. a tni By i., ii., (14) and the asymptotic regularity of T we obtain         ra Ttm w, Ttn x ≤ ra Ttm w, Ttn +tm x + lim sup Ttn +tm x − Ttn x i i i i i   2 ≤ k · ra w, Ttn x ≤ k · θ · diama ({Ttn x}) ≤ θ · k · R (x) , i   T w − w≤r T w, T x ≤ θ · k2 · R (x) tm a tm tni for each m, and finally R (w) ≤ θ · k2 · R (x)=α · R (x) , where 0 ≤ α = θ · k2 < 1. Consequently, for each x ∈ C there is w (x) such that Tt x*w(x) , ni  r w (x) , T x ≤ θ · k · R (x) a tni and R (w) ≤ α · R (x) .

This allows us to construct a sequence {xm} which is convergent to a fixed point of T. We simply choose the first element x1 arbitrarily and next we set xm = w (xm−1) for m =2, 3, ... . Now it is sufficient to observe that m−1 R (xm) ≤ α · R (x1) UNIFORM ASYMPTOTIC NORMAL STRUCTURE 257 and repeat the arguments from the end of the proof of Theorem 3.2 to finish the present proof. In the next theorem we employ κω (X) and w-SOC (X). Theorem 3.4. Let (X, ·) be a Banach space with w-SOC (X) > 1, C a convex weakly compact subset of X and T = {Tt : t ∈ G} an asymptotically regular uniformly k-lipschitzian semigroup of mappings on C.If  1+ 1+4· [w-SOC (X)] · (κ (X) − 1) (17) k< ω , 2 then T has a common fixed point. Proof. The proof is based on ideas presented in [9]. Let us denote S = w- SOC (X) and κ = κω (X). Without loss of generality we may assume that S<+∞ (see Theorem 3.2 in [6]) and k>1. The inequality (17) and k>1 imply κ>1. Next we observe that  1+ 1+4· S · (κ − 1) ≤ S<+∞, 2 because (see Section 2) κ ≤ WCS(X) ≤ S<+∞. The inequality  1+ 1+4· S · (κ − 1) k< 2 implies the inequality k κ − 1 < . S k − 1 Directly from the definition of κ we find a>1 and 1 0 with x − y≥r and each weakly convergent sequence {zn} in C for which lim supn x − zn≤a·r and lim supn y − zn≤ b · r there exists some z ∈ C such that lim infn z − zn≤r. Next we choose >0 such that 1+2 = α<1. a Similarly as in the proofs of the previous theorems we consider the se- quence {tn} = {t0 + nh}, where t0,h ∈ G and h>0. For x ∈ C we define R (x) as follows   R (x) = inf r>0:∃y∈C lim inf x − Tt y≤r . n n First we will show that R (x) = 0 for some x ∈ C. To this end we take an arbitrary x ∈ C. Assume that R (x) > 0. Then we can find y ∈ C with

lim inf x − Tt y < R (x) · (1 + ) . n n 258 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH There are two possibilities; either S · R (x) · (1 + ) (19) sup x − Ttn (x)≤ n k · a or     S · R (x) · (1 + ) (20) x − T (x) > tj k · a for some j. Let us take a look at the first case. By (14) and (19) we get S · R (x) · (1 + ) diama ({Ttn x}) ≤ k · lim sup x − Ttn (x)≤ n a and after applying the definition of w-SOC (X) we obtain       S · inf r w, T x : T x is weakly convergent to w a tni tni S · R (x) · (1 + ) ≤ . a This implies that       R (x) · (1 + ) inf ra w, Tt x : Tt x is weakly convergent to w ≤ . ni ni a   Hence there exists a subsequence T x which weakly converges to w ∈ C tni such that     R (x) · (1+2) (21) lim w − Tt x < = αR (x) i ni a and therefore (22) R (w) <αR (x) . Next we see that         w − x≤w − T x + x − T x tni tni and by (19) and (21) this yields         w − x≤lim w − Ttn x + lim sup x − Ttn x i i i i S · R (x) · (1 + ) ≤ α · R (x)+ k · a   S · α · R (x) S (23) ≤ α · R (x)+ = α · 1+ · R (x) . k k Let us now consider the second case. By (20) we have     S · R (x) · (1 + ) x − T x > tj k · a   for some j. Let us choose a weakly convergent T y such that tni        x − Tt y < R (x) · 1+ ni 2 UNIFORM ASYMPTOTIC NORMAL STRUCTURE 259 and tj       Tt y − Tt y < R (x) · ni+m−1 ni+m 2 m=1 for each i. This implies (24)     tj          x − Tt +t y < x − Tt y + Tt y − Tt y < R (x) · (1 + ) ni j ni ni+m−1 ni+m m=1 and     (25) T x − T y ≤ k · R (x) · (1 + ) tj tni +tj for every i. By (18) we can choose λ such that k b − 1 (26) <λ< a . S k − 1 Then by (24), (25) and (26) we have     λT x +(1− λ) x − T y tj tni +tj         ≤ λ T x − T y +(1− λ) x − T y tj tni +tj tni +tj ≤ λ · k · R (x) · (1 + )+(1− λ) · R (x) · (1 + ) R (x) · (1 + ) (27) =[λ (k − 1)+1]· R (x) · (1 + )

S · R (x) · (1 + ) R (x) · (1 + ) (28) >λ· > . k · a a Directly from the definition of b and by (24), (27) and (28) there exists w ∈ C such that     R (x) · (1 + ) (29) w − Tt +t y ≤ ≤ α · R (x) ni j a for every i. Therefore by the asymptotic regularity of T and (29) we get     R (w) ≤ lim sup w − Ttn y i i         ≤ lim sup w − Ttn +tj y + lim sup Ttn +tj y − Ttn y i i i i i     (30) = lim sup w − Ttn +tj y ≤ α · R (x) , i i and by (24) and (29) we obtain         w − x≤w − T y + x − T y tni +tj tni +tj (31) ≤ α · R (x)+R (x) · (1 + ) = (1 +  + α) · R (x) . 260 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH Thus in both cases for every x ∈ C we can find w ∈ C for which the following inequalities are valid: (32) R (w) ≤ α · R (x) and (33)    S w − x≤max 1+ + α, α · 1+ · R (x)=M · R (x) k (by (22), (23), (30) and (31)). This allows us to define a function f : C → C by f (x)=w, where w satisfies (32) and (33). We introduce a sequence {xn} as follows: x0 is chosen in an arbitrary way and next xn = f (xn−1) for n =1, 2, ... . The sequence {xn} is a Cauchy sequence. Indeed, the inequalities (32) and (33) lead to n−1 xn − xn−1≤M · R (xn−1) ≤ M · α · R (x0) .

Setting x as the limit of {xn} and applying the inequality     R (u) − R (v) ≤u − v , which is valid for all u, v ∈ C, we get R (x)=0. Now we prove that R (x) = 0 implies that x is a common fixed point of T. To prove this fact it is sufficient to observe that for every y ∈ C, t ∈ G and every natural n we have     x − Ttx≤x − Ttn y + Ttn y − Ttn+ty + Ttn+ty − Ttx  ≤ (1 + k) x − Ttn y + Ttn y − Ttn+ty . Applying the definition of R and the asymptotic regularity of T we complete the proof.

4. Examples p Example 4.1. Let us consider the space Xβ [6], where 1 1 [6]. √ Example 4.2. Let us observe that for the space X2 with 1 <β< 5 ,we √ β √2 2 2 2 2 get WCS Xβ = max 1, β [2, 3], w-AN Xβ = w-SOC Xβ = 2 [6] and κω (X) ≥ κ0 (X) [10], where    1 1 2 2 κ X2 = 1+ − β2 − 1 0 β β2 β2 [9] (see also [35]). Hence for β sufficiently close to 1 the constants  2 2 1+ 1+4· WCS Xβ · κ0 Xβ − 1 2 UNIFORM ASYMPTOTIC NORMAL STRUCTURE 261  2 2 1+ 1+4· w-SOC Xβ · κ0 Xβ − 1 < 2  2 1 are strictly bigger than w-SOC Xβ =24 . Let us observe in addition that [16]    1 √ 2 2 2 β − 1 2 for 1 <β≤ 2 0 X = √ β 2 for 2 <β<2 √ 5 and therefore for 1 <β< 2 the constant γ given by (10) is strictly bigger than the constant γ2 defined by (6).

5. Acknowledgments The third author was partially supported by the Fund for the Promotion of Research at the Technion. Part of the work on this paper was done when the third author visited the Institute of Mathematics at UMCS. He thanks the Institute and its members for their hospitality. All the authors thank the referee for several useful comments and correc- tions.

References [1] A. G. AKSOY and M. A. KHAMSI, Nonstandard methods in fixed point theory, Springer-Verlag, New York, 1990. [2] J. M. AYERBE TOLEDANO, T. DOM´INGUEZ BENAVIDES and G. LOPEZ ACEDO, Measures of noncompactness in metric fixed point theory, Birkh¨auser, Basel, 1997. [3] J. M. AYERBE and H.-K. XU, On certain geometric coefficients of Banach spaces related to fixed point theory, Panamer. Math. J. 3 (1993), 47–59. [4] J.-B. BAILLON, Quelques aspects de la th´eorie des points fixes dans les espaces de Banach, I, S´eminaire d’Analyse Fonctionnelle de l’Ecole Polytechnique, Paris, no. VII, 1978–1979. [5] F. E. BROWDER and W. V. PETRYSHYN, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571–576. [6] M. BUDZYNSKA,´ T. KUCZUMOW and S. REICH, Uniform asymptotic normal structure, the uniform semi-Opial property and fixed points of asymptotically regular uniformly lipschitzian semigroups, Part I, Abstr. Appl. Anal. 3 (1998), 133–151. [7] E. CASINI and E. MALUTA, Fixed points of uniformly lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1995), 103–108. [8] J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. [9] T. DOM´INGUEZ BENAVIDES, Fixed point theorems for uniformly lipschitzian map- pings and asymptotically regular mappings, Nonlinear Anal. 32 (1998), 15–27. [10] T. DOM´INGUEZ BENAVIDES and H.-K. XU, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 (1995), 311–325. [11] D. J. DOWNING and W. O. RAY, Uniformly lipschitzian semigroups in , Canad. Math. Bull. 25 (1982), 210–213. [12] D. J. DOWNING and B. TURETT, Some properties of the characteristic of convexity relating to fixed point theory, Pacific J. Math. 104 (1983), 343–350. 262 MONIKA BUDZYNSKA,´ TADEUSZ KUCZUMOW AND SIMEON REICH

[13] M. EDELSTEIN, The construction of an asymptotic center with a fixed point prop- erty, Bull. Amer. Math. Soc. 78 (1972), 206–208. [14] K. GOEBEL and W. A. KIRK, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140. [15] K. GOEBEL, W. A. KIRK and R. L. THELE, Uniformly lipschitzian families of transformations in Banach spaces, Canad. J. Math. 26 (1974), 1245–1256 [16] K. GOEBEL and W. A. KIRK, Topics in metric fixed point theory, Cambridge Univ. Press, Cambridge, 1990. [17] K. GOEBEL and S. REICH, Uniform convexity, hyperbolic geometry, and nonexpan- sive mappings, Marcel Dekker, New York, 1984. [18] J. GORNICKI,´ A fixed point theorem for asymptotically regular mappings, Colloq. Math. 64 (1993), 55–57. [19] J. GORNICKI,´ Fixed points of asymptotically regular mappings in metric spaces, Demonstratio Math. 29 (1996), 615–620. [20] J. GORNICKI,´ Fixed points of asymptotically regular semigroups in Banach spaces, Rend. Circ. Mat. Palermo 46 (1997), 89–118. [21] H. ISHIHARA and W. TAKAHASHI, Fixed point theorems for uniformly lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1987), 206–210. [22] T. H. KIM and W. A. KIRK, Fixed point theorems for lipschitzian mappings in Banach spaces, Nonlinear Anal. 26 (1996), 1905-1911. [23] E. A. LIFSHITZ, Fixed point theorems for operators in strongly convex spaces, Voronez. Gos. Univ. Trudy Mat. Fak. 16 (1975), 23–28. [24] T. C. LIM, Fixed point theorems for uniformly lipschitzian mappings in Lp spaces, Nonlinear Anal. 7 (1983), 555–563. [25] T. C. LIM, Some Lp inequalities and their applications to fixed point theorems of uniformly lipschitzian mappings, Proc. Sympos. Pure Math. 45 (1986), 119–125. [26] T. C. LIM and H.-K. XU, Uniformly lipschitzian mappings in metric spaces with uniform normal structure, Nonlinear Anal. 25 (1995), 1231–1235. [27] T. C. LIM, H.-K. XU and Z.-B. XU, An Lp inequality and its applications to fixed point theory and approximation theory, Progress in Approximation Theory, (P. Nevai, A. Pinkus, Eds.), Academic Press, (1991), 609–624. [28] B. PRUS and R. SMARZEWSKI, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10–21. [29] R. SMARZEWSKI, Strongly unique minimization of functionals in Banach spaces with applications to the theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155–172 . [30] K.-K. TAN and H.-K. XU, Fixed point theorems for lipschitzian semigroups in Banach spaces, Nonlinear Anal. 20 (1993), 395–404. [31] D. TINGLEY, Noncontractive uniformly lipschitzian semigroups in Hilbert space, Proc. Amer. Math. Soc. 92 (1984), 355–361. [32] H.-K. XU, Fixed point theorems for uniformly lipschitzian semigroups in uniformly convex spaces, J. Math. Anal. Appl. 152 (1990), 391–398. [33] H.-K. XU, Random fixed point theorems for nonlinear uniformly lipschitzian map- pings, Nonlinear Anal. 26 (1996), 1301–1311. [34] L.-C. ZENG, On the existence of fixed points and nonlinear ergodic retractions for lipschitzian semigroups without convexity, Nonlinear Anal. 24 (1995), 1347–1359. UNIFORM ASYMPTOTIC NORMAL STRUCTURE 263

[35] W. ZHAO, Geometrical coefficients and measures of noncompactness, Ph.D. Dissert., Univ. Glasgow, 1992.

Monika Budzynska´ and Tadeusz Kuczumow Instytut Matematyki UMCS 20-031 Lublin, POLAND E-mail address: [email protected]

Simeon Reich Department of Mathematics The Technion-IsraelInstitute of Technology 32000 Haifa, ISRAEL E-mail address: [email protected] Advances in Difference Equations

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back Lead Guest Editor to its founder Stefan Hilger (1988), and is a new area of Alberto Cabada, Departamento de Análise Matemática, still fairly theoretical exploration in mathematics. Motivating Universidade de Santiago de Compostela, 15782 Santiago de the subject is the notion that dynamic equations on time Compostela, Spain; [email protected] scales can build bridges between continuous and discrete mathematics; moreover, it often revels the reasons for the discrepancies between two theories. Guest Editor In recent years, the study of dynamic equations has led Victoria Otero-Espinar, Departamento de Análise to several important applications, for example, in the study Matemática, Universidade de Santiago de Compostela, of insect population models, neural network, heat transfer, 15782 Santiago de Compostela, Spain; and epidemic models. This special issue will contain new [email protected] researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics: • Existence, uniqueness, and multiplicity of solutions • Comparison principles • Variational methods • Mathematical models • Biological and medical applications • Numerical and simulation applications Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www .hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi .com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of C200 per article. Prospective authors should submit an elec- tronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Manuscript Due April 1, 2009 First Round of Reviews July 1, 2009 Publication Date October 1, 2009

Hindawi Publishing Corporation http://www.hindawi.com