Flight Dynamics Grades 9-12

Total Page:16

File Type:pdf, Size:1020Kb

Flight Dynamics Grades 9-12 Flight Dynamics Grades 9-12 Flight dynamics is the study of a vehicle’s motion through the air. A vehicle could be an airplane, a helicopter, a balloon, a rocket, or anything else that uses the air to move around. As a vehicle flies through the air, its motion is caused by forces and moments. Both forces and moments tend to move things; the difference is how they do so. A force moves something in a straight line, like pushing on the side of a box. A moment rotates something in a circle, like turning a screwdriver. In an airplane, A. Lift when the engine pulls the plane B. Thrust straight forward, it does so by C. Weight D. Drag creating a force. When the tail Fig. 1 rotates the airplane by moving the nose of the aircraft up while the tail goes down, it does so by creating a moment. Most of the forces come from aerodynamics, which is a study of how air moves around objects. These forces include “lift” that keeps the airplane from falling, “thrust” that speeds the airplane up, “drag” that slows the airplane down, and forces from the wing and tail that make the airplane turn in different directions. Another force is “weight” (or gravity) that makes the aircraft come down when there is not enough lift. (Fig. 1) The field of flight dynamics is closely linked to the field of aerodynamics of wings and bodies. In flight dynamics, we typically focus on the distribution of the aerodynamic force along the vehicle to achieve desired equilibrium, stability and control of the air vehicle at different flight conditions. So in flight dynamics we study aerodynamics, or how air flows over wings and airplane bodies. Aerodynamics tells us how the forces act on the airplane wing and tail so the airplane can fly smoothly but still move around enough to do things like take off, turn, and land. When an airplane is flying smoothly through the air and not turning, we say the airplane is in equilibrium or “steady flight.” For an aircraft to be in equilibrium, the thrust from the engines must balance the drag from the air, so the plane is not speeding up or slowing down. Also, the lift from the wing and tail must balance the weight of the airplane, so it is not falling down or zooming up. Thrust is created by the aircraft engine and can either pull or push the aircraft through the air, depending on the engine type. Drag resists the forward motion of the aircraft. The effect of drag can be lessened by reducing the frontal area (like a downhill skier) or by slowing down. Lift is mostly produced by the wings, directly opposing the weight. Fig 2 illustrates how lift is created. A cut through the wing is shown with the dark gray shape called an airfoil. The Fig. 2 top surface of the airfoil is more curved than the bottom surface, so if we stretched it out flat, it would be longer. If the air particles split at point A and rejoin at point B at the same time, the particle traveling on the top path travels faster because it has a longer path. The faster moving air develops a lower pressure on the top surface and the slower air develops a higher pressure on the bottom surface. The higher pressure on the bottom surface “lifts” the wing upward. The following table explains what a plane does because of the 4 forces. If Lift is more than Weight The Plane Rises If Weight is more than Lift The Plane Falls If Drag is more than Thrust The Plane Slows Down If Thrust is more than Drag The Plane Speeds Up If Lift equals Weight The Plane will Fly and Thrust equals Drag Straight and Level If a gust of wind hits the aircraft and causes it to climb or fall, or to speed up or slow down, we want the plane to only do this for a little bit, and then go back to the way it was flying before the gust. If it does this, we call the airplane “stable”. If it doesn't go back to the way it was flying before, but keeps getting faster or slower, or climbing or falling more and more, we call the airplane “unstable.” One example of stability (or instability) is the “ball in the bowl”, Fig. 3. The bowl is set on a flat surface with a ball placed inside it. The ball rests in the bottom of the bowl; but, if you push the ball in any direction, the ball rolls to the bottom of the bowl again. This is referred to as “stability.” Turn the bowl upside down, position the ball anywhere on the bowl’s bottom surface and the ball starts to move on its own without any other force being applied. This is an “unstable” condition. Stable Condition a b c d Unstable Condition d a b c Figure 3 We want airplanes to be stable so it is easier for pilots to fly them. Stability is the property of a flight vehicle that brings the vehicle back to its equilibrium condition after a disturbance. Control is the ability to change the aircraft from one equilibrium condition to another (for example, to change flight speed) and to be able to maneuver the aircraft as desired. While equilibrium and stability are achieved through proper sizing of wings and tails and correctly locating the aircraft’s balance point (or center of gravity), where control is achieved by deflecting movable surfaces on the wings and tails, such as elevators, ailerons and rudder. Elevator is used for pitch control by creating nose-up or nose-down moment, aileron for roll control by creating a rolling moment, and rudder is used for yaw control by creating a yawing moment. Sometimes we want the airplane to do something different, like when we are flying high and need the airplane to fly lower so we can land. When we are high and flying fast from one point to another, we are in steady flight. If we reduce the power from the engines a little bit and move the tail so that we start to fly down toward the ground so we can land, we will be in another steady condition. It is important for an airplane to be able to move from one steady condition (like flying high and fast) to another steady condition (like flying slower and closer to the ground getting ready to land). Being able to move from one steady condition to another is what we call “control.” A pilot controls the aircraft by changing the speed of the engine (H) or moving parts of the wing (G) or tail. The tail (A, D) has a horizontal (flat) part called the “elevator” (C) that can make the nose of the aircraft move up and down. The tail also has a vertical (tall) part called the “rudder” (B), and that makes the nose of the aircraft move left and right. The wings have small surfaces called “ailerons” (F), and they make the aircraft roll (where one wing goes up and the other goes down). These airplane parts are shown in Fig 4. A. Vertical Tail B. Rudder C. Elevator D. Horizontal Tail E. Flaps F. Aileron G. Wing H. Jet Engine I. Fuselage (body) Fig. 4 So next time you see an airplane flying in the sky, remember flight dynamics plays a key role in the flight of the airplane. .
Recommended publications
  • Introduction to Aircraft Stability and Control Course Notes for M&AE 5070
    Introduction to Aircraft Stability and Control Course Notes for M&AE 5070 David A. Caughey Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York 14853-7501 2011 2 Contents 1 Introduction to Flight Dynamics 1 1.1 Introduction....................................... 1 1.2 Nomenclature........................................ 3 1.2.1 Implications of Vehicle Symmetry . 4 1.2.2 AerodynamicControls .............................. 5 1.2.3 Force and Moment Coefficients . 5 1.2.4 Atmospheric Properties . 6 2 Aerodynamic Background 11 2.1 Introduction....................................... 11 2.2 Lifting surface geometry and nomenclature . 12 2.2.1 Geometric properties of trapezoidal wings . 13 2.3 Aerodynamic properties of airfoils . ..... 14 2.4 Aerodynamic properties of finite wings . 17 2.5 Fuselage contribution to pitch stiffness . 19 2.6 Wing-tail interference . 20 2.7 ControlSurfaces ..................................... 20 3 Static Longitudinal Stability and Control 25 3.1 ControlFixedStability.............................. ..... 25 v vi CONTENTS 3.2 Static Longitudinal Control . 28 3.2.1 Longitudinal Maneuvers – the Pull-up . 29 3.3 Control Surface Hinge Moments . 33 3.3.1 Control Surface Hinge Moments . 33 3.3.2 Control free Neutral Point . 35 3.3.3 TrimTabs...................................... 36 3.3.4 ControlForceforTrim. 37 3.3.5 Control-force for Maneuver . 39 3.4 Forward and Aft Limits of C.G. Position . ......... 41 4 Dynamical Equations for Flight Vehicles 45 4.1 BasicEquationsofMotion. ..... 45 4.1.1 ForceEquations .................................. 46 4.1.2 MomentEquations................................. 49 4.2 Linearized Equations of Motion . 50 4.3 Representation of Aerodynamic Forces and Moments . 52 4.3.1 Longitudinal Stability Derivatives . 54 4.3.2 Lateral/Directional Stability Derivatives .
    [Show full text]
  • Space Flight Dynamics, 2Nd Edition Craig A
    To purchase this product, please visit https://www.wiley.com/en-az/9781119157823 Space Flight Dynamics, 2nd Edition Craig A. Kluever E-Book 978-1-119-15784-7 March 2018 €83.99 Hardcover 978-1-119-15782-3 March 2018 €93.30 DESCRIPTION Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis. Key features: • Provides practical, real-world examples illustrating key concepts throughout the book • Accompanied by a website containing MATLAB M-files for conducting space mission analysis • Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering. ABOUT THE AUTHOR Craig A. Kluever is C.
    [Show full text]
  • A Coupled Lateral/Directional Flight Dynamics and Structural Model for Flight Control Applications
    A Coupled Lateral/Directional Flight Dynamics and Structural Model for Flight Control Applications Ondrej Juhasz∗ San Jose State University Research Foundation, Moffett Field, CA Mark B. Tischlery U.S. Army Aviation Development Directorate-AFDD, Moffett Field, CA Steven G. Hagerott,z David Staples,x and Javier Fuentealba { Cessna Aircraft Company, Wichita, KS A lateral/directional flight dynamics model which includes airframe flexibility is de- veloped in the frequency domain using system-identification methods. At low frequency, the identified model tracks a rigid-body (static-elastic) model. At higher frequencies, the model tracks a finite-element NASTRAN structural model. The identification technique is implemented on a mid-sized business jet to obtain a state-space representation of the air- craft equations of motion including two structural modes. Low frequency structural modes and their associated notch filters impact the flight control frequency range of interest. For a high bandwidth control system, this frequency range may extend up to 30 rad/sec. These modes must be accounted for by the control system designer to ensure aircraft stability is retained when a control system is implemented to help avoid aeroservoelastic coupling. A control system is developed and notch filters are selected for the developed coupled air- craft model to demonstrate the importance of including the structural modes in the design process. Nomenclature β Sideslip angle ζdr Dutch-roll damping ratio ζstrn Damping ratio of structural mode n ηδn Control derivative
    [Show full text]
  • Flight Dynamics and Control of a Vertical Tailless Aircraft
    cs & Aero ti sp au a n c o e r E e n Bras et al., J Aeronaut Aerospace Eng 2013, 2:4 A g f i o n Journal of Aeronautics & Aerospace l e DOI: 10.4172/2168-9792.1000119 a e r n i r n u g o J Engineering ISSN: 2168-9792 Research Article Open Access Flight Dynamics and Control of a Vertical Tailless Aircraft Bras M1, Vale J1, Lau F1 and Suleman A2* 1Instituto Superior Técnico, Lisbon, Portugal 2University of Victoria, Victoria BC, Canada Abstract The present work aims at studying a new concept of a vertical tailless aircraft provided with a morphing tail solution with the purpose of eliminating the drag and weight created by the vertical tail structure. The solution consists on a rotary horizontal tail with independent left and right halves to serve as control surfaces. Different static scenarios are studied for different tail configurations. The proposed morphing configurations are analyzed in terms of static and dynamic stability and compared with a conventional configuration. The stability derivatives defining the limits of static stability are calculated for the whole range of tail rotation angles. The aircraft’s dynamic model is developed and feedback control systems are implemented. A sideslip suppression system, a heading control system and a speed and altitude hold system are studied for three different configurations, MC1, MC2 and MC3 configurations. Static results show that the aircraft is longitudinally stable for a wide range of tail rotation angles. Variation of tail dihedral and rotation angles are two mechanisms able to maintain directional and lateral stability but only the last is able to produce lateral force and yawing moment.
    [Show full text]
  • Flight Mechanical Design, Flight Dynamics and Flight Control For
    International Forum on Aeroelasticity and Structural Dynamics IFASD 2019 9-13 June 2019, Savannah, Georgia, USA FLIGHT MECHANICAL DESIGN, FLIGHT DYNAMICS, AND FLIGHT CONTROL FOR MULTIBODY AIRCRAFT: A SUMMARY Alexander Kothe¨ 1 1Technische Universitat¨ Berlin Institute of Aeronautics and Astronautics Flight Mechanics, Flight Control and Aeroelasticity Marchstraße 12, 10587 Berlin, Germany [email protected] Keywords: Highly flexible aircraft, multibody dynamics, High-Altitude Pseudo Satellite (HAPS) Abstract: Aircraft operating as so-called High-Altitude Platform Systems have been proposed to ba a complementary technology to satellites for several years. State-of-the-art HAPS solution have a high-aspect-ratio wing using lightweight construction. In gusty atmosphere, this results in high bending moments and high structural loads, which can lead to overloads. To overcome the shortcomings of such one-wing aircraft, so-called multibody aircraft have been considered to be an alternative. This aircraft technology has been investigated at TU Berlin’s department of flight mechanics, flight control and aerolasticity (project “AlphaLink”) in the last years. This paper presents a summary of the conducted research. After a review looking at the state of the art, the paper describes the design of an exemplary multibody aircraft. The designed reference model is capable of flying 365 days, for 24 hours, between the 40◦ north and south latitude with 450 kg payload operating in high altitudes with solar power only. Further, a complete flight dynamics model is provided and analyzed for aircraft that are mechanically connected at their wingtips. Using the non-linear flight dynamics model, flight controllers are designed to stabilize the plant and provide the aircraft with an eigenstructure similar to conventional aircraft.
    [Show full text]
  • Aircraft Stability and Control (R15a2110) Course File
    AERONAUTICAL ENGINEERING – MRCET (UGC – Autonomous) AIRCRAFT STABILITY AND CONTROL (R15A2110) COURSE FILE III B. Tech I Semester (2019-2020) Prepared By Mr.V.Vamshi, Assist. Prof Department of Aeronautical Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India. III – I B. Tech R15A2110 AIRCRAFT STABILITY AND CONTROL By V.VAMSHI 1 AERONAUTICAL ENGINEERING – MRCET (UGC – Autonomous) III – I B. Tech R15A2110 AIRCRAFT STABILITY AND CONTROL By V.VAMSHI 2 AERONAUTICAL ENGINEERING – MRCET (UGC – Autonomous) MRCET VISION To become a model institution in the fields of Engineering, Technology and Management. To have a perfect synchronization of the ideologies of MRCET with challenging demands of International Pioneering Organizations. MRCET MISSION To establish a pedestal for the integral innovation, team spirit, originality and competence in the students, expose them to face the global challenges and become pioneers of Indian vision of modern society. MRCET QUALITY POLICY. To pursue continual improvement of teaching learning process of Undergraduate and Post Graduate programs in Engineering & Management vigorously. To provide state of art infrastructure and expertise to impart the quality education. III – I B. Tech R15A2110 AIRCRAFT STABILITY AND CONTROL By V.VAMSHI 3 AERONAUTICAL ENGINEERING – MRCET (UGC – Autonomous) PROGRAM OUTCOMES (PO’s) Engineering Graduates will be able to: 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
    [Show full text]
  • Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions
    Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions Nhan Nguyen∗ NASA Ames Research Center Moffett Field, CA 94035 Ilhan Tuzcu† California State University, Sacramento Sacramento, CA 95819 This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures cou- pled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerody- namic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelas- tic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft. I. Introduction Modern aircraft are increasingly designed to be highly maneuverablein order to achieve high-performancemission objectives.
    [Show full text]
  • FLIGHT DYNAMICS Spring 2011
    THE UNIVERSITY OF TEXAS AT AUSTIN Department of Aerospace Engineering and Engineering Mechanics ASE 367K – FLIGHT DYNAMICS Spring 2011 SYLLABUS Unique Number: 13450 Instructor: David G. Hull WRW 408C, 471-4908, [email protected] Time: MWF 11-12 Location: WRW 102 Teaching Assistant: Alan Campbell Web Page: courses.ae.utexas.edu/ase367k Catalog Description: Equations of motion for rigid aircraft; aircraft performance, weight and balance, static stability and control, and dynamic stability; design implications. Course Objectives: This course is intended to give the student an understanding of the basic principles of atmospheric flight mechanics and what role they play in aircraft design. Prerequisites: ASE 320 and ASE 330M Knowledge, Skills, and Abilities Students Should Have Before Entering This Course: Differential equations Vector analysis Dynamics Subsonic aerodynamics (lift and drag) of airfoils and wings Knowledge, Skills, and Abilities Students Gain from this Course (Learning Outcomes): Derive equations of motion (three DOF, flat earth, spherical earth) Model aerodynamic forces and moments of subsonic airplanes, incompressible and compressible Understand the derivation and use of formulas for distance factor, distance, rate of climb, time to climb, neutral point, dynamic response and stability, etc. Understand the relationship between atmospheric flight mechanics and airplane design Impact On Subsequent Courses In Curriculum: This course is a prerequisite for the airplane design course. It (flight mechanics) is motivated by a discussion of the commercial and military mission profiles for airplane sizing, and a major part of the course is devoted to the derivation of the equations to be used in each mission segment for the calculation of distance, time, and fuel consumed.
    [Show full text]
  • Flight Dynamics II
    Flight dynamics –II Prof. E.G. Tulapurkara Stability and control Chapter 2 Longitudinal stick–fixed static stability and control (Lectures 4 to 11) Keywords : Criteria for longitudinal static stability and control ; contributions of wing, horizontal tail, fuselage and power to pitching moment coefficient (Cmcg) and its derivative with respect to angle of attack (Cmα) ; stick-fixed neutral point and static margin ; elevator angle for trim; limitations on forward and rearward movements of c.g. ; determination of neutral point from flight tests. Topics 2.1 Introduction 2.1.1 Equilibrium state during flight in the plane of symmetry 2.1.2 Mean aerodynamic chord 2.1.3 Criteria for longitudinal control and trim in pitch 2.1.4 Criterion for longitudinal static stability 2.1.5 Alternate explanation of criterion for longitudinal static stability 2.1.6 Desirable values of Cm0 and Cmα 2.1.7 Effect of elevator deflection on Cmcg vrs α curve 2.1.8 Cmcg expressed as function of CL 2.2 Cmcg and Cmα as sum of the contributions of various component 2.3 Contributions of wing to Cmcg and Cmα 2.3.1 Correction to Cmαw for effects of horizontal components of lift and drag – secondary effect of wing location on static stability 2.4 Contributions of horizontal tail to Cmcg and Cmα 2.4.1 Conventional tail, canard configuration and tailless configuration 2.4.2 Effect of downwash due to wing on angle of attack of tail 2.4.3 Interference effect on dynamic pressure over tail 2.4.4 Expression for Cmcgt 2.4.5 Estimation of CLt 2.4.6 Revised expression for Cmcgt 2.4.7 Cmαt in stick-fixed case Dept.
    [Show full text]
  • Department of Aerospace Engineering 1
    Department of Aerospace Engineering 1 Department of Aerospace Engineering Aerospace engineers are concerned with the application of scientific principles and engineering concepts and practices to design, build, test and operate aerospace systems. The curriculum is intended to provide students with a broad understanding of fundamental scientific and technological principles, and to develop the ability to use these principles in developing solutions to engineering problems. The objectives of the aerospace engineering program are: (1) to help students develop written and oral communication skills and to acquire a knowledge of history, literature and society; (2) to provide students a solid foundation in and a sound working knowledge of basic engineering principles; (3) to help students obtain an understanding of the engineering principles and skills specifically needed in the aeronautical and astronautical disciplines; and (4) to assist and encourage each student to develop an enhanced ability to learn and think creatively. Required courses cover aeronautical and astronautical subjects. Students may also choose to emphasize either aeronautical or astronautical systems. Technical electives allow concentration in such areas as aerodynamics, astronautics, flight dynamics and control, propulsion, structures, and structural dynamics. The design of aerospace components and systems is considered to be an integral part of the education of aerospace engineers. Hence, design is included throughout the curriculum, beginning with a sophomore course in aerospace fundamentals and culminating in the senior design course sequence. Students are required to apply their theoretical knowledge of aerodynamics, dynamics, structures and propulsion to solve open-ended problems and to produce portions of preliminary designs. Major • Aerospace Engineering (http://bulletin.auburn.edu/undergraduate/samuelginncollegeofengineering/ departmentofaerospaceengineering/aerospaceengineering_major/) Courses AERO 2200 AEROSPACE FUNDAMENTALS (2) LEC.
    [Show full text]
  • 10. Aircraft Equations of Motion
    Aircraft Equations of Motion: Translation and Rotation Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Learning Objectives • What use are the equations of motion? • How is the angular orientation of the airplane described? • What is a cross-product-equivalent matrix? • What is angular momentum? • How are the inertial properties of the airplane described? • How is the rate of change of angular momentum calculated? Lockheed F-104 Reading: Flight Dynamics 155-161 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html 1 Review Questions § What characteristic(s) provide maximum gliding range? § Do gliding heavy airplanes fall out of the sky faster than light airplanes? § Are the factors for maximum gliding range and minimum sink rate the same? § How does the maximum climb rate vary with altitude? § What are “energy height” and “specific excess power”? § What is an “energy climb”? § How is the “maneuvering envelope” defined? § What factors determine the maximum steady turning rate? 2 1 Dynamic Systems Actuators Sensors Dynamic Process: Current state depends on Observation Process: Measurement may prior state contain error or be incomplete x = dynamic state y = output (error-free) u = input z = measurement w = exogenous disturbance n = measurement error p = parameter t or k = time or event index dx(t) y(t) = h[x(t),u(t)] = f [x(t),u(t),w(t),p(t),t] dt z(t) = y(t) + n(t) 3 Ordinary Differential Equations Fall Into
    [Show full text]
  • Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft
    Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft Gautam H. Shah1 NASA Langley Research Center, Hampton VA 23681 and Melissa A. Hill2 Unisys Corporation, Hampton VA 23666 A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage – rolling moment asymmetry – may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk. Nomenclature CDA = Commercial Derivative Aircraft CRAF = Civil Reserve Aircraft Fleet FAA = Federal Aviation Administration ft = foot GTM = Generic Transport Model lb = pounds MANPADS = Man-Portable Air Defense System NASA = National Aeronautics and Space Administration = Angle of attack = Angle of sideslip I. Introduction The threat posed by Man-Portable Air Defense Systems (MANPADS) to transport aircraft is one of growing concern worldwide. As evidenced by attacks on an Arkia Airlines aircraft in Mombasa, Kenya in 2002 and a DHL cargo aircraft in Baghdad, Iraq in 2003 (Figure 1), the threat is not limited to military operations, but is of concern to civil aviation as well.
    [Show full text]