Introducing Melanoctona Tectonae Gen. Et Sp. Nov. and Minimelanolocus Yunnanensis Sp. Nov. (Herpotrichiellaceae, Chaetothyriales

Total Page:16

File Type:pdf, Size:1020Kb

Introducing Melanoctona Tectonae Gen. Et Sp. Nov. and Minimelanolocus Yunnanensis Sp. Nov. (Herpotrichiellaceae, Chaetothyriales Cryptogamie, Mycologie, 2016, 37 (4): 477-492 © 2016 Adac. Tous droits réservés Introducing Melanoctona tectonae gen. et sp. nov. and Minimelanolocus yunnanensis sp. nov. (Herpotrichiellaceae,chaetothyriales) Qing TIAN a,b,c,d,Mingkhuan DOILOM c, d,Zong-Long LUO c,d,e, Putarak CHOMNUNTI c,d,Jayarama D. BHAT f, Jian-Chu XU a,b &Kevin D. HYDE a, b, c, d* aKey Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany,Chinese Academy of Sciences, Kunming 650201, Yunnan, People’sRepublic of China bWorld Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, People’sRepublic of China cCenter of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand dSchool of Science, Mae Fah Luang University,Chiang Rai, 57100, Thailand eCollege of Basic Medicine, Dali University,Dali, Yunnan 671000, China fFormerly at Department of Botany,Goa University,Goa 403 206, India Abstract – Herpotrichiellaceae is an interesting, but confused family in Chaetothyriales; the latter has been considered to represent anatural and well-defined group. Anew genus Melanoctona was collected on decaying wood of Tectona grandis in Chiang Rai Province, Thailand and is introducedinHerpotrichiellaceae.Ithas aunique combination of morphological and phylogenetic characters. Phylogenetic analyses of combined ITS, LSU and SSU sequence data place Melanoctona in adistinct lineage in Herpotrichiellaceae. Melanoctona is distinguished from other genera in Herpotrichiellaceae by its hyphomycetous formation and muriform, ellipsoidal to ovoid, brown to dark brown conidia. Minimelanolocus yunnanensis sp. nov.isalso introduced. This species inhabits decaying wood in freshwater streams and rivers in Yunnan Province, China. Maximum likelihood, maximum parsimony and Bayesian analyses of combined ITS, LSU and SSU sequence data, as well as adistinct morphology provide evidence for this new species. Comprehensive descriptions and illustrations of Melanoctona tectonae gen. et sp. nov.and Minimelanolocus yunnanensis sp. nov.are provided with notes on their taxonomy and phylogeny. Minimelanolocus yunnanensis is compared with morphologically similar taxa. Black moulds /Eurotiomycetes /Fresh water /Phylogeny /Taxonomy *Corresponding author: Kevin D. Hyde, email address: [email protected] doi/10.7872/crym/v37.iss4.2016.477 478 Q. Tian et al. IntroductIon The class Eurotiomycetes is amonophyletic group comprising three major subclasses, Eurotiomycetidae Geiser &Lutzoni, Chaetothyriomycetidae Doweld, and Mycocaliciomycetidae Tibell. Chaetothyriomycetidae accommodates the order Chaetothyriales, which produce ostiolateperithecial ascomata with bitunicate asci, similar to those produced in Dothideomycetes (Geiser et al.,2006). The order Chaetothyriales, presently comprises six families, viz. Chaeto- thyriaceae, Cyphellophoraceae, Epibryaceae, Herpotrichiellaceae, Strelitzianaceae and Trichomeriaceae (Geiser et al.,2006, Kirk et al.,2008, Chomnunti et al.,2012, 2014; Réblová et al.,2013; Feng et al.,2014b; Gueidan et al.,2014; Crous et al., 2015). Most taxa in these families are saprobes, such as species in Herportrichiellaceae which grow on decaying wood and mushrooms(Barr,1987; Untereiner &Naveau, 1999; Untereiner,2000). The asexual morphs of several Herpotrichiellaceae species are black yeasts and are animal or human pathogens or occur on rocks (de Hoog et al., 2000; Prenafeta-Boldú et al.,2006; Réblová et al.,2013; Feng et al.,2014a; Vicente et al.,2014; Zeng et al.,2014; Isola et al.,2016). Genera of Herpotrichiellaceae have been related to species of Coenosphaeria and Trichometasphaeria (Munk, 1953) and latertreated as members of Pleosporales and Dothideales(Müller &von Arx, 1962; Bigelow &Barr,1963; von Arx &Müller, 1975). Although the family Herpotrichiellaceae has been considered to represent a natural and well-definedfamily,the morphological characters used in the delimitation of its genera have been confused (Munk, 1957; Müller &von Arx, 1962; Samuels &Müller,1978). The genus Minimelanolocus was revisited by Liu et al. (2015) who introduced four new species and provided new sequence data and abackbone tree for the order Chaetothyriales and showed the genus is adistinct lineage in Chaetothyriales. In this study,weintroduce Melanoctona tectonae gen. et sp. nov.and Minimelanolocus yunnanensis sp. nov.based on the morphological characteristics and phylogenetic analyses. Descriptions and illustrations are provided for both taxa. MAterIAlS And MethodS Fungal isolation and specimen examination. – Decaying wood was collected from aquatic habitats in Dali, Yunnan Province, China and decaying teak was collected from terrestrial habitats in Chiang Rai Province, Thailand and returned to the laboratory in Zip lock plastic bags. The specimens were incubatedinamoist chamber for 1-2 days at 25°Cand examined at regular intervals for sporulating resident fungi. The fungi were examined using an Olympus SZH10 stereo microscope, and mounted in water.Micromorphological characters were determined with a Nikon ECLIPSE 80i compound microscope and images were captured with aCanon EOS 600D digital camera. Differential interference contrast microscopy was used to visualize hyaline structures. Measurementswere made with Tarosoft (R) Image FrameWork version 0.9.7. Photographic plates were prepared in Adobe Photoshop version CS6 (Adobe Systems, The United States). After morphological examination, single spore isolations were made following the method described by Chomnunti Melanoctona tectonae gen. et sp. nov.and Minimelanolocus yunnanensis sp. nov.479 et al.(2014). Germinating spores were transferred aseptically to malt extractagar (MEA) or potato dextrose agar (PDA) platesand incubated at 25°Cinnormal daylight. Colony colour and culture characters were observed and recorded after one week and again after three weeks. Specimens are deposited in the Herbarium of Cryptogams Kunming Institute of Botany Academia Sinica (KUN-HKAS), Kunming, China and Mae Fah Luang University (MFLU), Chiang Rai, Thailand. Living cultures are deposited in Mae Fah Luang University Culture Collection (MFLUCC), and duplicated in Kunming Institute of Botany,Chinese Academy of Sciences (KUMCC), Kunming, China. Taxa were registered in Index Fungorum (2016) and Facesoffungi (Jayasiri et al.,2015). Fungal DNA extraction, PCR amplification, sequencing and sequence alignment. – Biospin Fungus Genomic DNA Extraction Kit-BSC14S1 (BioFlux®, P.R. China) was used to extract DNA from fresh mycelium grown on MEA at 25°C for four weeks using the instructions of the manufacturer (Hangzhou, P.R. China). The primers ITS5 and ITS4, NS1 and NS4 (White et al.,1990) and LROR (Rehner &Samuels, 1994) and LR5 (Vilgalys &Hester,1990) were used for the amplification of ITS, SSU and LSU respectively.Polymerase chain reaction (PCR) amplification was carried out following the method of Tian et al. (2015). PCR amplification was confirmed on 1% agarose electrophoresis gels stained with ethidium bromide. The amplified PCR fragments were sequenced by BGI, Ltd Shenzhen, P.R. China). Sequence data are deposited in GenBank (Table 1). The alignment and tree were deposited in TreeBASE under accession number 19479. Phylogenetic analyses. – The closest taxa to our strains were determined with standard nucleotide blast searches in NCBI database (http://www.ncbi.nlm.nih. gov/), and sequences of representative species were selected as in Liu et al. (2015). Sequence data from 35 taxa of Herpotrichiellaceae were selected from Crous et al. (2007), Badali et al. (2008) and Liu et al. (2015) (Table 1). Multiple alignments were made by MAFFTv.7.036 (Katoh &Standley, 2013), and adjusted manually using BioEdit v. 7.2 (Hall, 1999) and ClustalX v. 1.83 (Thompson et al.,1997). The tree was rooted using sequence data from Cyphellophora laciniata (CBS 190.61). MODELTEST v. 2.0 (Nylander,2004), following Akaike Information Criterion, was used to determine the best-fitmodel of evolution for each data set for Maximum Likelihood analyses and MrModel test for Bayesian analyses. Maximum-likelihood (ML) analysis was performed in RAxML (Stamatakis, 2008) implemented in raxmlGUI v.0.9b2 (Silvestro &Michalak, 2012). One thousand non-parametric bootstrap iterations were employed with the available models of generalized time reversible (GTR +Gsubstitution model.) and adiscrete gamma distribution (Stamatakis et al.,2008; Liu et al.,2011). The number of replicates was automatically inferred using the stopping criterion (Pattengale et al.,2009). Maximum likelihood bootstrap values equal to or greater than 50% are given as the first set of numbers above the nodes (Fig. 1). Maximum parsimony (MP) analysis was conducted with PAUP v. 4.0b10 (Swofford, 2002) using the heuristic search option with 1,000 random taxa addition and tree bisection reconnection (TBR) as branch-swapping algorithm. Maxtrees were setup unlimited and azero of maximum branch length collapsed, all multiple, equally parsimonious trees were saved. Gaps were treated as missing data. Tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were calculated. The robustness of the best parsimonious tree was evaluated by abootstrap (BT) value using 1,000 replications 480 Table 1. GenBank and culture collection accession numbers of species treated in the phylogenetic study.Newly generated sequences are shown in bold Culturecollection/ GenBank accession numbers3 Taxon Type2 Source Locality Isolate1 ITS LSU SSU Cladophialophora
Recommended publications
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Genomic Analysis of Ant Domatia-Associated Melanized Fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J
    Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, Marcus Teixeira, Vania Vicente, Sybren de Hoog To cite this version: Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, et al.. Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota). Mycolog- ical Progress, Springer Verlag, 2019, 18 (4), pp.541-552. 10.1007/s11557-018-01467-x. hal-02316769 HAL Id: hal-02316769 https://hal.archives-ouvertes.fr/hal-02316769 Submitted on 15 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mycological Progress (2019) 18:541–552 https://doi.org/10.1007/s11557-018-01467-x ORIGINAL ARTICLE Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro F. Moreno1,2,3 & Veronika Mayer4 & Hermann Voglmayr5 & Rumsaïs Blatrix6 & J. Benjamin Stielow3 & Marcus M. Teixeira7,8 & Vania A. Vicente3 & Sybren de Hoog1,2,3,9 Received: 20 August 2018 /Revised: 16 December 2018 /Accepted: 19 December 2018 # The Author(s) 2019 Abstract Several species of melanized (Bblack yeast-like^) fungi in the order Chaetothyriales live in symbiotic association with ants inhabiting plant cavities (domatia) or with ants that use carton-like material for the construction of nests and tunnels.
    [Show full text]
  • Three New Species of Cyphellophora (Chaetothyriales) Associated with Sooty Blotch and Flyspeck
    RESEARCH ARTICLE Three New Species of Cyphellophora (Chaetothyriales) Associated with Sooty Blotch and Flyspeck Liu Gao1, Yongqiang Ma2, Wanyu Zhao1, Zhuoya Wei1, Mark L. Gleason3, Hongcai Chen1, Lu Hao1, Guangyu Sun1*, Rong Zhang1* 1 Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China, 2 Institute of Plant Protection, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai Province, China, 3 Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America * [email protected] (GS); [email protected] (RZ) Abstract OPEN ACCESS The genus Cyphellophora includes human- and plant-related species from mammal skin and nails, plant materials, and food. On the basis of analysis of ITS, LSU, TUB2 and RPB1 Citation: Gao L, Ma Y, Zhao W, Wei Z, Gleason ML, Chen H, et al. (2015) Three New Species of data and morphological characters, three new species, Cyphellophora phyllostachysdis, C. Cyphellophora (Chaetothyriales) Associated with artocarpi and C. musae, associated with sooty blotch and flyspeck disease, were added to Sooty Blotch and Flyspeck. PLoS ONE 10(9): this genus. The 2D structure of ITS1 and ITS2 confirmed this taxonomic status. Pathogenic- e0136857. doi:10.1371/journal.pone.0136857 ity tests on apple fruit indicated that C. artocarpi could be a sooty blotch and flyspeck patho- Editor: Patrick CY Woo, The University of Hong gen of apple. Kong, HONG KONG Received: February 20, 2015 Accepted: August 8, 2015 Published: September 23, 2015 Introduction Copyright: © 2015 Gao et al. This is an open access article distributed under the terms of the Creative The genus Cyphellophora de Vries (Cyphellophoraceae, Chaetothyriales) was set up in 1962 Commons Attribution License, which permits with C.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • Generic Names in Magnaporthales Ning Zhang, Jing Luo, Amy Y
    Generic names in Magnaporthales Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, Pedro W. Crous, Ralph Dean, Ronald P. de Vries, Nicole Donofrio, Kevin D. Hyde, et al. To cite this version: Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, et al.. Generic names in Magnaporthales. IMA Fungus, 2016, 7 (1), pp.155-159. 10.5598/imafungus.2016.07.01.09. hal- 01608608 HAL Id: hal-01608608 https://hal.archives-ouvertes.fr/hal-01608608 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License IMA FUNGUS · 7(1): 155–159 (2016) doi:10.5598/imafungus.2016.07.01.09 ARTICLE Generic names in Magnaporthales Ning Zhang1, Jing Luo1, Amy Y. Rossman2, Takayuki Aoki3, Izumi Chuma4, Pedro W. Crous5, Ralph Dean6, Ronald P. de Vries5,7, Nicole Donofrio8, Kevin D. Hyde9, Marc-Henri Lebrun10, Nicholas J. Talbot11, Didier Tharreau12, Yukio Tosa4, Barbara Valent13, Zonghua Wang14, and Jin-Rong Xu15 1Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; corresponding author e-mail: zhang@aesop.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]
  • Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergol
    applied sciences Article Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergola, Museum of King John III’s Palace at Wilanow, Poland Magdalena Dyda 1,2,* , Agnieszka Laudy 3, Przemyslaw Decewicz 4 , Krzysztof Romaniuk 4, Martyna Ciezkowska 4, Anna Szajewska 5 , Danuta Solecka 6, Lukasz Dziewit 4 , Lukasz Drewniak 4 and Aleksandra Skłodowska 1 1 Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] 2 Research and Development for Life Sciences Ltd. (RDLS Ltd.), Miecznikowa 1/5a, 02-096 Warsaw, Poland 3 Laboratory of Environmental Analysis, Museum of King John III’s Palace at Wilanow, Stanislawa Kostki Potockiego 10/16, 02-958 Warsaw, Poland; [email protected] 4 Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] (P.D.); [email protected] (K.R.); [email protected] (M.C.); [email protected] (L.D.); [email protected] (L.D.) 5 The Main School of Fire Service, Slowackiego 52/54, 01-629 Warsaw, Poland; [email protected] 6 Department of Plant Molecular Ecophysiology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-786-28-44-96 Citation: Dyda, M.; Laudy, A.; Abstract: The aim of the presented investigation was to describe seasonal changes of microbial com- Decewicz, P.; Romaniuk, K.; munity composition in situ in different biocenoses on historical sandstone of the Northern Pergola in Ciezkowska, M.; Szajewska, A.; the Museum of King John III’s Palace at Wilanow (Poland).
    [Show full text]
  • Culturing and Direct DNA Extraction Find Different Fungi From
    Research CulturingBlackwell Publishing Ltd. and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots Tamara R. Allen1, Tony Millar1, Shannon M. Berch2 and Mary L. Berbee1 1Department of Botany, The University of British Columbia, Vancouver BC, V6T 1Z4, Canada; 2Ministry of Forestry, Research Branch Laboratory, 4300 North Road, Victoria, BC V8Z 5J3, Canada Summary Author for correspondence: • This study compares DNA and culture-based detection of fungi from 15 ericoid Mary L. Berbee mycorrhizal roots of salal (Gaultheria shallon), from Vancouver Island, BC Canada. Tel: (604) 822 2019 •From the 15 roots, we PCR amplified fungal DNAs and analyzed 156 clones that Fax: (604) 822 6809 Email: [email protected] included the internal transcribed spacer two (ITS2). From 150 different subsections of the same roots, we cultured fungi and analyzed their ITS2 DNAs by RFLP patterns Received: 28 March 2003 or sequencing. We mapped the original position of each root section and recorded Accepted: 3 June 2003 fungi detected in each. doi: 10.1046/j.1469-8137.2003.00885.x • Phylogenetically, most cloned DNAs clustered among Sebacina spp. (Sebaci- naceae, Basidiomycota). Capronia sp. and Hymenoscyphus erica (Ascomycota) pre- dominated among the cultured fungi and formed intracellular hyphal coils in resynthesis experiments with salal. •We illustrate patterns of fungal diversity at the scale of individual roots and com- pare cloned and cultured fungi from each root. Indicating a systematic culturing detection bias, Sebacina DNAs predominated in 10 of the 15 roots yet Sebacina spp. never grew from cultures from the same roots or from among the > 200 ericoid mycorrhizal fungi previously cultured from different roots from the same site.
    [Show full text]
  • Indoor Wet Cells As a Habitat for Melanized Fungi, Opportunistic
    www.nature.com/scientificreports OPEN Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other Received: 23 June 2017 Accepted: 30 April 2018 vertebrates Published: xx xx xxxx Xiaofang Wang1,2, Wenying Cai1, A. H. G. Gerrits van den Ende3, Junmin Zhang1, Ting Xie4, Liyan Xi1,5, Xiqing Li1, Jiufeng Sun6 & Sybren de Hoog3,7,8,9 Indoor wet cells serve as an environmental reservoir for a wide diversity of melanized fungi. A total of 313 melanized fungi were isolated at fve locations in Guangzhou, China. Internal transcribed spacer (rDNA ITS) sequencing showed a preponderance of 27 species belonging to 10 genera; 64.22% (n = 201) were known as human opportunists in the orders Chaetothyriales and Venturiales, potentially causing cutaneous and sometimes deep infections. Knufa epidermidis was the most frequently encountered species in bathrooms (n = 26), while in kitchens Ochroconis musae (n = 14), Phialophora oxyspora (n = 12) and P. europaea (n = 10) were prevalent. Since the majority of species isolated are common agents of cutaneous infections and are rarely encountered in the natural environment, it is hypothesized that indoor facilities explain the previously enigmatic sources of infection by these organisms. Black yeast-like and other melanized fungi are frequently isolated from clinical specimens and are known as etiologic agents of a gamut of opportunistic infections, but for many species their natural habitat is unknown and hence the source and route of transmission remain enigmatic. Te majority of clinically relevant black yeast-like fungi belong to the order Chaetothyriales, while some belong to the Venturiales. Propagules are mostly hydro- philic1 and reluctantly dispersed by air, infections mostly being of traumatic origin.
    [Show full text]
  • <I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
    Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo­ Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola
    [Show full text]
  • Environmental Screening of Fonsecaea Agents of Chromoblastomycosis Using Rolling Circle Amplification
    Journal of Fungi Article Environmental Screening of Fonsecaea Agents of Chromoblastomycosis Using Rolling Circle Amplification Morgana Ferreira Voidaleski 1 , Renata Rodrigues Gomes 1, Conceição de Maria Pedrozo e Silva de Azevedo 2, Bruna Jacomel Favoreto de Souza Lima 1 , Flávia de Fátima Costa 3, Amanda Bombassaro 1,4 , Gheniffer Fornari 5, Isabelle Cristina Lopes da Silva 1 , Lucas Vicente Andrade 6, Bruno Paulo Rodrigues Lustosa 3 , Mohammad J. Najafzadeh 7 , G. Sybren de Hoog 1,4,* and Vânia Aparecida Vicente 1,3,* 1 Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba 81531-980, Brazil; [email protected] (M.F.V.); [email protected] (R.R.G.); [email protected] (B.J.F.d.S.L.); [email protected] (A.B.); [email protected] (I.C.L.d.S.) 2 Department of Medicine, Federal University of Maranhão, Vila Bacanga, Maranhão 65080-805, Brazil; [email protected] 3 Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 82590-300, Brazil; fl[email protected] (F.d.F.C.); [email protected] (B.P.R.L.) 4 Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands 5 Real Field College, Biomedicine Course, Guarapuava 85015-240, Brazil; gheniff[email protected] 6 União das Faculdades dos Grandes Lagos, Medical College, Clinic Medical, São José do Rio Preto 15030-070, SP, Brazil; [email protected] 7 Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; [email protected] * Correspondence: [email protected] (G.S.d.H.); [email protected] (V.A.V.); Tel.: +55-41-3361-1704 or +55-41-999041033 (V.A.V.) Received: 8 October 2020; Accepted: 4 November 2020; Published: 17 November 2020 Abstract: Chromoblastomycosis is a chronic, cutaneous or subcutaneous mycosis characterized by the presence of muriform cells in host tissue.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]