Vesicle Transporter GOLT1B Mediates the Cell Membrane Localization of DVL2 and PD-L2 and Promotes Colorectal Cancer Metastasis

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Liu et al. Cancer Cell Int (2021) 21:287 https://doi.org/10.1186/s12935-021-01991-z Cancer Cell International PRIMARY RESEARCH Open Access Vesicle transporter GOLT1B mediates the cell membrane localization of DVL2 and PD-L2 and promotes colorectal cancer metastasis Tengfei Liu†, Binbin Liu†, Yiting Liu, Xingzhi Feng, Xuefei Jiang, Jiahui Long, Qianling Gao and Zihuan Yang* Abstract Background: Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer death worldwide. Hallmark proteins processing is usually dysregulated in cancers. Finding key regulatory molecules is of great importance for CRC metastasis intervention. GOLT1B is a vesicle transport protein which is involved in cytosolic proteins trafcking. However, its role in cancer has never been addressed. Methods: CRC cell lines and subcutaneous xenograft animal model were utilized to investigate the biological func- tion of GOLT1B. Patients samples were used to validate the correlation between GOLT1B and clinical outcome. In vivo targeted delivery of GOLT1B-siRNA was investigated in PDX (Patient derived tumor xenograft) model. Results: We found that GOLT1B was highly expressed in CRC, and was an independent prognostic marker of overall survival (OS) and progression free survival (PFS). GOLT1B could promote CRC metastasis in vitro and in vivo. GOLT1B overexpression could increase DVL2 level and enhance its plasma membrane translocation, which subsequently activated downstream Wnt/β-catenin pathway and increase the nuclear β-catenin level, hence induce epithelial- mesenchymal transition (EMT). In addition, GOLT1B could also interact with PD-L2 and increase its membrane level. Co-culture of GOLT1B-overexpresed CRC cells with Jurkat cells signifcantly induced T cells apoptosis, which might further promote cancer cell the migration and invasion. Further, targeted delivery of GOLT1B siRNA could signifcantly inhibit tumor progression in GOLT1B highly expressed PDX model. Conclusion: Taken together, our fndings suggest that the vesicle transporter GOLT1B could promote CRC metastasis not only by assisting DVL2 translocation and activating Wnt/β-catenin pathway, but also facilitating PD-L2 membrane localization to induce immune suppression. Targeted inhibition of GOLT1B could be a potential therapeutic strategy for CRC treatment. Keywords: GOLT1B, CRC , Metastasis, PDX, DVL2, PD-L2 Introduction Colorectal cancer is now the third most common malig- nant tumor worldwide, and distant metastasis is the main cause of its death [1, 2]. Clarifying the key molecules related to CRC metastasis and prognosis and their regu- *Correspondence: [email protected] latory mechanisms is the key to the treatment of CRC. †Tengfei Liu and Binbin Liu contributed equally to this work Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Protein localization is very important for the mainte- Diseases, Guangdong Institute of Gastroenterology, The Sixth Afliated nance of their normal function. For example, DVL2 are Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong, recruited to the membrane receptor complex to initi- China ate downstream Wnt signal cascade [3, 4]. Programmed © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Liu et al. Cancer Cell Int (2021) 21:287 Page 2 of 15 death-ligand 2 (PD-L2) expressed on the surface of can- McCoy’s 5a Medium Modifed (Gibco, USA) medium cer cells could induce immunosuppression through inter- containing 10% fetal bovine serum (Gibco, USA), RKO action with PD-1 in immune cells [5, 6], and blocking this was cultured with MEM (Gibco, USA) medium contain- interaction gave rise to an impressive clinical beneft in ing 10% fetal bovine serum (Gibco, USA), Jurkat T lym- various of cancers [7–14]. Aberrant localization of hall- phocyte cell line were purchased from the China Center mark proteins can alter their function so that their abil- for Type Culture Collection (Shanghai, China). Cells were ity to suppress cancer or induce cancer metastasis is maintained in RPMI1640 medium supplemented with changed. Terefore, the mislocalization of such proteins 10% fetal bovine serum and placed in a humidifed incu- could serve as novel therapeutic targets of cancer. bator at 37 °C with 5% CO2. Golgi apparatus is a crucial cell component responsi- ble for transporting, modifying, and packaging proteins Primers and antibodies into vesicles for delivery to targeted locations. Stud- All the primers used are listed in the supplemental data ies have shown that Golgi-related genes play important (Additional fle 1: Table S1). T-PER tissue protein extrac- roles in regulating cancer occurrence and development. tion reagent (Termo, Rockford, IL, USA), protease Golgi phosphorylated protein 2 (GOLPH2) dysregula- inhibitor group III and phosphatase inhibitor group II tion has been reported in many cancers, including oral (Millipore, Germany) were used for protein preparation. squamous cell carcinoma, hepatocellular carcinomas, Proteins were quantifed using BCA kits (Termo, USA). and esophageal cancer [15–17]. Golgi phosphorylated Antibodies used are anti-GOLT1B (Afnity Biosciences, protein 3 (GOLPH3) promotes the development of CRC DF9071), anti-DVL2 (CST, #3224), anti-β-catenin (CST, and induce resistance to 5-FU by mediating the mTOR #25362), anti-GSK3β (CST, #9832), anti-pGSK3β(ser9) pathway [18–20]. Golgi membrane protein 1 (GOLM1) (CST, #5558), anti-TCF1/TCF7 (CST, #2203), anti-TCF4/ expression is correlated with early recurrence, metas- TCFL2 (CST, #2569), anti-PD-L2 (CST, #82723), anti- tasis, and poor survival of HCC patients [21, 22]. Golgi fag (Sigma, F1804), anti-PCNA (Proteintech Group, vesicle transporter 1A (GOLT1A) has been shown to # 10205–2-AP) and anti-GAPDH (Proteintech Group, regulate tamoxifen sensitivity in breast cancer and pro- #10494–1-AP). mote cell proliferation in lung cancer [23, 24]. However, the function of GOLTIB, which belongs to the same fam- Patient samples ily, has never been addressed. Little is known about the Paired normal tissue (5 cm from the tumor boundary), mechanism of Golgi-related proteins in regulating cancer paracancerous (2 cm from the tumor boundary) and metastasis. tumor tissues were obtained from 8 CRC patient from In the present study, we found that the vesicular the Sixth Afliated Hospital of Sun Yat-sen University. transporter GOLT1B, also known as Golgi transport 1 Tissue microarray (TMA) of primary CRC from 224 homolog B, was overexpressed in CRC. High GOLT1B patients were constructed. Freshly resected tumor tissue is signifcantly correlated with poor prognosis. In vitro from 3 CRC patients were used to construct PDX model. and in vivo experiments showed that GOLT1B could pro- None of these patients received adjuvant chemotherapy mote CRC cells migration and invasion. As to the mecha- or radiotherapy before surgury. Studies were approved by nism, GOLT1B could interact with DVL2 and facilitate the Human Medical Ethics Committee of the Sixth Afli- its transportation to the cell membrane, where it can ated Hospital of Sun Yat-sen University. bind to the cytoplasmic C-terminus of frizzled receptor, leading to the activation of Wnt signaling and epithelial- Plasmid construction and siRNA transfection mesenchymal transition (EMT). In addition, we found Te cDNA ORF of human GOLT1B was amplifed and that GOLT1B can also interact with PD-L2 and induce cloned into the pcDNA 3.1(+) plasmid by homologous T-cell apoptosis. Our results suggest that GOLT1B is recombination using In-fusion HD cloning kit (Clo- very important in regulating protein transportation and netech, Tokyo, Japan). Te constructed plasmid was used localization. GOLT1B may be a predictive marker and for transient transfection. Te plasmid was transfected therapeutic target for metastatic CRC. into CRC cells using Lipofectamine 3000 (Invitrogen, USA) according to the manufacturer’s instructions and Materials and methods the cells were collected 48 h after transfection for experi- Cell lines and cell culture ments. In this study, the full-length human GOLT1B Human CRC cell lines (HCT116, RKO) were purchased cDNA ORF was constructed by homologous recombina- from the American Type Culture Collection (ATCC). Te tion into the lentivirus expression vector pCDH-CMV- STR genotyping data of the two cell lines are consistent MCS-EF1-copGFP (SBI Pharmaceuticals, Tokyo, Japan) with the ATCC database. HCT116 was cultured with for the construction of stable cell lines. HEK 293T cells Liu et al. Cancer Cell Int (2021) 21:287 Page 3 of 15 were co-transfected with pCDH-GOLT1B/pCDH-Vector, Cell migration and invasion were determined by tran- pCMV-δ8.91 and pCMV-VSVG using Lipofectamine swell assay. Breify, CRC cells resuspended in serum-free 3000 to produce lentiviruses. Te medium was changed medium were added to the upper well of transwell cham- 24 h after transfection and virus supernatants were col- bers and cultured for 48 h. For invasion assay, Matrigel lected 48 h and 72 h after transfection. After ultracen- (Corning, USA) was diluted at 1:10 with serum-free cul- trifugation, the supernatant was concentrated and added ture medium and coated to the upper surface of the tran- to luciferase-expressing HCT116.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus

    A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus

    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
  • Supplementary Tables S1-S3

    Supplementary Tables S1-S3

    Supplementary Table S1: Real time RT-PCR primers COX-2 Forward 5’- CCACTTCAAGGGAGTCTGGA -3’ Reverse 5’- AAGGGCCCTGGTGTAGTAGG -3’ Wnt5a Forward 5’- TGAATAACCCTGTTCAGATGTCA -3’ Reverse 5’- TGTACTGCATGTGGTCCTGA -3’ Spp1 Forward 5'- GACCCATCTCAGAAGCAGAA -3' Reverse 5'- TTCGTCAGATTCATCCGAGT -3' CUGBP2 Forward 5’- ATGCAACAGCTCAACACTGC -3’ Reverse 5’- CAGCGTTGCCAGATTCTGTA -3’ Supplementary Table S2: Genes synergistically regulated by oncogenic Ras and TGF-β AU-rich probe_id Gene Name Gene Symbol element Fold change RasV12 + TGF-β RasV12 TGF-β 1368519_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 42.22 5.53 75.28 1373000_at sushi-repeat-containing protein, X-linked 2 (predicted) Srpx2 19.24 25.59 73.63 1383486_at Transcribed locus --- ARE 5.93 27.94 52.85 1367581_a_at secreted phosphoprotein 1 Spp1 2.46 19.28 49.76 1368359_a_at VGF nerve growth factor inducible Vgf 3.11 4.61 48.10 1392618_at Transcribed locus --- ARE 3.48 24.30 45.76 1398302_at prolactin-like protein F Prlpf ARE 1.39 3.29 45.23 1392264_s_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 24.92 3.67 40.09 1391022_at laminin, beta 3 Lamb3 2.13 3.31 38.15 1384605_at Transcribed locus --- 2.94 14.57 37.91 1367973_at chemokine (C-C motif) ligand 2 Ccl2 ARE 5.47 17.28 37.90 1369249_at progressive ankylosis homolog (mouse) Ank ARE 3.12 8.33 33.58 1398479_at ryanodine receptor 3 Ryr3 ARE 1.42 9.28 29.65 1371194_at tumor necrosis factor alpha induced protein 6 Tnfaip6 ARE 2.95 7.90 29.24 1386344_at Progressive ankylosis homolog (mouse)
  • MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G

    MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G

    MMP-25 Metalloprotease Regulates Innate Immune Response through NF- κB Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G. Osorio, Dido Carrero, Adolfo A. Ferrando, Enrique Colado, This information is current as M. Soledad Fernández-García, Elena Bonzon-Kulichenko, of October 5, 2021. Jesús Vázquez, Antonio Fueyo and Carlos López-Otín J Immunol published online 3 June 2016 http://www.jimmunol.org/content/early/2016/06/01/jimmun ol.1600094 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/06/01/jimmunol.160009 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 5, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 3, 2016, doi:10.4049/jimmunol.1600094 The Journal of Immunology MMP-25 Metalloprotease Regulates Innate Immune Response through NF-kB Signaling Clara Soria-Valles,* Ana Gutie´rrez-Ferna´ndez,* Fernando G. Osorio,* Dido Carrero,* Adolfo A.
  • Cell Culture-Based Profiling Across Mammals Reveals DNA Repair And

    Cell Culture-Based Profiling Across Mammals Reveals DNA Repair And

    1 Cell culture-based profiling across mammals reveals 2 DNA repair and metabolism as determinants of 3 species longevity 4 5 Siming Ma1, Akhil Upneja1, Andrzej Galecki2,3, Yi-Miau Tsai2, Charles F. Burant4, Sasha 6 Raskind4, Quanwei Zhang5, Zhengdong D. Zhang5, Andrei Seluanov6, Vera Gorbunova6, 7 Clary B. Clish7, Richard A. Miller2, Vadim N. Gladyshev1* 8 9 1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard 10 Medical School, Boston, MA, 02115, USA 11 2 Department of Pathology and Geriatrics Center, University of Michigan Medical School, 12 Ann Arbor, MI 48109, USA 13 3 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, 14 MI 48109, USA 15 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 16 48109, USA 17 5 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10128, USA 18 6 Department of Biology, University of Rochester, Rochester, NY 14627, USA 19 7 Broad Institute, Cambridge, MA 02142, US 20 21 * corresponding author: Vadim N. Gladyshev ([email protected]) 22 ABSTRACT 23 Mammalian lifespan differs by >100-fold, but the mechanisms associated with such 24 longevity differences are not understood. Here, we conducted a study on primary skin 25 fibroblasts isolated from 16 species of mammals and maintained under identical cell culture 26 conditions. We developed a pipeline for obtaining species-specific ortholog sequences, 27 profiled gene expression by RNA-seq and small molecules by metabolite profiling, and 28 identified genes and metabolites correlating with species longevity. Cells from longer-lived 29 species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated 30 proteolysis and protein transport, and showed high levels of amino acids but low levels of 31 lysophosphatidylcholine and lysophosphatidylethanolamine.
  • Allele-Specific Expression Detection in Cancer Tissues and Cell Lines

    Allele-Specific Expression Detection in Cancer Tissues and Cell Lines

    Mayba et al. Genome Biology 2014, 15:405 http://genomebiology.com/2014/15/8/405 METHOD Open Access MBASED: allele-specific expression detection in cancer tissues and cell lines Oleg Mayba1*, Houston N Gilbert2, Jinfeng Liu1, Peter M Haverty1, Suchit Jhunjhunwala1, Zhaoshi Jiang1, Colin Watanabe1 and Zemin Zhang1* Abstract Allele-specific gene expression, ASE, is an important aspect of gene regulation. We developed a novel method MBASED, meta-analysis based allele-specific expression detection for ASE detection using RNA-seq data that aggregates information across multiple single nucleotide variation loci to obtain a gene-level measure of ASE, even when prior phasing information is unavailable. MBASED is capable of one-sample and two-sample analyses and performs well in simulations. We applied MBASED to a panel of cancer cell lines and paired tumor-normal tissue samples, and observed extensive ASE in cancer, but not normal, samples, mainly driven by genomic copy number alterations. Background whichmustbeovercomeforeffectiveASEdetection[3-5]. Transcriptional activity at the different alleles of a gene in In addition, data from multiple heterozygous single nucleo- a non-haploid genome can differ considerably. Both gen- tide variants (SNVs) in the same gene must be integrated, etic and epigenetic determinants govern this allele-specific and the large number of tested genes requires appropriate expression (ASE) [1] and impairment of this highly regu- statistical treatment of the multiplicity of tested hypotheses. lated process can lead to disease [2]. To understand the Despite these obstacles, next-generation sequencing tech- biological role of ASE and its underlying mechanisms, a nology has been recently used to identify putative sites of comprehensive identification of ASE events is required.
  • SUPPORTING INFORMATION for Regulation of Gene Expression By

    SUPPORTING INFORMATION for Regulation of Gene Expression By

    SUPPORTING INFORMATION for Regulation of gene expression by the BLM helicase correlates with the presence of G4 motifs Giang Huong Nguyen1,2, Weiliang Tang3, Ana I. Robles1, Richard P. Beyer4, Lucas T. Gray5, Judith A. Welsh1, Aaron J. Schetter1, Kensuke Kumamoto1,6, Xin Wei Wang1, Ian D. Hickson2,7, Nancy Maizels5, 3,8 1 Raymond J. Monnat, Jr. and Curtis C. Harris 1Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, U.S.A; 2Department of Medical Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, U.K.; 3Department of Pathology, University of Washington, Seattle, WA U.S.A.; 4 Center for Ecogenetics and Environmental Health, University of Washington, Seattle, WA U.S.A.; 5Department of Immunology and Department of Biochemistry, University of Washington, Seattle, WA U.S.A.; 6Department of Organ Regulatory Surgery, Fukushima Medical University, Fukushima, Japan; 7Cellular and Molecular Medicine, Nordea Center for Healthy Aging, University of Copenhagen, Denmark; 8Department of Genome Sciences, University of WA, Seattle, WA U.S.A. SI Index: Supporting Information for this manuscript includes the following 19 items. A more detailed Materials and Methods section is followed by 18 Tables and Figures in order of their appearance in the manuscript text: 1) SI Materials and Methods 2) Figure S1. Study design and experimental workflow. 3) Figure S2. Immunoblot verification of BLM depletion from human fibroblasts. 4) Figure S3. PCA of mRNA and miRNA expression in BLM-depleted human fibroblasts. 5) Figure S4. qPCR confirmation of mRNA array data. 6) Table S1. BS patient and control detail.
  • A Network Inference Approach to Understanding Musculoskeletal

    A Network Inference Approach to Understanding Musculoskeletal

    A NETWORK INFERENCE APPROACH TO UNDERSTANDING MUSCULOSKELETAL DISORDERS by NIL TURAN A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham June 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Musculoskeletal disorders are among the most important health problem affecting the quality of life and contributing to a high burden on healthcare systems worldwide. Understanding the molecular mechanisms underlying these disorders is crucial for the development of efficient treatments. In this thesis, musculoskeletal disorders including muscle wasting, bone loss and cartilage deformation have been studied using systems biology approaches. Muscle wasting occurring as a systemic effect in COPD patients has been investigated with an integrative network inference approach. This work has lead to a model describing the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. This model has shown for the first time that oxygen dependent changes in the expression of epigenetic modifiers and not chronic inflammation may be causally linked to muscle dysfunction.
  • Clinical Efficacy and Immune Regulation with Peanut Oral

    Clinical Efficacy and Immune Regulation with Peanut Oral

    Clinical efficacy and immune regulation with peanut oral immunotherapy Stacie M. Jones, MD,a Laurent Pons, PhD,b Joseph L. Roberts, MD, PhD,b Amy M. Scurlock, MD,a Tamara T. Perry, MD,a Mike Kulis, PhD,b Wayne G. Shreffler, MD, PhD,c Pamela Steele, CPNP,b Karen A. Henry, RN,a Margaret Adair, MD,b James M. Francis, PhD,d Stephen Durham, MD,d Brian P. Vickery, MD,b Xiaoping Zhong, MD, PhD,b and A. Wesley Burks, MDb Little Rock, Ark, Durham, NC, New York, NY, and London, United Kingdom Background: Oral immunotherapy (OIT) has been thought to noted during OIT resolved spontaneously or with induce clinical desensitization to allergenic foods, but trials antihistamines. By 6 months, titrated skin prick tests and coupling the clinical response and immunologic effects of peanut activation of basophils significantly declined. Peanut-specific OIT have not been reported. IgE decreased by 12 to 18 months, whereas IgG4 increased Objective: The study objective was to investigate the clinical significantly. Serum factors inhibited IgE–peanut complex efficacy and immunologic changes associated with OIT. formation in an IgE-facilitated allergen binding assay. Secretion Methods: Children with peanut allergy underwent an OIT of IL-10, IL-5, IFN-g, and TNF-a from PBMCs increased over protocol including initial day escalation, buildup, and a period of 6 to 12 months. Peanut-specific forkhead box protein maintenance phases, and then oral food challenge. Clinical 3 T cells increased until 12 months and decreased thereafter. In response and immunologic changes were evaluated. addition, T-cell microarrays showed downregulation of genes in Results: Of 29 subjects who completed the protocol, 27 ingested apoptotic pathways.
  • Genomic and Epigenomic Profile of Uterine Smooth Muscle

    Genomic and Epigenomic Profile of Uterine Smooth Muscle

    International Journal of Molecular Sciences Article Genomic and Epigenomic Profile of Uterine Smooth Muscle Tumors of Uncertain Malignant Potential (STUMPs) Revealed Similarities and Differences with Leiomyomas and Leiomyosarcomas Donatella Conconi 1,*,† , Serena Redaelli 1,† , Andrea Alberto Lissoni 1,2, Chiara Cilibrasi 3, Patrizia Perego 4, Eugenio Gautiero 5, Elena Sala 5, Mariachiara Paderno 1,2, Leda Dalprà 1, Fabio Landoni 1,2, Marialuisa Lavitrano 1 , Gaia Roversi 1,5 and Angela Bentivegna 1,* 1 School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; [email protected] (S.R.); [email protected] (A.A.L.); [email protected] (M.P.); [email protected] (L.D.); [email protected] (F.L.); [email protected] (M.L.); [email protected] (G.R.) 2 Clinic of Obstetrics and Gynecology, San Gerardo Hospital, 20900 Monza, Italy 3 Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK; [email protected] 4 Division of Pathology, San Gerardo Hospital, 20900 Monza, Italy; [email protected] 5 Medical Genetics Laboratory, San Gerardo Hospital, 20900 Monza, Italy; [email protected] (E.G.); [email protected] (E.S.) Citation: Conconi, D.; Redaelli, S.; * Correspondence: [email protected] (D.C.); [email protected] (A.B.); Lissoni, A.A.; Cilibrasi, C.; Perego, P.; Tel.: +39-0264488133 (A.B.) Gautiero, E.; Sala, E.; Paderno, M.; † Co-first authorship. Dalprà, L.; Landoni, F.; et al. Genomic and Epigenomic Profile of Uterine Abstract: Uterine smooth muscle tumors of uncertain malignant potential (STUMPs) represent a Smooth Muscle Tumors of Uncertain heterogeneous group of tumors that cannot be histologically diagnosed as unequivocally benign Malignant Potential (STUMPs) or malignant.
  • Milger Et Al. Pulmonary CCR2+CD4+ T Cells Are Immune Regulatory And

    Milger Et Al. Pulmonary CCR2+CD4+ T Cells Are Immune Regulatory And

    Milger et al. Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development Supplemental Table S1 List of significantly regulated mRNAs between CCR2+ and CCR2- CD4+ Tcells on Affymetrix Mouse Gene ST 1.0 array. Genewise testing for differential expression by limma t-test and Benjamini-Hochberg multiple testing correction (FDR < 10%). Ratio, significant FDR<10% Probeset Gene symbol or ID Gene Title Entrez rawp BH (1680) 10590631 Ccr2 chemokine (C-C motif) receptor 2 12772 3.27E-09 1.33E-05 9.72 10547590 Klrg1 killer cell lectin-like receptor subfamily G, member 1 50928 1.17E-07 1.23E-04 6.57 10450154 H2-Aa histocompatibility 2, class II antigen A, alpha 14960 2.83E-07 1.71E-04 6.31 10590628 Ccr3 chemokine (C-C motif) receptor 3 12771 1.46E-07 1.30E-04 5.93 10519983 Fgl2 fibrinogen-like protein 2 14190 9.18E-08 1.09E-04 5.49 10349603 Il10 interleukin 10 16153 7.67E-06 1.29E-03 5.28 10590635 Ccr5 chemokine (C-C motif) receptor 5 /// chemokine (C-C motif) receptor 2 12774 5.64E-08 7.64E-05 5.02 10598013 Ccr5 chemokine (C-C motif) receptor 5 /// chemokine (C-C motif) receptor 2 12774 5.64E-08 7.64E-05 5.02 10475517 AA467197 expressed sequence AA467197 /// microRNA 147 433470 7.32E-04 2.68E-02 4.96 10503098 Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 17096 3.98E-08 6.65E-05 4.89 10345791 Il1rl1 interleukin 1 receptor-like 1 17082 6.25E-08 8.08E-05 4.78 10580077 Rln3 relaxin 3 212108 7.77E-04 2.81E-02 4.77 10523156 Cxcl2 chemokine (C-X-C motif) ligand 2 20310 6.00E-04 2.35E-02 4.55 10456005 Cd74 CD74 antigen
  • Pituitary Cell Translation and Secretory Capacities Are Enhanced Cell Autonomously by the Transcription Factor Creb3l2

    Pituitary Cell Translation and Secretory Capacities Are Enhanced Cell Autonomously by the Transcription Factor Creb3l2

    ARTICLE https://doi.org/10.1038/s41467-019-11894-3 OPEN Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2 Konstantin Khetchoumian1, Aurélio Balsalobre1, Alexandre Mayran1, Helen Christian2, Valérie Chénard3, Julie St-Pierre3 & Jacques Drouin1,3 1234567890():,; Translation is a basic cellular process and its capacity is adapted to cell function. In particular, secretory cells achieve high protein synthesis levels without triggering the protein stress response. It is unknown how and when translation capacity is increased during differentiation. Here, we show that the transcription factor Creb3l2 is a scaling factor for translation capacity in pituitary secretory cells and that it directly binds ~75% of regulatory and effector genes for translation. In parallel with this cell-autonomous mechanism, implementation of the phy- siological UPR pathway prevents triggering the protein stress response. Knockout mice for Tpit, a pituitary differentiation factor, show that Creb3l2 expression and its downstream regulatory network are dependent on Tpit. Further, Creb3l2 acts by direct targeting of translation effector genes in parallel with signaling pathways that otherwise regulate protein synthesis. Expression of Creb3l2 may be a useful means to enhance production of therapeutic proteins. 1 Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada. 2 Departments of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX2 6HS, UK. 3 Department of Biochemistry, McGill University, Rosalind and Morris Goodman Research Centre, Montréal, QC H3A 1A3, Canada. Correspondence and requests for materials should be addressed to K.K. (email: [email protected]) or to J.D.
  • Enhanced Autophagic-Lysosomal Activity and Increased BAG3- Mediated Selective Macroautophagy As Adaptive Response of Neuronal Ce

    Enhanced Autophagic-Lysosomal Activity and Increased BAG3- Mediated Selective Macroautophagy As Adaptive Response of Neuronal Ce

    bioRxiv preprint doi: https://doi.org/10.1101/580977; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Enhanced autophagic-lysosomal activity and increased BAG3- mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress Debapriya Chakraborty1, Vanessa Felzen1, Christof Hiebel1, Elisabeth Stürner1, Natarajan Perumal2, Caroline Manicam2, Elisabeth Sehn3, Franz Grus2, Uwe Wolfrum3, Christian Behl1* 1Institute of Pathobiochemistry, University Medical Center Mainz of the Johannes Gutenberg University, 55099 Mainz, Germany 2Experimental and Translational Ophthalmology, University Medical Center Mainz, 55131 Mainz, Germany 3 Institute for Molecular Physiology, Johannes Gutenberg University, 55128 Mainz, Germany E-mail addresses of authors: D. Chakraborty: [email protected]; V. Felzen: [email protected]; C. Hiebel: [email protected]; E. Stürner: [email protected]; N. Perumal: nperumal@eye- research.org; C. Manicam: [email protected]; E. Sehn: sehn@uni- mainz.de; F. Grus: [email protected]; U. Wolfrum: [email protected]; *Correspondence to Christian Behl, PhD Institute of Pathobiochemistry University Medical Center of the Johannes Gutenberg University Duesbergweg 6, D-55099 Mainz [email protected] Tel.: +49-6131-39-25890; Fax: +49-6131-39-25792 1 bioRxiv preprint doi: https://doi.org/10.1101/580977; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders.