Platt,T.*, Queller, D. C., and Strassmann, J. E. 2004. Aggression

Total Page:16

File Type:pdf, Size:1020Kb

Platt,T.*, Queller, D. C., and Strassmann, J. E. 2004. Aggression ANIMAL BEHAVIOUR, 2004, 67, 1e10 doi:10.1016/j.anbehav.2003.01.005 Aggression and worker control of caste fate in a multiple-queen wasp, Parachartergus colobopterus THOMAS G. PLATT, DAVID C. QUELLER & JOAN E. STRASSMANN Department of Ecology and Evolutionary Biology, Rice University (Received 5 June 2002; initial acceptance 21 October 2002; final acceptance 9 January 2003; MS. number: A9376R) Although famously cooperative, social insect colonies harbour considerable potential for genetic conflict among colonymates. This conflict may be expressed behaviourally as aggression by workers. We investigated aggression in 34 colonies of the wasp Parachartergus colobopterus, by evaluating the characteristics of both instigators and victims of aggressive interactions. We estimated genetic relatedness and queen number using DNA microsatellites and found that workers and emerging females should be most in conflict over the caste of the latter when there are many queens on the nest. We found that aggressive interactions are more likely to involve older workers attacking either males or younger workers, and that victim and aggressor females have more ovarian development than randomly sampled colonymates. Moreover, mated females with low levels of ovarian development relative to active queens were also more likely to be aggressors and victims than were randomly sampled females. Aggression among females supports the hypothesis that older workers use aggression towards younger females as a means of policing the development of emerging females into queens. Workers also may use aggression to suppress the reproduction of some mated females. Our findings thus support the hypothesis that genetic conflicts of interest motivate worker aggression in swarm-founding wasp colonies. Ó 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Insect societies typically show high degrees of coopera- Epiponini (Strassmann et al. 1991, 1997, 2002; Goodnight tion, with a reproductive division of labour so great that et al. 1996; Herman et al. 2000). they are often viewed as superorganisms (Seeley 1989; Epiponine wasp societies have many complex features: Wilson & Sober 1989; Moritz & Southwick 1992; Ratnieks they have an advanced division of labour, task partition- & Reeve 1992). Kin selection theory has served as ing, alarm and trail pheromones, and large colony sizes a framework for providing insight into the evolution of (Jeanne 1980, 1991, in press; Zucchi et al. 1995). Yet, in this cooperation (Hamilton 1964; Bourke & Franks 1995; contrast with other highly eusocial insects, many epipo- Crozier & Pamilo 1996; Bourke 1997; Queller & Strass- nine wasps have weak caste differentiation (Bourke 1999; mann 1998). It has also provided a framework for O’Donnell 1998; Jeanne, in press). Parachartergus colobop- understanding potential conflicts within these societies, terus colonies typically have large numbers of workers and because colonymates are genetically distinct from one a varying number of singly mated queens, with little or no another and thus have different genetic interests con- morphological caste differences between workers and cerning reproduction (Hamilton 1964; Trivers & Hare queens (Strassmann et al. 1991, 1997, 1998; Goodnight 1976; Ratnieks 1988; Pamilo 1991; Ratnieks & Reeve 1992; et al. 1996). As in some other epiponine societies Queller & Strassmann 1998; Keller & Chapuisat 1999; (Metapolybia azecoides, Synoeca surinama: West-Eberhard Keller & Reeve 1999). Conflicts of interest between 1978, 1981), emerging P. colobopterus females are totipo- colonymates can manifest themselves in a variety of ways tent. They can become either workers or queens (Strass- including oophagy and direct aggression (e.g. Ratnieks & mann et al. 2002). This leads to potential conflict over Visscher 1989; Gobin et al. 1999). Our study focuses caste determination because individuals gain more from on whether genetic conflicts of interest motivate behav- becoming queens than do colonymates (Strassmann 1989; ioural aggression in the well-studied swarm-founding Bourke & Ratnieks 1999; Ratnieks 2001; Reuter & Keller Neotropical wasp, Parachartergus colobopterus, of the tribe 2001). In accord with worker collective interests, new Correspondence: J. E. Strassmann, Department of Ecology and P. colobopterus queens are produced only when queen Evolutionary Biology, Rice University, 6100 Main Street, MS 170, number is low (Strassmann et al. 1991, 2002; Queller Houston, TX 77005, U.S.A. (email: [email protected]). et al. 1993). This raises the question of how totipotent 1 0003e3472/03/$30.00/0 Ó 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. 2 ANIMAL BEHAVIOUR, 67, 1 females emerging on nests with many queens are kept interaction involved one wasp working its mandibles over from becoming queens themselves when it may be in another in a chewing, snapping or biting action, often their interest to do so. Females attempting to become with the aggressor on top of the victim. Aggressive a queen could be forced to become workers instead (West- interactions also often included the aggressor curving Eberhard 1978, 1981; Herman et al. 2000; Strassmann her gaster and exposing her sting to the victim. The victim et al. 2002), an option not possible when there are fixed sometimes responded by curling over on her side and caste differences, as in Melipona stingless bees, where remaining motionless, even after we pulled the actor off workers slaughter excess queens (Imperatriz-Fonseca & (Strassmann et al. 1997). Sometimes the aggressor dragged Zucchi 1995). the victim to another part of the nest. Each such Eusocial wasp males seldom work or forage; yet they do aggressive interaction typically lasted several seconds, depend on the colony for support. Consequently, the and may be similar to an exaggerated form of biting presence of males on a nest can impose substantial costs behaviour of Polybia wasps (O’Donnell & Jeanne 1995; to social insect colonies (O’Donnell 1999). Moreover, O’Donnell 2001a). Aggressive interactions had a clear workers are more related to female larvae than to adult beginning and most probably would have ended with the males, and thus should favour investing in the former victim running away or flying off the nest had we not over the latter (Hamilton 1972; Trivers & Hare 1976; Starks removed one party (see below). These aggressive acts were & Poe 1997). Workers may use aggression towards males quite stereotyped and did not vary greatly in intensity, to minimize the colony costs they impose and discourage making them a clear class for sampling. We distinguished investment in males. aggression from social grooming by noting that the latter This study examines aggression on a large sample of P. involves one wasp slowly and gently working her mouth- colobopterus colonies. We predicted that males and young parts and mandibles over another wasp’s body while females would be the targets of aggression because of their antennating her and never involves snapping or biting, genetic conflicts with workers. the exposure of the actor’s sting, or the pulling of the recipient to another part of the nest (Strassmann et al. 1997). Also, social grooming does not induce curling in the recipient. We distinguished aggression from solicita- METHODS tion for trophyllaxis by noting that the key feature of the Sampling latter always involves bites directed towards the mandibles of another wasp and seldom extends to generalized We observed 34 P. colobopterus colonies on the campus of aggression with bites directed at the rest of the body the Universidad Central de Venezuela at Maracay, Ven- (Strassmann et al. 1997). ezuela (10(16#N, 67(36#W, altitude 445 m) over 5 days We collected only one of the participants because we (6e10 August 1999) during the rainy season. To sample and could not accurately collect both participants in a single observe the entire nest, we removed the surrounding interaction. Although collecting only one participant envelope of each colony. Removal of the envelope does meant that we had very accurate samples of aggressors not disturb the nest comb because the envelope and the and victims, we could not associate interactants with comb are independently attached to the substrate. Thus, we a particular task (i.e. to determine whether subcategories could observe all areas of the nest for activity and sample of aggressors attacked subcategories of victims). This did wasps from any part of the nest. Following envelope not prove to be a problem because of the strong overall removal, we gave the wasps at least 10 min to resume patterns we found (see Results) and because we were most normal activity before starting observations. interested in comparing victims and aggressors with We were interested in quantifying two aspects of a random sample that, by definition, could not be paired aggressive behaviour: frequency of aggression, and who with particular acts. The random sample consisted of 12 participates in aggressive interactions. To quantify the individuals plucked at random from all areas of the nest aggression level of each colony, we counted all aggressive comb and the substrate surface behind the nest structure. interactions that occurred on the exposed combs for 30 We used this random sample to estimate average re- min (Table 1). We conducted all observations during clear latedness and to provide a baseline for ovarian develop- weather between 0900 and 1600 hours, when the wasps ment and mating status. We stored all individuals and were most active. Our time frame of 30 min to characterize comb parts in 100% ethanol, which is sufficient for aggressive activity of a colony is based on hundreds of accurate assessment of ovarian development and insem- hours of observing these wasps (Strassmann et al. 1991, ination status and for preserving DNA for microsatellite 1997, 1998, 2002; Queller et al. 1993; Herman et al. 2000) genotyping (Strassmann et al. 2002). and on a preliminary study from the previous year in For each colony, we counted the number of adults on the which we watched fewer colonies for periods of 3 h or nest and the number of combs (Table 1).
Recommended publications
  • Observations on Forced Colony Emigration in Parachartergus Fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom
    Hindawi Publishing Corporation Psyche Volume 2011, Article ID 157149, 8 pages doi:10.1155/2011/157149 Research Article Observations on Forced Colony Emigration in Parachartergus fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom Sidnei Mateus Departamento de Biologia, Faculdade de Filosofia CiˆenciaseLetrasdeRibeir˜ao Preto, Universidade de S˜ao Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeir˜ao Preto, SP, Brazil Correspondence should be addressed to Sidnei Mateus, sidneim@ffclrp.usp.br Received 8 September 2010; Revised 20 December 2010; Accepted 12 February 2011 Academic Editor: Robert Matthews Copyright © 2011 Sidnei Mateus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Five cases of colony emigration induced by removal of nest envelope and combs and a single one by manipulation are described. The disturbance was followed by defensive patterns, buzz running, and adult dispersion. An odor trail created by abdomen dragging, probably depositing venom or Dufour’s gland secretions, connected the original nest to the newly selected nesting place and guided the emigration. The substrate of the selected nesting place is intensely sprayed with venom prior to emigration, and this chemical cue marked the emigration end point. The colony moves to the new site in a diffuse cloud with no temporary clusters formed along the odor trail. At the original nest, scouts performed rapid gaster dragging and intense mouth contacts stimulating inactive individuals to depart. Males were unable to follow the swarm. Individual scouts switched between different behavioral tasks before and after colony emigration.
    [Show full text]
  • Novitattes PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, NY 10024 Number 3224, 39 Pp., 26 Figures April 6, 1998
    AMIERICANt MUSEUM Novitattes PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3224, 39 pp., 26 figures April 6, 1998 A Generic Key to the Nests of Hornets, Yellowjackets, and Paper Wasps Worldwide (Vespidae: Vespinae, Polistinae) JOHN W. WENZEL' ABSTRACT The 31 genera of Vespinae and Polistinae tary Hymenoptera with which they may be con- worldwide are identified in a key to nest struc- fused. Many characteristics are illustrated or de- ture. Fifty-nine couplets and more than 80 pho- scribed here for the first time, with notes on tographs and illustrations permit both special- both anomalous species and anomalous forms ists and amateurs to recognize these nests in the of nests of common species. Pertinent published field or museum collections. A brief overview figures and museum collections are cited to explains the distinction between nests of these assist the professional in finding reference ma- social wasps and those of other social or soli- terial. INTRODUCTION All over the world, both entomologists and female (Wenzel, 1987) or millions (Zucchi et the lay public recognize and fear colonies of al., 1995). The aggressive, boldly striped social wasps. More than 900 species range adults advertise their unforgettable stings, from the Arctic to Tasmania, from prairie to and many moths, flies, and other defenseless rain forest to desert, from pristine habitats to insects have developed elaborate morpholog- industrial cities. Their sophisticated, all-fe- ical and behavioral mimicry to benefit from male societies provided the inspiration for a general desire among most animals to several of the major discoveries in insect be- avoid wasps.
    [Show full text]
  • Vespidae, Polistinae, Epiponini)
    JHR 38: 135–139 (2014)Males of Neotropical social wasps (Vespidae, Polistinae, Epiponini)... 135 doi: 10.3897/JHR.38.7763 REVIEW ARTICLE www.pensoft.net/journals/jhr Males of Neotropical social wasps (Vespidae, Polistinae, Epiponini) recognize colonies with virgin females Laura Chavarría Pizarro1,2, Fernando Barbosa Noll3 1 Present address: Urbanización San Angel casa 2B Guayabos, 11801 Curridabat, San José, Costa Rica 2 Departamento de Biologia, FFCLRP-USP, Avenida Bandeirantes 3900, Bloco 2, 14040-901 Ribeirão Preto, São Paulo, Brazil 3 Departamento de Zoologia e Botânica, IBILCE— UNESP, Rua Cristovão Colombo, 2265 CEP 15055-240, São Jose do Rio Preto, São Paulo, Brazil Corresponding author: Laura Chavarría Pizarro ([email protected]) Academic editor: Jack Neff | Received 20 April 2014 | Accepted 13 May 2014 | Published 12 June 2014 Citation: Chavarría L, Noll FB (2014) Males of Neotropical social wasps (Vespidae, Polistinae, Epiponini) recognize colonies with virgin females. Journal of Hymenoptera Research 38: 135–139. doi: 10.3897/JHR.38.7763 Abstract Male behavior of Neotropical swarm-founding wasps has rarely been observed. The few published ob- servations about male activities only describe their behavior during the short period they spend inside nests. In consequence, virtually nothing is known about what they do outside the colonies, and even less is known about mating behavior. This paper provides the first report of Epiponini males arriving at a colony with virgin females. The behavior of males and workers after queen removal was observed in one colony of Chartergellus communis located at a farm in Pedregulho, São Paulo, Brazil. The day after queen elimination, males were observed outside the nest.
    [Show full text]
  • Emily Elizabeth Summerhays
    JAMES MICHAEL CARPENTER CURATOR AND PROFESSOR DIVISION OF INVERTEBRATE ZOOLOGY HIGHEST DEGREE EARNED Ph.D. AREA OF SPECIALIZATION Phylogenetic relationships, taxonomy, and behavior of wasps; cladistic theory; quantitative phylogenetic method; application of cladistic analysis to testing evolutionary process theories EDUCATIONAL EXPERIENCE Ph.D. in Entomology, Cornell University, 1977-1983 B.S. in Entomology, Michigan State University, 1974-1977 PREVIOUS EXPERIENCE IN DOCTORAL EDUCATION COURSES TAUGHT Phylogenetic Analysis: Theory and Practice, International Workshop, Průhonice, Czech Republic, September 4-7, 2006 Análisis Filogenética: Teoría y Práctica, International Workshop, Tucumán, March 11- 15, 2002 Cladistics, Graduate level, Harvard University, 1985-1991 Introduction to Insect Evolution and Diversity, Undergraduate level, Harvard University, 1985-1991 Quantitative Systematics, Graduate level, Harvard University, 1985-1991 Principles of Biodiversity, Undergraduate level, Harvard University, 1985-1991 GRADUATE ADVISEES Roberto Keller, Department of Entomology, Cornell University/American Museum of Natural History Christine Johnson, Hunter College, City University of New York Marc Allard, Department of Organismal and Evolutionary Biology, Harvard University Gabriela Chavarría, Department of Organismal and Evolutionary Biology, Harvard University GRADUATE COMMITTEES Roberto Keller, Department of Entomology, Cornell University/American Museum of Natural History Ted Schultz, Department of Entomology, Cornell University Karen Sime, Department
    [Show full text]
  • Hymenoptera-Homoptera Associations
    HOMOPTERAN ATTENDANCE BY WASPS AND ANTS: THE STOCHASTIC NATURE OF INTERACTIONS BY DEBORAH K. LETOURNEAU AND JAE C. CHOE Associations of Hymenoptera with Homoptera have intrigued ecologists and evolutionary biologists as model systems of mutual- ism. The extensive body of literature, however, tends to be skewed to the interactions between ants and homopteran trophobionts in the Aphidae or Coccoidea (e.g., Kloft et al. 1965, Nixon 1951, Way 1963, Wilson 1971). In the following account we document a web of multispecies interactions within and between trophic levels, in- volving a species of wasp, several species of ants, and two species of Homoptera. This account is unique in the literature on Hymenoptera-Homoptera associations because it (1) addresses observable interference between hymenopteran attendants, (2) reports behavioral preference by homopterans for certain hymenop- teran attendants, and (3) describes an interaction between a polis- tine wasp and an aetalionid planthopper. In addition, this study has general implications about the quality of diffuse and multiple asso- ciations between Homoptera and their honeydew foragers. MATERIALS AND METHODS Ten aggregations of feeding Aconophora ferruginea Fowler (Homoptera: Membracidae) and four of Aetalion reticulatum (L.) (Homoptera: Aetalionidae) were located in the tropical wet forest along the Quebrada Camaronal at La Sirena, Parque Nacional de Corcovado, Osa Peninsula, Costa Rica. Both species of Homoptera are common in Costa Rica, ranging from Mexico and from Costa Rica to Brazil, respectively, and possessing wide ranges of host plants (Ballou 1935, 1936, Wood 1984). They are generally sessile, mating and depositing egg masses at the feeding site (Wood 1984). Board of Environmental Studies, 407 Kerr Hall, University of California, Santa Cruz, California 95064.
    [Show full text]
  • Social Behaviour and Life History of Membracine Treehoppers
    Journal of Natural History, 2006; 40(32–34): 1887–1907 Social behaviour and life history of membracine treehoppers CHUNG-PING LIN Department of Entomology, Cornell University, Ithaca, NY, USA and Department of Life Science, Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan (Accepted 28 September 2006) Abstract Social behaviour in the form of parental care is widespread among insects but the evolutionary histories of these traits are poorly known due to the lack of detailed life history data and reliable phylogenies. Treehoppers (Hemiptera: Membracidae) provide some of the best studied examples of parental care in insects in which maternal care involving egg guarding occurs frequently. The Membracinae exhibit the entire range of social behaviour found in the treehoppers, ranging from asocial solitary individuals, nymphal or adult aggregations, to highly developed maternal care with parent–offspring communication. Within the subfamily, subsocial behaviour occurs in at least four of the five tribes. The Aconophorini and Hoplophorionini are uniformly subsocial, but the Membracini is a mixture of subsocial and gregarious species. The Hypsoprorini contains both solitary and gregarious species. Accessory secretions are used by many treehoppers to cover egg masses inserted into plant tissue while oviposition on plant surfaces is restricted to a few species. Presumed aposematic colouration of nymphs and teneral adults appears to be restricted to gregarious and subsocial taxa. Ant mutualism is widespread among membracine treehoppers and may play an important role in the evolutionary development of subsocial behaviour. The life history information provides a basis for comparative analyses of maternal care evolution and its correlation with ant mutualism in membracine treehoppers.
    [Show full text]
  • Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae)
    insects Article Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae) Mario Bissessarsingh 1,2 and Christopher K. Starr 1,* 1 Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago; [email protected] 2 San Fernando East Secondary School, Pleasantville, Trinidad and Tobago * Correspondence: [email protected] Simple Summary: Both solitary and social wasps have a fully functional venom apparatus and can deliver painful stings, which they do in self-defense. However, solitary wasps sting in subduing prey, while social wasps do so in defense of the colony. The structure of the stinger is remarkably uniform across the large family that comprises both solitary and social species. The most notable source of variation is in the number and strength of barbs at the tips of the slender sting lancets that penetrate the wound in stinging. These are more numerous and robust in New World social species with very large colonies, so that in stinging human skin they often cannot be withdrawn, leading to sting autotomy, which is fatal to the wasp. This phenomenon is well-known from honey bees. Abstract: The physical features of the stinger are compared in 51 species of vespid wasps: 4 eumenines and zethines, 2 stenogastrines, 16 independent-founding polistines, 13 swarm-founding New World polistines, and 16 vespines. The overall structure of the stinger is remarkably uniform within the family. Although the wasps show a broad range in body size and social habits, the central part of Citation: Bissessarsingh, M.; Starr, the venom-delivery apparatus—the sting shaft—varies only to a modest extent in length relative to C.K.
    [Show full text]
  • Zombie Fungi: Occurrence of Arthropod Endoparasitic Fungi at Different Altitudes in the Monteverde Region Hongos Zombies: Ocurre
    Zombie Fungi: Occurrence of Arthropod Endoparasitic Fungi at Different Altitudes in the Monteverde Region Madeline Sandler Department of Environmental Studies and Sustainability University of California, Santa Cruz EAP Tropical Biology and Conservation Program, Fall 2016 16 December 2016 ABSTRACT Arthropod endoparasitic fungi consist of multiple genera that exploit the bodies of insects and arachnids as host organisms to spread their fungal spores and to obtain nutrients from the body of the host. Arthropod parasitic fungi can be classified into three families: Clavicipitaceae,Cordyipitaceae and Ophiocordycipitaceae . I conducted an observational study in the Monteverde region of Costa Rica where I collected and analyzed arthropods that have been parasitized with fungi by searching in different altitudes and life zones. My goal was to determine if there was an altitudinal gradient associated with the presence and abundance of arthropod parasitic fungi and which Orders were most affected. The results reveal that there is the highest abundance of parasitized arthropods at the lowest altitude and the least abundance at the highest sampled altitude. However, there is no trend in abundance in increasing altitudes. I found the highest abundance of arthropod hosts present in the Order Hymenoptera in various wasp species. There is variety in fungal morphologies between nearly every individual I found that range from mold-looking to mushroom fruiting bodies. This paper provides detailed descriptions of every sample of parasitized arthropod, the specific microhabitat it was discovered in, and the method of attachment it has taken to the substrate. These detailed descriptions reveal the high variation in which fungal parasites can attack arthropod hosts in a range of ecosystems.
    [Show full text]
  • Introduction
    DOI 10.15517/RBT.V67I2SUPL.37229 Artículo Keys to the Costa Rican species of paper wasps (Hymenoptera: Vespidae: Polistinae) Claves taxonómicas para las especies de avispas eusociales de Costa Rica (Hymenoptera: Vespidae: Polistinae) J. Pablo Valverde1 Paul Hanson2* James Carpenter3 1 Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany; [email protected] 2 Escuela de Biología, Universidad de Costa Rica, San Pedro 11501-2060, San José, Costa Rica; [email protected] 3 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, U.S.A; [email protected] * Correspondence Received 09-XI-2017 Corrected 13-XII-2018 Accepted 17-I-2019 Abstract Paper wasps (subfamily Polistinae) are one of the four main groups of eusocial insects in the Neotropics. They are medically important for the frequent stings inflicted on humans, but at the same time are valuable predators of pest insects. Nonetheless, there are no updated keys for the identification of the Central American species. Here we provide keys to the 18 genera and 106 species known to occur in Costa Rica, illustrated with one hundred original line drawings. Key words: Polistinae, social wasps, identification, taxonomic keys. Resumen Las avispas de la subfamilia Polistinae son uno de los cuatro grupos principales de insectos eusociales en el neotrópico, y son de importancia económica tanto por sus picaduras como por su papel en control biológico. Sin embargo, no existen claves actualizadas para la identificación de las especies de América Central. Aquí se proveen claves ilustradas para los 18 géneros y las 106 especies conocidas de Costa Rica y se incluyen cien dibujos originales.
    [Show full text]
  • Biology of the Yellowjacket Parasitoid Bareogonalos Canadensis (Harrington) (Hymenoptera: Trigonalyidae)
    AN ABSTRACT OF THE THESIS OF David Carmean for the degree ofMaster of Science in Entomology presented onOctober 11, 1988. Title: Biology of the Yellowjacket Parasitoid Bareogonalos canadensis (Harrington) (Hymenoptera: Trigonalyidae). A A Abstractapproved:__Redactedfor Privacy JeffrAy C. Miller The known biology of Bareogonalos canadensis (Harrington) is based on literature records of six collections from three areas in the Pacific Northwest. The objective of this study was to obtain fundamental knowledge on the biology of B. canadensis, especially its distribution, abundance, and host species,as well as its potential for biological control of yellowjackets. This was accomplished by analyzing yellowjacket colonies from the Willamette Valley and the adjacent Coast Range forest. In 1986 and 1987 B. canadensis was found in 50 of 89 yellowjacket colonies collected from the Coast Range foothills of Oregon bordering the Willamette Valley. No B. canadensis were found in 103 colonies collected in the Willamette Valley. The parasitoid was reared from colonies of Vespula vulgaris (L.), V. Densylvanica (Saussure), V. atropilosa (Sladen) (new host record), V. consobrina (Saussure) (new host record), and Dolichovespula arenaria (F.), but was absent in nests of D. maculata (L.). Significant control of nestsor worker populations was not shown. Females were found to oviposit primarily in Douglas-fir needles [Pseudotsuga menziesii (Mirb.) Franco] but also in other foliage including western hemlock [Tsuga heterophylla (Raf.) Sarg.], huckleberry (Vaccinium parvifolium Smith), and snowberry [Symphoricarpos albus (L.) Blake]. They did not oviposit in leaves of grass (Poa sp.), cultivated bean (Phaseolus vulgaris L.), or pitch pine (Pinus resinosa Ait). All collections of this parasitoid came from areas with Douglas-fir.
    [Show full text]
  • 3. Predation by Ants on Arthropods and Other Animals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Predation in the Hymenoptera: An Evolutionary Perspective, 2011: 39-78 ISBN: 978-81-7895-530-8 3. Predation by ants on arthropods and other animals 1 2,3 Xim Cerdá and Alain Dejean 1Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio, 41092 Sevilla, Spain 2CNRS, Écologie des Forêts de Guyane (UMR-CNRS 8172), Campus Agronomique 97379 Kourou, cedex, France; 3Université de Toulouse, 118 route de Narbonne 31062 Toulouse Cedex, France Abstract. Ants are the most widely distributed and most numerically abundant group of social insects. First, they were ground- or litter-dwelling predators or scavengers, and certain taxa evolved to adopt an arboreal way of life. Most ant species are generalist feeders, and only some ground-nesting and ground- foraging species are strictly predators. Ants are central-place foragers (with the exception of army ants during the nomadic phase) that may use different foraging strategies. Solitary hunting is the most common method employed by predatory ants. Cooperative hunting, considered more evolved than solitary hunting, is used by army ants and other ants such as Myrmicaria opaciventris, Paratrechina longicornis or the dominant arboreal Oecophylla. Army ants are predators with different levels of specialization, some of which focus on a particular genus or species, as is the case for Nomamyrmex esenbeckii which organizes subterranean raids on the very large colonies of the leaf-cutting species Atta colombica or A. cephalotes. Arboreal ants have evolved predatory behaviors adapted to the tree foliage, where prey are unpredictable and able to escape by flying away, jumping or Correspondence/Reprint request: Dr.
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    SPHECOS A FORUM FOR ACULEATE WASP RESEARCHERS ARNOLD S. 1\i'ENKE. Editor Terry Nuhn, Editorial Assistant Systematic Entomology Laboratory Agricultural Research Service, USDA c/o U. S. National Museum of Natural History Washington DC 20560 (202) ~82 1803 NUMBER 15, JULY, 1987 Editorial Stuff Sphecos 15 wraps up our double issue. Included here are some lengthy scientific notes. collecting reports and recent literature. I'd like once more to thank Rebecca Friedman Stanger and Ludmila Kassianoff for making some translations (French and Russian respectively). The figure that I used on the masthead is from an interesting paper by H. Biirgis (see recent literature). The wasp is the embolemid Ampulicomorpha confusa Ashmead. If any of you would like to submit drawings for use on the masthead of future issues of Sphecos send them to me. Keep in mind that they should be simple, clear line drawings, and it would be very helpful if they were in the appropriate size to fit although I can reduce large figures. Scientific Notes ZETA ARGILLACEUM ON THE MOVE -- by Lionel Stange (Florida State Dept. of Agriculture. Gainesville. Fla. 32601) . Menke & Stange (1986, Fla. Ent. 69:697) give the first records of Zeta argillaceum (Linnaeus) for Florida (Dade Co.). The earliest record was from Miami, July, 1975. A recent collecting trip to the Florida Keys made by Charles Porter and I tumed up three new records. One male Zeta was taken at Tavemier, Key Largo, on January 8, 1987. Another male was taken in the Lower Keys at the Botanical Garden on Stock Island. Four males and three females were taken on Key West behind the airport.
    [Show full text]