Formamide Synthesis Through Borinic Acid Catalysed Transamidation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Interstellar Formamide (NH2CHO), a Key Prebiotic Precursor
Interstellar formamide (NH2CHO), a key prebiotic precursor Ana López-Sepulcre,∗,y,z Nadia Balucani,{ Cecilia Ceccarelli,y Claudio Codella,x,y François Dulieu,k and Patrice Theulé? yUniv. Grenoble Alpes, IPAG, F-38000 Grenoble, France zInstitut de Radioastronomie Millimétrique (IRAM), 300 rue de la piscine, F-38406 Saint-Martin d’Hères, France {Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, I-06123 Perugia, Italy xINAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy kUniversité de Cergy-Pontoise, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000, Cergy-Pontoise, France ?Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397 Marseille, France E-mail: [email protected] Abstract Formamide (NH2CHO) has been identified as a potential precursor of a wide variety arXiv:1909.11770v1 [astro-ph.SR] 25 Sep 2019 of organic compounds essential to life, and many biochemical studies propose it likely played a crucial role in the context of the origin of life on our planet. The detection of formamide in comets, which are believed to have –at least partially– inherited their current chemical composition during the birth of the Solar System, raises the question whether a non-negligible amount of formamide may have been exogenously delivered onto a very young Earth about four billion years ago. A crucial part of the effort to 1 answer this question involves searching for formamide in regions where stars and planets are forming today in our Galaxy, as this can shed light on its formation, survival, and chemical re-processing along the different evolutionary phases leading to a star and planetary system like our own. -
1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G
j1 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G. Hall 1.1 Introduction and Historical Background Structurally, boronic acids are trivalent boron-containing organic compounds that possess one carbon-based substituent (i.e., a CÀB bond) and two hydroxyl groups to fill the remaining valences on the boron atom (Figure 1.1). With only six valence electrons and a consequent deficiency of two electrons, the sp2-hybridized boron atom possesses a vacant p-orbital. This low-energy orbital is orthogonal to the three substituents, which are oriented in a trigonal planar geometry. Unlike carbox- ylic acids, their carbon analogues, boronic acids, are not found in nature. These abiotic compounds are derived synthetically from primary sources of boron such as boric acid, which is made by the acidification of borax with carbon dioxide. Borate esters, one of the key precursors of boronic acid derivatives, are made by simple dehydration of boric acid with alcohols. The first preparation and isolation of a boronic acid was reported by Frankland in 1860 [1]. By treating diethylzinc with triethylborate, the highly air-sensitive triethylborane was obtained, and its slow oxidation in ambient air eventually provided ethylboronic acid. Boronic acids are the products of a twofold oxidation of boranes. Their stability to atmospheric oxidation is considerably superior to that of borinic acids, which result from the first oxidation of boranes. The product of a third oxidation of boranes, boric acid, is a very stable and relatively benign compound to humans (Section 1.2.2.3). Their unique properties and reactivity as mild organic Lewis acids, coupled with their stability and ease of handling, are what make boronic acids a particularly attractive class of synthetic intermediates. -
C7sc03595k1.Pdf
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018 Mechanistic insights into boron-catalysed direct amidation reactions Sergey Arkhipenko,a Marco T. Sabatini,b Andrei Batsanov,a Valerija Karaluka,b Tom D. Sheppard,b Henry S. Rzepac and Andrew Whitinga* aCentre for Sustainable Chemical Processes, Department of Chemistry, Durham University, Science Site, South Road, Durham, DH1 3LE, UK. Email: [email protected] bDepartment of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK. cDepartment of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK. Contents Page 1. General experimental 2 2. Synthetic procedures and compound characterisation§ 2.A. Reaction of monomeric acyloxyboron species with amines 3 2.B. Synthesis of borinic acids and studies of their interactions 6 with amines and carboxylic acids 2.C. Interactions of boronic acids with amines and carboxylic acids 10 2.D. Interaction of B2O3 and B(OH)3 with amines and carboxylic acids 21 2.E. Kinetic studies 22 3. Tabulated summary of spectroscopic data 29 4. X-ray crystallographic information# 30 5. References 36 §Note that all NMR data and .cif crystallographic data is available for download from site: DOI: 10.14469/hpc/1620 and sub-collections therein. GENERAL EXPERIMENTAL All starting materials and solvents were obtained commercially from standard chemical suppliers and were used as received unless otherwise stated. Dry solvents were prepared using the Innovative Technology Inc. solvent purification system, or dried by known methods, including standing over 4 Å molecular sieves for 24 h in the case of toluene and CDCl3. -
Methionine Aminopeptidase Emerging Role in Angiogenesis
Chapter 2 Methionine Aminopeptidase Emerging role in angiogenesis Joseph A. Vetro1, Benjamin Dummitt2, and Yie-Hwa Chang2 1Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA. 2Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 S. Grand Blvd., St. Louis, MO 63104, USA. Abstract: Angiogenesis, the formation of new blood vessels from existing vasculature, is a key factor in a number of vascular-related pathologies such as the metastasis and growth of solid tumors. Thus, the inhibition of angiogenesis has great potential as a therapeutic modality in the treatment of cancer and other vascular-related diseases. Recent evidence suggests that the inhibition of mammalian methionine aminopeptidase type 2 (MetAP2) catalytic activity in vascular endothelial cells plays an essential role in the pharmacological activity of the most potent small molecule angiogenesis inhibitors discovered to date, the fumagillin class. Methionine aminopeptidase (MetAP, EC 3.4.11.18) catalyzes the non-processive, co-translational hydrolysis of initiator N-terminal methionine when the second residue of the nascent polypeptide is small and uncharged. Initiator Met removal is a ubiquitous and essential modification. Indirect evidence suggests that removal of initiator Met by MetAP is important for the normal function of many proteins involved in DNA repair, signal transduction, cell transformation, secretory vesicle trafficking, and viral capsid assembly and infection. Currently, much effort is focused on understanding the essential nature of methionine aminopeptidase activity and elucidating the role of methionine aminopeptidase type 2 catalytic activity in angiogenesis. In this chapter, we give an overview of the MetAP proteins, outline the importance of initiator Met hydrolysis, and discuss the possible mechanism(s) through which MetAP2 inhibition by the fumagillin class of angiogenesis inhibitors leads to cytostatic growth arrest in vascular endothelial cells. -
15 Aug 2017 Sims Ue2,2021 23, June Srnm Astrophysics & Astronomy .Codella C
Astronomy & Astrophysics manuscript no. codella˙astroph˙solisIII c ESO 2021 June 23, 2021 Letter to the Editor Seeds of Life in Space (SOLIS) III. Formamide in protostellar shocks: evidence for gas-phase formation C. Codella1, C. Ceccarelli2,1, P. Caselli3, N. Balucani4,1, V. Barone5, F. Fontani1, B. Lefloch2, L. Podio1, S. Viti6, S. Feng3, R. Bachiller7, E. Bianchi1,8, F. Dulieu9, I. Jim´enez-Serra10, J. Holdship6, R. Neri11, J. Pineda3, A. Pon12, I. Sims13, S. Spezzano3, A.I. Vasyunin3,14, F. Alves3, L. Bizzocchi3, S. Bottinelli15,16, E. Caux15,16, A. Chac´on-Tanarro3, R. Choudhury3, A. Coutens6, C. Favre1,2, P. Hily-Blant2, C. Kahane2, A. Jaber Al-Edhari2,17, J. Laas3, A. L´opez-Sepulcre11, J. Ospina2, Y. Oya18, A. Punanova3, C. Puzzarini19, D. Quenard10, A. Rimola20, N. Sakai21, D. Skouteris5, V. Taquet22,1, L. Testi23,1, P. Theul´e24, P. Ugliengo25, C. Vastel15,16, F. Vazart5, L. Wiesenfeld2, and S. Yamamoto18 1 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 2 Univ. Grenoble Alpes, CNRS, Institut de Plan´etologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France 3 Max-Planck-Institut f¨ur extraterrestrische Physik (MPE), Giessenbachstrasse 1, 85748 Garching, Germany 4 Dipartimento di Chimica, Biologia e Biotecnologie, Via Elce di Sotto 8, 06123 Perugia, Italy 5 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy 6 Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK 7 IGN, Observatorio Astron´omico Nacional, Calle Alfonso XII, 28004 Madrid, Spain 8 Dipartimento di Fisica e Astronomia, Universit`adegli Studi di Firenze, Italy 9 LERMA, Universit´ede Cergy-Pontoise, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universit´e, UPMC, Univ. -
Post Translational Modification Significance
Post Translational Modification Significance numismatically.Depositional Rustie Vaughan never theologizes desulphurating tarnal. so denominationally or cross-index any whaups dumpishly. Brandon spiralling Senescence is related to the widespread purge of SUMO protein. The conjoint triad feature is sequence information for proteins. Although here we used sublethal antibiotics to isolate these phenotypic variants, colony size variation has been observed in mycobacteria in a variety of conditions. Moreover, three other modifications have been demonstrated to be required after fusion for modulation of RT activity. Ann Acad Med Singapore. Eukaryotic nuclei has no longer residency time points out the building allosteric effectors to toxic can occur on prevention and control by comparing prepubertal to cell motility. Epigenetic Determinants of Cancer. Protein modifications in parallel workstations and significant roles of significance of the scope of silos used for the polypeptide chain decides about posttranslational modifications mediate signaling? Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow. Reversible PTMs are particularly relevant signaling events because to offer the thrill the possibility to dynamically modulate protein activity in text response to environmental cues or internal stimuli. To borrow significant progress has been death in identifying PTMs on cardiac. The Garcia Lab has developed arguably the best precision mass spectrometry based platform for detecting and quantifying the combinatorial histone PTM code. Several PTMs, most noticeably phosphorylation, are known to directly affect metabolic enzyme activity and this aspect will be the main focus of this review. These software programs facilitate peak detection and matching, data alignment, normalization and statistical analysis. Drugs targeting an being of RNA biology we recruit to as fair-transcriptional control. -
Formaldehyde Treatment of Proteins Enhances Proteolytic Degradation by the Endo-Lysosomal Protease Cathepsin S
www.nature.com/scientificreports OPEN Formaldehyde treatment of proteins enhances proteolytic degradation by the endo‑lysosomal protease cathepsin S Thomas J. M. Michiels1,2, Hugo D. Meiring2, Wim Jiskoot1, Gideon F. A. Kersten1,2 & Bernard Metz2* Enzymatic degradation of protein antigens by endo‑lysosomal proteases in antigen‑presenting cells is crucial for achieving cellular immunity. Structural changes caused by vaccine production process steps, such as formaldehyde inactivation, could afect the sensitivity of the antigen to lysosomal proteases. The aim of this study was to assess the efect of the formaldehyde detoxifcation process on the enzymatic proteolysis of antigens by studying model proteins. Bovine serum albumin, β-lactoglobulin A and cytochrome c were treated with various concentrations of isotopically labelled formaldehyde and glycine, and subjected to proteolytic digestion by cathepsin S, an important endo-lysosomal endoprotease. Degradation products were analysed by mass spectrometry and size exclusion chromatography. The most abundant modifcation sites were identifed by their characteristic MS doublets. Unexpectedly, all studied proteins showed faster proteolytic degradation upon treatment with higher formaldehyde concentrations. This efect was observed both in the absence and presence of glycine, an often-used excipient during inactivation to prevent intermolecular crosslinking. Overall, subjecting proteins to formaldehyde or formaldehyde/glycine treatment results in changes in proteolysis rates, leading to an enhanced degradation speed. This accelerated degradation could have consequences for the immunogenicity and the efcacy of vaccine products containing formaldehyde- inactivated antigens. Enzymatic degradation of antigens is a crucial step in the process of acquiring cellular immunity, e.g., through the induction of antigen specifc T-helper cells or cytotoxic T-cells. -
Formylation of Electron-Rich Aromatic Rings Mediated by Dichloromethyl Methyl Ether and Ticl4: Scope and Limitations
Molecules 2015, 20, 5409-5422; doi:10.3390/molecules20045409 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Formylation of Electron-Rich Aromatic Rings Mediated by Dichloromethyl Methyl Ether and TiCl4: Scope and Limitations Iván Ramos-Tomillero 1,2, Marta Paradís-Bas 1,2, Ibério de Pinho Ribeiro Moreira 3,4, Josep María Bofill 2,4, Ernesto Nicolás 2,5,* and Fernando Albericio 1,2,6,7,8,* 1 Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain; E-Mails: [email protected] (I.R.-T.); [email protected] (M.P.-B.) 2 Deparment of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain; E-Mail: [email protected] 3 Department of Physical Chemistry, University of Barcelona, Barcelona 08028, Spain; E-Mail: [email protected] 4 Institut de Química Teòrica i Computacional (IQTCUB), University of Barcelona, Barcelona 08028, Spain 5 Institut de Biomedicina (IBUB), University of Barcelona, Barcelona 08028, Spain 6 CIBER-BBN, Barcelona 08028, Spain 7 School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa 8 School of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui 100119, Ecuador * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.N.); [email protected] or [email protected] (F.A.); Tel.: +34-93-403-7088 (F.A.). Academic Editor: Jean Jacques Vanden Eynde Received: 27 January 2015 / Accepted: 12 March 2015 / Published: 26 March 2015 Abstract: Here the aromatic formylation mediated by TiCl4 and dichloromethyl methyl ether previously described by our group has been explored for a wide range of aromatic rings, including phenols, methoxy- and methylbenzenes, as an excellent way to produce aromatic aldehydes. -
LIQUID DYNE PENS (#N001-002, #N001-015) Date Prepared: 5/1/03
*** MATERIAL SAFETY DATA SHEET *** DYNE SOLUTION-100CC (#N001-011), LIQUID DYNE PENS (#N001-002, #N001-015) Date Prepared: 5/1/03 SECTION A DISTRIBUTOR: UV PROCESS SUPPLY, INC 1229 W. CORTLAND ST. CHICAGO, IL 60614-4805 TELEPHONE: (773)248-0099 EMERGENCY #: (800)424-9300 SECTION B GENERAL PRODUCT INFORMATION PRODUCT NAME: CON-TROL-CURE DYNE TEST SOLUTIONS CON-TROL-CURE LIQUID DYNE PEN SET FORM: Liquid COLOR: Medium blue ODOR: Mild, non-residual; ethereal/ammoniacal SECTION C COMPOSITION/INGREDIENTS Constituent CAS No. Molecular Formula 2-ethoxyethanol, 100% pure (C)* 110-80-5 C2H5OC2H4OH Formamide, minimum 99.5% pure (F)** 75-12-7 HCONH2 Water (H) 7732-18-5 H2O Victoria Blue Dye, 100% pure 2185-86-6 no data *2-ethoxyethanol is also known as ethylene glycol monoethyl ether, cellosolve solvent, ehlyl cellosolve, and glycol ether EE. **Formamide is also known as methanamide. Mix Percentages by Dyne Level Level C (vol) F (vol) Level C (vol) F (vol) Level F (vol) H (vol) 30 100.0% 0.0% 44 22.0% 78.0% 57 100.0% 0.0% 31 97.5% 2.5% 45 19.7% 80.3% 58 81.2% 18.8% 32 89.5% 10.5% 46 17.2% 82.8% 59 73.1% 26.9% 33 81.0% 19.0% 47 15.0% 85.0% 60 65.0% 35.0% 34 73.5% 26.5% 48 13.0% 87.0% 61 56.0% 44.0% 35 65.0% 35.0% 49 11.1% 88.9% 62 47.0% 53.0% 36 57.5% 42.5% 50 9.3% 90.7% 63 38.8% 61.2% 37 51.5% 48.5% 51 7.8% 92.2% 64 30.6% 69.4% 38 46.0% 54.0% 52 6.3% 93.7% 65 24.4% 75.6% 39 41.0% 59.0% 53 4.9% 95.1% 66 18.2% 81.8% 40 36.5% 63.5% 54 3.5% 96.5% 67 13.4% 86.6% 41 32.5% 67.5% 55 2.2% 97.8% 68 8.6% 91.4% 42 28.5% 71.5% 56 1.0% 99.0% 69 6.1% 93.9% 43 25.3% 74.7% 70 3.6% 96.4% Concentration of Victoria Blue dye is 0.3 grams per liter. -
Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles
NPTEL – Chemistry – Principles of Organic Synthesis Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles The reaction occurs in two stages: the electrophile adds to one carbon atom of the aromatic ring, yielding a carbocation in which the positive charge is delocalized, and a proton is then eliminated from the adduct. H E H E H E E -H E 5.2 Formation of Carbon-Carbon Bonds 5.2.1 Friedel-Crafts Acylation Acylation of aromatic rings is generally peroformed using acid chloride or acid anhydride as an acylating agent in the presence of Lewis acid. O Z RCOCl, AlCl Z 3 R H2O Mechanism AlCl3 RCOCl RC=O + AlCl4 H H RC=O COR Z Z COR Z Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 26 NPTEL – Chemistry – Principles of Organic Synthesis In some circumstances, carboxylic acid is used as an acylating agent in the presence of a proton acid. HO OH O 2 PhOH, H2SO4 O O -H2O O O Phenolphthalein Indicator Intramolecular reactions are of particular value to construct cyclic systems. These reactions are usually carried out using dibasic acid anhydrides. For example, the synthesis -tetralone has been accomplished from benzene and succinic anhydride using AlCl3 in 80% yield. O O OH OH AlCl3 reduction + O O O O SOCl2 Cl AlCl3 O O Joint initiative of IITs and IISc – Funded by MHRD Page 2 of 26 NPTEL – Chemistry – Principles of Organic Synthesis Examples: 5 mol% Tb(OTf)3 CO H 2 PhCl O D.-M. Cui, C. Zhang, M. Kawamura, S. -
TR-541: Formamide (CASRN 75-12-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies)
NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF FORMAMIDE (CAS NO. 75-12-7) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 July 2008 NTP TR 541 NIH Publication No. 08-5884 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure. -
Covalent Attachment of Limiting Amino Acids
COVALENT ATTACHMENT OF LIMITING AMINO ACIDS TO WHEAT GLUTEN FOR NUTRITIONAL IMPROVEMENT by EUNICE CHI YU/LI-CHAN B. Sc. (Agr), The University of British Columbia, 1975 M. Sc., The University of Alberta, 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Food Science) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1980 © Eunice Chi Yu Li-Chan, 1980 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my wr i tten pe rm i ss ion. Department of The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ii ABSTRACT The benefits of fortification of poor quality food proteins such as wheat gluten with limiting amino acids depend on the biological availability of the added amino acids and their stability with respect to processing and storage. Although simple addition of amino acids in free form is convenient, the potential improvement in nutritional quality by this method of fortification may not materialize due to possible losses during processing steps such as washing, susceptibility to degradative reactions, and different rates of absorption and utilization compared to protein-bound amino acids.