Integration of Genomic and Transcriptomic Markers Improves The
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The HECT Domain Ubiquitin Ligase HUWE1 Targets Unassembled Soluble Proteins for Degradation
OPEN Citation: Cell Discovery (2016) 2, 16040; doi:10.1038/celldisc.2016.40 ARTICLE www.nature.com/celldisc The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation Yue Xu1, D Eric Anderson2, Yihong Ye1 1Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; 2Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA In eukaryotes, many proteins function in multi-subunit complexes that require proper assembly. To maintain complex stoichiometry, cells use the endoplasmic reticulum-associated degradation system to degrade unassembled membrane subunits, but how unassembled soluble proteins are eliminated is undefined. Here we show that degradation of unassembled soluble proteins (referred to as unassembled soluble protein degradation, USPD) requires the ubiquitin selective chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and the proteasome. At the ubiquitin ligase level, the previously identified protein quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1) and the related enzymes only process a subset of unassembled soluble proteins. We identify the homologous to the E6-AP carboxyl terminus (homologous to the E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase for substrates bearing unshielded, hydrophobic segments. We used a stable isotope labeling with amino acids-based proteomic approach to identify endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form multi-protein com- plexes that function in the nucleus although HUWE1 itself is cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated ubiquitination and degradation, suggesting that USPD occurs primarily in the cytoplasm. -
The Results of an X-Chromosome Exome Sequencing Study
Open Access Research BMJ Open: first published as 10.1136/bmjopen-2015-009537 on 29 April 2016. Downloaded from HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study Michael J Friez,1 Susan Sklower Brooks,2 Roger E Stevenson,1 Michael Field,3 Monica J Basehore,1 Lesley C Adès,4 Courtney Sebold,5 Stephen McGee,1 Samantha Saxon,1 Cindy Skinner,1 Maria E Craig,4 Lucy Murray,3 Richard J Simensen,1 Ying Yzu Yap,6 Marie A Shaw,6 Alison Gardner,6 Mark Corbett,6 Raman Kumar,6 Matthias Bosshard,7 Barbara van Loon,7 Patrick S Tarpey,8 Fatima Abidi,1 Jozef Gecz,6 Charles E Schwartz1 To cite: Friez MJ, Brooks SS, ABSTRACT et al Strengths and limitations of this study Stevenson RE, . HUWE1 Background: X linked intellectual disability (XLID) mutations in Juberg-Marsidi syndromes account for a substantial number of males ▪ and Brooks syndromes: the Using the power of next generation sequencing, with ID. Much progress has been made in identifying results of an X-chromosome we have linked Juberg-Marsidi syndrome ( JMS) exome sequencing study. the genetic cause in many of the syndromes described and Brooks syndrome as allelic conditions. – BMJ Open 2016;6:e009537. 20 40 years ago. Next generation sequencing (NGS) ▪ This study provides better organisation to the doi:10.1136/bmjopen-2015- has contributed to the rapid discovery of XLID genes field of X linked disorders by providing evidence 009537 and identifying novel mutations in known XLID genes that JMS is not caused by mutation in the ATRX for many of these syndromes. -
The Inactive X Chromosome Is Epigenetically Unstable and Transcriptionally Labile in Breast Cancer
Supplemental Information The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer Ronan Chaligné1,2,3,8, Tatiana Popova1,4, Marco-Antonio Mendoza-Parra5, Mohamed-Ashick M. Saleem5 , David Gentien1,6, Kristen Ban1,2,3,8, Tristan Piolot1,7, Olivier Leroy1,7, Odette Mariani6, Hinrich Gronemeyer*5, Anne Vincent-Salomon*1,4,6,8, Marc-Henri Stern*1,4,6 and Edith Heard*1,2,3,8 Extended Experimental Procedures Cell Culture Human Mammary Epithelial Cells (HMEC, Invitrogen) were grown in serum-free medium (HuMEC, Invitrogen). WI- 38, ZR-75-1, SK-BR-3 and MDA-MB-436 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) containing 10% fetal bovine serum (FBS). DNA Methylation analysis. We bisulfite-treated 2 µg of genomic DNA using Epitect bisulfite kit (Qiagen). Bisulfite converted DNA was amplified with bisulfite primers listed in Table S3. All primers incorporated a T7 promoter tag, and PCR conditions are available upon request. We analyzed PCR products by MALDI-TOF mass spectrometry after in vitro transcription and specific cleavage (EpiTYPER by Sequenom®). For each amplicon, we analyzed two independent DNA samples and several CG sites in the CpG Island. Design of primers and selection of best promoter region to assess (approx. 500 bp) were done by a combination of UCSC Genome Browser (http://genome.ucsc.edu) and MethPrimer (http://www.urogene.org). All the primers used are listed (Table S3). NB: MAGEC2 CpG analysis have been done with a combination of two CpG island identified in the gene core. Analysis of RNA allelic expression profiles (based on Human SNP Array 6.0) DNA and RNA hybridizations were normalized by Genotyping console. -
A Upf3b-Mutant Mouse Model with Behavioral and Neurogenesis Defects
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mol Psychiatry Manuscript Author . Author Manuscript Author manuscript; available in PMC 2018 September 27. Published in final edited form as: Mol Psychiatry. 2018 August ; 23(8): 1773–1786. doi:10.1038/mp.2017.173. A Upf3b-mutant mouse model with behavioral and neurogenesis defects L Huang1, EY Shum1, SH Jones1, C-H Lou1, J Dumdie1, H Kim1, AJ Roberts2, LA Jolly3,4, J Espinoza1, DM Skarbrevik1, MH Phan1, H Cook-Andersen1, NR Swerdlow5, J Gecz3,4, and MF Wilkinson1,6 1Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA 2Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA 3School Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA 5005, Australia 4South Australian Health and Medical Research Institute, Adelaide, SA, 5005, Australia 5Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, California, USA 6Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA Abstract Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). -
DNA Damage-Induced Histone H1 Ubiquitylation Is Mediated by HUWE1 and Stimulates the RNF8-RNF168 Pathway
www.nature.com/scientificreports OPEN DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8- Received: 27 April 2017 Accepted: 16 October 2017 RNF168 pathway Published: xx xx xxxx I. K. Mandemaker1, L. van Cuijk1, R. C. Janssens1, H. Lans 1, K. Bezstarosti2, J. H. Hoeijmakers1, J. A. Demmers2, W. Vermeulen1 & J. A. Marteijn1 The DNA damage response (DDR), comprising distinct repair and signalling pathways, safeguards genomic integrity. Protein ubiquitylation is an important regulatory mechanism of the DDR. To study its role in the UV-induced DDR, we characterized changes in protein ubiquitylation following DNA damage using quantitative di-Gly proteomics. Interestingly, we identifed multiple sites of histone H1 that are ubiquitylated upon UV-damage. We show that UV-dependent histone H1 ubiquitylation at multiple lysines is mediated by the E3-ligase HUWE1. Recently, it was shown that poly-ubiquitylated histone H1 is an important signalling intermediate in the double strand break response. This poly-ubiquitylation is dependent on RNF8 and Ubc13 which extend pre-existing ubiquitin modifcations to K63-linked chains. Here we demonstrate that HUWE1 depleted cells showed reduced recruitment of RNF168 and 53BP1 to sites of DNA damage, two factors downstream of RNF8 mediated histone H1 poly-ubiquitylation, while recruitment of MDC1, which act upstream of histone H1 ubiquitylation, was not afected. Our data show that histone H1 is a prominent target for ubiquitylation after UV-induced DNA damage. Our data are in line with a model in which HUWE1 primes histone H1 with ubiquitin to allow ubiquitin chain elongation by RNF8, thereby stimulating the RNF8-RNF168 mediated DDR. -
Roles of the HUWE1 Ubiquitin Ligase in Nervous System Development, Function and Disease Andrew C
Giles and Grill Neural Development (2020) 15:6 https://doi.org/10.1186/s13064-020-00143-9 REVIEW Open Access Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease Andrew C. Giles and Brock Grill* Abstract Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system. Keywords: Huwe1, EEL-1, Ubiquitin ligase, HECT, Neuron, Neural progenitor, Neurotransmission, Axon, Transcription factor, Intellectual disability Introduction evidence implicating Huwe1 in multiple neurodevelop- HECT, UBA and WWE domain containing protein 1 mental disorders, including both non-syndromic and syn- (Huwe1) is an E3 ubiquitin ligase that is highly conserved dromic forms of X-linked intellectual disability (ID). In across the animal kingdom [1–4](Fig.1a). While rodent, this review, we discuss how Huwe1 contributes to nervous zebrafish and fly orthologs are also generally referred to as system development, function and disease. We hope that Huwe1, the C. elegans ortholog is called Enhancer of EFL- exploring this literature encourages further studies on 1 (EEL-1) based on its discovery in genetic screens. -
Assessment of Copy Number Variations in 120 Patients with Poland
Vaccari et al. BMC Medical Genetics (2016) 17:89 DOI 10.1186/s12881-016-0351-x RESEARCHARTICLE Open Access Assessment of copy number variations in 120 patients with Poland syndrome Carlotta Maria Vaccari1, Elisa Tassano2, Michele Torre3, Stefania Gimelli4, Maria Teresa Divizia2, Maria Victoria Romanini5, Simone Bossi1, Ilaria Musante1, Maura Valle6, Filippo Senes7, Nunzio Catena7, Maria Francesca Bedeschi8, Anwar Baban2,10, Maria Grazia Calevo9, Massimo Acquaviva1, Margherita Lerone2, Roberto Ravazzolo1,2 and Aldamaria Puliti1,2* Abstract Background: Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. Methods: To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Results: Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. -
Shinydepmap, a Tool to Identify Targetable Cancer Genes and Their Functional Connections from Cancer Dependency Map Data
TOOLS AND RESOURCES shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data Kenichi Shimada*, John A Bachman, Jeremy L Muhlich, Timothy J Mitchison Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, United States Abstract Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community, we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/ depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to (1) predict the efficacy and selectivity of drugs targeting particular genes; (2) identify maximally sensitive cell lines for testing a drug; (3) target hop, that is, navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and (4) identify novel pathways driving cancer cell growth and survival. *For correspondence: [email protected]. Introduction edu Cancer is a disease of the genome. Hundreds, if not thousands, of driver mutations cause cancer in different patients (MC3 Working Group et al., 2018), and extensive collaborative efforts such as Competing interest: See the Cancer Genome Atlas Program (TCGA) have helped discover them (The Cancer Genome Atlas page 17 Research Network, 2019). -
Dynamic Changes in Paternal X-Chromosome Activity During Imprinted X-Chromosome Inactivation in Mice
Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice Catherine Patrata,b, Ikuhiro Okamotoa, Patricia Diabangouayaa, Vivian Vialonc, Patricia Le Baccond, Jennifer Chowa, and Edith Hearda,1 aMammalian Developmental Epigenetics Group, Institut Curie, Centre National Research Scientifique Unité Mixte de Recherche 3215, Institut Nationaldela Santé et de la Recherche Médicale U934, 75248 Paris, France; bLaboratoire de Biologie de la Reproduction and cMedical Informatics Unit, Université Paris Descartes, Assistance Publique-Hoˆpitaux de Paris, 75014 Paris, France; and dChromatin Dynamics Group, Institut Curie Centre National de la Recherche Scientifique Unite´Mixte de Recherche 218–Nuclear Dynamics and Genome Plasticity, 75248 Paris, France Edited by Mary F. Lyon, Medical Research Council, Didcot, Oxon, United Kingdom, and approved January 22, 2009 (received for review October 23, 2008) In mammals, X-chromosome dosage compensation is achieved by inactivate, the early activity of the paternal genome would result in inactivating one of the two X chromosomes in females. In mice, X paternal Xist activity and trigger subsequent Xp inactivation (12). inactivation is initially imprinted, with inactivation of the paternal Another hypothesis is that the Xp is transmitted to the zygote in a X (Xp) chromosome occurring during preimplantation develop- preinactivated state because of its passage through the male germ ment. One theory is that the Xp is preinactivated in female line (13). Here, the X and Y undergo meiotic sex chromosome embryos, because of its previous silence during meiosis in the male inactivation (MSCI) followed by postmeiotic sex chromatin forma- germ line. The extent to which the Xp is active after fertilization tion (PMSC) (14, 15). -
ALS Mutations of FUS Suppress Protein Translation and Disrupt the Regulation of Nonsense-Mediated Decay
ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay Marisa Kamelgarna, Jing Chenb, Lisha Kuangb, Huan Jina, Edward J. Kasarskisa,c, and Haining Zhua,b,d,1 aDepartment of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536; bDepartment of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536; cDepartment of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536; and dLexington VA Medical Center, Research and Development, Lexington, KY 40502 Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved October 22, 2018 (received for review June 16, 2018) Amyotrophic lateral sclerosis (ALS) is an incurable neurodegener- This study started with testing the hypothesis that the identi- ative disease characterized by preferential motor neuron death. fication of proteins associated with mutant FUS-dependent cy- Approximately 15% of ALS cases are familial, and mutations in the toplasmic granules is likely to provide critical insights into the fused in sarcoma (FUS) gene contribute to a subset of familial ALS toxic mechanism of mutant FUS. We developed a protocol to cases. FUS is a multifunctional protein participating in many RNA capture the dynamic mutant FUS-positive granules (3, 4) by metabolism pathways. ALS-linked mutations cause a liquid–liquid membrane filtration and identified protein components by pro- phase separation of FUS protein in vitro, inducing the formation of teomic approaches. The bioinformatics analysis of proteins cytoplasmic granules and inclusions. However, it remains elusive identified in wild-type (WT) and mutant FUS granules revealed what other proteins are sequestered into the inclusions and how multiple RNA metabolism pathways, among which protein such a process leads to neuronal dysfunction and degeneration. -
Modular HUWE1 Architecture Serves As Hub for Degradation of Cell-Fate Decision Factors
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.257352; this version posted August 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Modular HUWE1 architecture serves as hub for degradation of cell-fate decision factors Authors: Moritz Hunkeler1,2, Cyrus Y. Jin1,2, Michelle W. Ma1,2, Daan Overwijn1,2, Julie K. Monda3, Eric J. Bennett3, Eric S. Fischer1,2,4,* Affiliations: 1 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA. 2 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 3Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA. 4 Lead contact. *Correspondence to: [email protected] Summary: HECT ubiquitin ligases play essential roles in metazoan development and physiology. The HECT ligase HUWE1 is central to the cellular stress response by mediating degradation of key death or survival factors including Mcl1, p53, DDIT4, and Myc. As a step toward understanding regulation of HUWE1 engagement with its diverse substrates, we present here the cryo-EM structure of HUWE1, offering a first complete molecular picture of a HECT ubiquitin ligase. The ~4400 amino acid residue polypeptide forms an alpha solenoid- shaped assembly with a central pore decorated with protein interaction modules. This modularity enables HUWE1 to target a wide range of substrates for destruction. The locations of human mutations associated with severe neurodevelopmental disorders link functions of this essential enzyme with its three-dimensional organization. -
Pathway Entry Into the T Lymphocyte Developmental Molecular Dissection of Prethymic Progenitor
The Journal of Immunology Molecular Dissection of Prethymic Progenitor Entry into the T Lymphocyte Developmental Pathway1 C. Chace Tydell,2 Elizabeth-Sharon David-Fung,2,3 Jonathan E. Moore, Lee Rowen,4 Tom Taghon,5 and Ellen V. Rothenberg6 Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-1 (TCF-1) (gene name Tcf7). To identify additional regulators of T cell specification, a cDNA library from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were iden- tified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expression of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin؊Sca-1؉Kit؉CD27؊) and multipotent progenitors (Lin؊Sca-1؉Kit؉CD27؉), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bcl11b, TCF-1 (Tcf7), and HEBalt, Notch target Deltex1, Deltex3L, Fkbp5, Eva1, and Tmem131. Like GATA3 and Deltex1, Bcl11b, Fkbp5, and Eva1 were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only Bcl11b and HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative 1 and double negative 2) corresponding to T lineage specification.