Synthesis and Radioactive Labeling of Biologically Active Peptides, Peptide and Protein Fragments

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Radioactive Labeling of Biologically Active Peptides, Peptide and Protein Fragments Synthesis and radioactive labeling of biologically active peptides, peptide and protein fragments Ph.D. Thesis Erzsébet Szemenyei Institute of Biochemistry Biological Research Centre of the Hungarian Academy of Sciences Szeged 2008 1 LIST OF PUBLICATIONS RELATED TO THE THESIS I. Erzsébet Szemenyei , Géza Tóth; Tritium labelling and degradation studies of Dmt 1- endomorphin-2. Journal of Labelled Compounds and Radiopharmaceuticals, 50 : 1148- 1152, (2007). II. Veronica Gonzalez-Nuñez, Gemma Arsequell, Erzsébet Szemenyei , Géza Tóth, Gregorio Valencia, Raquel E. Rodriguez ; Binding profile of the endogenous novel heptapeptide Met-Enkephalin-Gly-Tyr in zebrafish and rat brain. The Journal of Pharmacology and Experimental Therapeutics , 314 : 862-867, (2005). III. András. Z. Rónai, Erzsébet Szemenyei , Erzsébet Kató, László Kocsis, György Orosz, Mahmoud Al-Khrasani, Géza Tóth; Endomorphin synthesis in rat brain from intracerebroventricularly injected [ 3H]-Tyr-Pro: A possible biosynthetic route for endomorphins. Regulatory Peptides, 134 (1): 54-60, (2006). IV. Erzsébet Szemenyei , István Barna, Zsuzsa Mergl, Attila Keresztes, Zsuzsanna Darula, Erzsébet Kató, Géza Tóth, András Z. Rónai; Detection of a novel immunoreactive endomorphin 2-like peptide in rat brain extracts. Regulatory Peptides , 148 : 54-61, (2008). V. Archana Mukherjee, Kanchan Kothari, Géza Tóth, Erzsébet Szemenyei , Hal Dhar Sarma, József Környei, Meera Venkatesh; 99m Tc-labeled annexin V fragments: a potential SPECT radiopharmaceutical for imaging cell death. Nuclear Medicine and Biology, 33 (5): 635- 643, (2006). 2 ACKNOWLEDGEMENTS I would like to thank my supervisor, Dr. Géza Tóth, for the opportunity to accomplish my PhD work in his laboratory and for all his support during this period. It is to thank to my university consultant, Dr. Éva Hajdú, and Prof. Botond Penke for all their help. Dr. András Z. Rónai and Dr. József Környei are entitled extra acknowledgement for their useful professional advices, kind instructions and stable support. My thanks are due to the members of the pharmacology group of the Semmelweis University, to Dr. Erzsébet Kató and Dr. Mahmoud Al-Khrasani, to Dr. Raquelle Rodriguez’s team from University of Salamanca for the biological characterization of my compounds. Special thanks to Dr. Zsuzsa Mergl for the immunization and Dr. István Barna for the radioimmunoassay. I am grateful to Dr. Kanchan Kothari and her group from Bhabha Atomic Research Centre for the biological measurements of the annexin V fragments. I am grateful to Dr. Zsuzsanna Darula, Emília Szájli and Dr. Zoltán Kele for the mass- spectrometric analysis of my peptides. At last but not least, thanks also to be expressed to my colleagues in our laboratory, to Dr. Judit Farkas, Éva Papp, Bencze Jánosné, Andrea Mosonyi, Attila Keresztes, Dr. Attila Borics, Dr. Csaba Tömböly and special thanks to Dr. Balázs Leitgeb. 3 TABLE OF CONTENTS 1. Introduction .............................................................................................................. 8 1.1. Radioactive isotopes as tracers .............................................................................. 8 Radioactive tracing................................................................................................... 8 Tritium and tritium labeling methods of peptides...................................................... 8 Technetium-99m and 99m Tc-labeling methods of peptides ...................................... 11 Iodine-125 and 125 I-labeling methods of peptides ................................................... 13 1.2. Endogenous opioids .............................................................................................. 15 Opioid receptors and endogenous opioid peptides .................................................. 15 Endomorphins ........................................................................................................ 17 Dmt-endomorphins ................................................................................................ 18 Zebrafish endogenous opioid peptide ..................................................................... 18 1.3. Role of Annexin V in apoptosis ............................................................................ 19 Apoptosis ............................................................................................................... 19 Annexin V.............................................................................................................. 19 2. Aims and Scopes ...................................................................................................... 21 3. Materials and Methods ........................................................................................... 23 Working with tritium .............................................................................................. 23 Working with 125 I and 99m Tc ................................................................................... 24 3.1. Synthesis and purification of peptides ................................................................. 24 Solid-phase peptide synthesis using Boc strategy ................................................... 25 Solid-phase peptide synthesis using Fmoc strategy ................................................. 26 Purification of peptides .......................................................................................... 26 3.2. Tritium labeling of peptides ................................................................................. 26 3.3. Characterization of tritiated peptides ................................................................. 27 Determination of specific activity ........................................................................... 27 Tritium distributions in labeled peptides ................................................................. 27 3.4. Methods for investigation of the metabolism of tritiated peptides ..................... 28 3.5. Peptide isolation methods from rat brain ............................................................ 28 Animals ................................................................................................................. 28 Peptide-extraction procedures from rat brain .......................................................... 28 125 I-labeling of peptides containing tyrosine ........................................................... 29 Preparation of endomorphin 2-keyhole limpet hemocyanin conjugate .................... 29 4 3.6. Tc-99m-labeling of annexin V fragments via nitrido intermediate .................... 30 Stability studies ...................................................................................................... 30 Synthesis of [ 99m TcN] 2+ intermediate ...................................................................... 30 Labeling of peptides via nitrido intermediate .......................................................... 30 Determination of the radiochemical purity .............................................................. 30 4. Results and Discussion ............................................................................................ 31 4.1. Synthesis and tritiation of endomorphin analogues ............................................ 31 Dmt 1-endomorphin 2 .............................................................................................. 31 Synthesis ......................................................................................................... 31 Tritiation ......................................................................................................... 31 Distribution ..................................................................................................... 32 Stability ........................................................................................................... 32 4.2. Synthesis and tritiation of peptide analogues from Zebrafish ............................ 34 Synthesis ................................................................................................................ 34 Tritiation ................................................................................................................ 34 Saturation binding assays ....................................................................................... 34 Results and discussion of competition binding assays ............................................. 35 4.3. Investigation of a possible endomorphin biosynthesis route .............................. 37 Synthesis ................................................................................................................ 37 Tritiation ................................................................................................................ 38 Results of the chromatographic procedure .............................................................. 38 Synthesis of 125 I-endomorphin 2 ............................................................................. 40 Results of radioimmunoassay ................................................................................. 40 Discussion of the investigation of a possible endomorphin biosynthetic route ........ 42 4.4. Synthesis and 99m Tc-labeling of annexin V fragments ........................................ 43 Synthesis ................................................................................................................ 43 Stability studies .....................................................................................................
Recommended publications
  • Evaluation of in Silico Approach for Prediction of Presence of Opioid Peptides in Wheat
    Evaluation of in silico approach for prediction of presence of opioid peptides in wheat This is the Accepted version of the following publication Garg, Swati, Apostolopoulos, Vasso, Nurgali, Kulmira and Mishra, Vijay Kumar (2018) Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. Journal of Functional Foods, 41. 34 - 40. ISSN 1756-4646 The publisher’s official version can be found at https://www.sciencedirect.com/science/article/pii/S1756464617307454 Note that access to this version may require subscription. Downloaded from VU Research Repository https://vuir.vu.edu.au/36577/ 1 1 Evaluation of in silico approach for prediction of presence of opioid peptides in wheat 2 gluten 3 Abstract 4 Opioid like morphine and codeine are used for the management of pain, but are associated 5 with serious side-effects limiting their use. Wheat gluten proteins were assessed for the 6 presence of opioid peptides on the basis of tyrosine and proline within their sequence. Eleven 7 peptides were identified and occurrence of predicted sequences or their structural motifs were 8 analysed using BIOPEP database and ranked using PeptideRanker. Based on higher peptide 9 ranking, three sequences YPG, YYPG and YIPP were selected for determination of opioid 10 activity by cAMP assay against µ and κ opioid receptors. Three peptides inhibited the 11 production of cAMP to varied degree with EC50 values of YPG, YYPG and YIPP were 5.3 12 mM, 1.5 mM and 2.9 mM for µ-opioid receptor, and 1.9 mM, 1.2 mM and 3.2 mM for κ- 13 opioid receptor, respectively.
    [Show full text]
  • 2019-2020 Award Recipients
    2019-2020 AWARD RECIPIENTS The Office of Undergraduate Research and Creative Activities is pleased to announce the MAYS and RPG recipients for the 2019-2020 academic year. Please join us in congratulating these students and their faculty mentors. Major Academic Year Support (MAYS) Student: Kelly Ackerly Mentor: Dr. Daniel Greenberg Major: Psychology Department: Psychology An Exploration of Maternal Factors Affecting Children’s Autobiographical Memory In day-to-day interactions, mothers and their young children discuss memories of events they have experienced. Research has demonstrated the relationship between these interactions and the development of children’s memories. It is through these interactions that children learn how to interpret personal experiences and develop the skill of talking about them with others in a coherent way. Additionally, studies have found that children are more likely to form false memories—that is, inaccurate “memories” of events that did not actually occur – because their memories are more easily manipulated. In this study, we will explore whether the way mothers talk to their children about ambiguous events affects the children’s interpretations and memories of the event. We will also attempt to determine if there is a relationship between mothers’ negativity during discussions and their child’s formation of false memories. To explore this idea, mothers and their children (aged 3 to 6 years) are given a handful of ambiguous situations to interpret separately. Children are given the opportunity to make slime with a research assistant while a second research assistant acts out ambiguous situations that could have a positive or negative interpretation. The children are evaluated on the way they interpret the situations and whether they form a negative false memory.
    [Show full text]
  • The Induction of Proteolysis in Purulent Sputum by Iodides * JACK LIEBERMAN and NATHANIEL B
    Journal of Clinical Investigalton Vol. 43, No. 10, 1964 The Induction of Proteolysis in Purulent Sputum by Iodides * JACK LIEBERMAN AND NATHANIEL B. KURNICK (From the Veterans Administration Hospital, Long Beach, and the Department of Medicine, the University of California Center for Medical Sciences at Los Angeles, Calif.) Iodide, in the form of potassium or sodium io- have even greater proteolysis-inducing activities dide, is widely used as an expectorant for patients than inorganic iodide. with viscid sputum. The iodides are thought to act by increasing the volume of aqueous secretions Methods from bronchial glands (1). This mechanism for Source of sputum specimens. Purulent sputa were ob- the effect of iodides probably plays an important tained from 17 patients with cystic fibrosis and from 22 role, but an additional mechanism whereby iodides with other types of pulmonary problems (Table VIII). may act to thin viscid respiratory secretions was Two specimens of pus were obtained and studied in a demonstrated during a study of the proteolytic similar fashion. The sputa were collected in glass jars kept in the patients' home freezers at approximately enzyme systems of purulent sputum. - 100 C over a 2- to 5-day period and then were kept Purulent sputum contains a number of proteo- frozen at - 200 C up to 3 weeks. Sputa collected from lytic enzymes, probably derived from leukocytes hospitalized patients were frozen after a 4-hour collection (2-4). These proteases, however, are ineffective period. in causing hydrolysis of the native protein in puru- Preparation of sputum homogenates. Individual spu- tum specimens were homogenized in distilled water with lent sputum and do not appear to contribute sig- a Potter-Elvehjem homogenizer to form 10% (wet nificantly to the spontaneous liquefaction of these weight to volume) homogenates.
    [Show full text]
  • Opioid Imaging
    529 NEUROIMAGING CLINICS OF NORTH AMERICA Neuroimag Clin N Am 16 (2006) 529–552 Opioid Imaging Alexander Hammers, PhDa,b,c,*, Anne Lingford-Hughes, PhDd,e - Derivation, release, peptide action, Changes in receptor availability in pain and metabolism and discomfort: between-group - Receptors and ligands comparisons Receptors Direct intrasubject comparisons of periods Species differences with pain and pain-free states Regional and layer-specific subtype - Opioid imaging in epilepsy distributions Focal epilepsies Ligands Idiopathic generalized epilepsy - Positron emission tomography imaging Summary of opioid receptors - Opioid imaging in other specialties Introduction PET imaging Movement disorders Quantification of images Dementia Available ligands and their quantification Cardiology - Opioid receptor imaging in healthy - Opioid imaging in psychiatry: addiction volunteers - Summary - Opioid imaging in pain-related studies - Acknowledgments - References Opioids derive their name from the Greek o´pioy agonists provided evidence for the existence of mul- for poppy sap. Various preparations of the opium tiple receptors [4]. In the early 1980s, there was ev- poppy Papaver somniferum have been used for pain idence for the existence of at least three types of relief for centuries. Structure and stereochemistry opiate receptors: m, k, and d [5,6]. A fourth ‘‘orphan’’ are essential for the analgesic actions of morphine receptor (ORL1 or NOP1) displays a high degree and other opiates, leading to the hypothesis of the of structural homology with conventional opioid existence of specific receptors. Receptors were iden- receptors and was identified through homology tified simultaneously by three laboratories in 1973 with the d receptor [7], but the endogenous ligand, [1–3]. The different pharmacologic activity of orphanin FQ/nociceptin, does not interact directly Dr.
    [Show full text]
  • The Chemistry of Marine Sponges∗ 4 Sherif S
    The Chemistry of Marine Sponges∗ 4 Sherif S. Ebada and Peter Proksch Contents 4.1 Introduction ................................................................................ 192 4.2 Alkaloids .................................................................................. 193 4.2.1 Manzamine Alkaloids ............................................................. 193 4.2.2 Bromopyrrole Alkaloids .......................................................... 196 4.2.3 Bromotyrosine Derivatives ....................................................... 208 4.3 Peptides .................................................................................... 217 4.4 Terpenes ................................................................................... 240 4.4.1 Sesterterpenes (C25)............................................................... 241 4.4.2 Triterpenes (C30).................................................................. 250 4.5 Concluding Remarks ...................................................................... 268 4.6 Study Questions ........................................................................... 269 References ....................................................................................... 270 Abstract Marine sponges continue to attract wide attention from marine natural product chemists and pharmacologists alike due to their remarkable diversity of bioac- tive compounds. Since the early days of marine natural products research in ∗The section on sponge-derived “terpenes” is from a review article published
    [Show full text]
  • Opioid Peptides 49 Ryszard Przewlocki
    Opioid Peptides 49 Ryszard Przewlocki Abbreviations ACTH Adrenocorticotropic hormone CCK Cholecystokinin CPA Conditioned place aversion CPP Conditioned place preference CRE cAMP response element CREB cAMP response element binding CRF Corticotrophin-releasing factor CSF Cerebrospinal fluid CTAP D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (m-opioid receptor antagonist) DA Dopamine DOP d-opioid peptide EOPs Endogenous opioid peptides ERK Extracellular signal-regulated kinase FSH Follicle-stimulating hormone GnRH Gonadotrophin-releasing hormone HPA axis Hypothalamo-pituitary-adrenal axis KO Knockout KOP k-opioid peptide LH Luteinizing hormone MAPK Mitogen-activated protein kinase MOP m-opioid peptide NOP Nociceptin opioid peptide NTS Nucleus tractus solitarii PAG Periaqueductal gray R. Przewlocki Department of Molecular Neuropharmacology, Institute of Pharmacology, PAS, Krakow, Poland Department of Neurobiology and Neuropsychology, Jagiellonian University, Krakow, Poland e-mail: [email protected] D.W. Pfaff (ed.), Neuroscience in the 21st Century, 1525 DOI 10.1007/978-1-4614-1997-6_54, # Springer Science+Business Media, LLC 2013 1526 R. Przewlocki PDYN Prodynorphin PENK Proenkephalin PNOC Pronociceptin POMC Proopiomelanocortin PTSD Posttraumatic stress disorder PVN Paraventricular nucleus SIA Stress-induced analgesia VTA Ventral tegmental area Brief History of Opioid Peptides and Their Receptors Man has used opium extract from poppy seeds for centuries for both pain relief and recreation. At the beginning of the nineteenth century, Serturmer first isolated the active ingredient of opium and named it morphine after Morpheus, the Greek god of dreams. Fifty years later, morphine was introduced for the treatment of postoper- ative and chronic pain. Like opium, however, morphine was found to be an addictive drug.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • The Role of Protein Convertases in Bigdynorphin and Dynorphin a Metabolic Pathway
    Université de Montréal The Role of Protein Convertases in Bigdynorphin and Dynorphin A Metabolic Pathway par ALBERTO RUIZ ORDUNA Département de biomédecine vétérinaire Faculté de médecine vétérinaire Mémoire présenté à la Faculté de médecine vétérinaire en vue de l’obtention du grade de maître ès sciences (M.Sc.) en sciences vétérinaires option pharmacologie Décembre, 2015 © Alberto Ruiz Orduna, 2015 Résumé Les dynorphines sont des neuropeptides importants avec un rôle central dans la nociception et l’atténuation de la douleur. De nombreux mécanismes régulent les concentrations de dynorphine endogènes, y compris la protéolyse. Les Proprotéines convertases (PC) sont largement exprimées dans le système nerveux central et clivent spécifiquement le C-terminale de couple acides aminés basiques, ou un résidu basique unique. Le contrôle protéolytique des concentrations endogènes de Big Dynorphine (BDyn) et dynorphine A (Dyn A) a un effet important sur la perception de la douleur et le rôle de PC reste à être déterminée. L'objectif de cette étude était de décrypter le rôle de PC1 et PC2 dans le contrôle protéolytique de BDyn et Dyn A avec l'aide de fractions cellulaires de la moelle épinière de type sauvage (WT), PC1 -/+ et PC2 -/+ de souris et par la spectrométrie de masse. Nos résultats démontrent clairement que PC1 et PC2 sont impliquées dans la protéolyse de BDyn et Dyn A avec un rôle plus significatif pour PC1. Le traitement en C-terminal de BDyn génère des fragments peptidiques spécifiques incluant dynorphine 1-19, dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7 et Dyn A génère les fragments dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7.
    [Show full text]
  • 2009-2010 Catalogue Peptide
    2009­2010 Peptide Catalogue Generic Peptides Cosmetic Peptides Catalogue Peptides Designer BioScience Ltd Designer BioScience Table of Contents Ordering Information........................................................................................................................................2 Terms and Conditions.......................................................................................................................................3 Generic Peptides...............................................................................................................................................5 Cosmetic peptides...........................................................................................................................................10 Catalogue Peptides..........................................................................................................................................11 Custom Peptide Synthesis.............................................................................................................................292 Alphabetical Index........................................................................................................................................294 Catalogue Number Index..............................................................................................................................319 Designer BioScience Ltd, St John's Innovation Centre, Cambridge, CB4 0WS, United Kingdom Tel.: +44 (0) 1223 322931 Fax: +44 (0) 808 2801 506 [email protected]
    [Show full text]
  • WO 2018/064098 A1 05 April 2018 (05.04.2018) WI P Ο I PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization lllllllllllllllllllllllllllllll^ International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064098 A1 05 April 2018 (05.04.2018) WI P Ο I PCT (51) International Patent Classification: Published: C07K14/47 (2006.01) C07K16/18 (2006.01) — with international search report (Art. 21(3)) A 61K 38/17 (2006.01) — before the expiration of the time limit for amending the (21) International Application Number: claims and to be republished in the event of receipt of PCT/US2017/053597 amendments (Rule 48.2(h)) — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/401,123 28 September 2016 (28.09.2016) US (71) Applicant: COHBAR, INC. [US/US]; 1455 Adams Drive, Menlo Park, CA 94025 (US). (72) Inventors: CUNDY, Kenneth, C.; c/o Cohbar, Inc., 1455 Adams Drive, Menlo Park, CA 94025 (US). GRINDSTAFF, Kent, K.; c/o Cohbar, Inc., 1455 Adams ____ Drive, Menlo Park, CA 94025 (US). MAGNAN, Remi; c/ o Cohbar, Inc., 1455 Adams Drive, Menlo Park, CA 94025 (US). LUO, Wendy; c/o Cohbar, Inc., 1455 Adams Dri­ ve, Menlo Park, CA 94025 (US). YAO, Yongjin; c/o Co­ — hbar, Inc., 1455 Adams Drive, Menlo Park, CA 94025 (US). — YAN, Liang, Zeng; c/o Cohbar, Inc., 1455 Adams Drive, Menlo Park, CA 94025 (US). (74) Agent: GASS, David, A. et al.; Marshall, Gerstein & Borun LLP, 233 S.
    [Show full text]
  • Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions
    Molecular Pharmacology Fast Forward. Published on June 2, 2020 as DOI: 10.1124/mol.120.119388 This article has not been copyedited and formatted. The final version may differ from this version. File name: Opioid peptides v45 Date: 5/28/20 Review for Mol Pharm Special Issue celebrating 50 years of INRC Five decades of research on opioid peptides: Current knowledge and unanswered questions Lloyd D. Fricker1, Elyssa B. Margolis2, Ivone Gomes3, Lakshmi A. Devi3 1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail: [email protected] 2Department of Neurology, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, San Francisco, CA 94143, USA; E-mail: [email protected] 3Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Downloaded from Building, One Gustave L. Levy Place, New York, NY 10029, USA; E-mail: [email protected] Running Title: Opioid peptides molpharm.aspetjournals.org Contact info for corresponding author(s): Lloyd Fricker, Ph.D. Department of Molecular Pharmacology Albert Einstein College of Medicine 1300 Morris Park Ave Bronx, NY 10461 Office: 718-430-4225 FAX: 718-430-8922 at ASPET Journals on October 1, 2021 Email: [email protected] Footnotes: The writing of the manuscript was funded in part by NIH grants DA008863 and NS026880 (to LAD) and AA026609 (to EBM). List of nonstandard abbreviations: ACTH Adrenocorticotrophic hormone AgRP Agouti-related peptide (AgRP) α-MSH Alpha-melanocyte stimulating hormone CART Cocaine- and amphetamine-regulated transcript CLIP Corticotropin-like intermediate lobe peptide DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin DOR Delta opioid receptor DPDPE [D-Pen2,D- Pen5]-enkephalin KOR Kappa opioid receptor MOR Mu opioid receptor PDYN Prodynorphin PENK Proenkephalin PET Positron-emission tomography PNOC Pronociceptin POMC Proopiomelanocortin 1 Molecular Pharmacology Fast Forward.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]