A Scientist's 3D Interface for Molecular Modeling And

Total Page:16

File Type:pdf, Size:1020Kb

A Scientist's 3D Interface for Molecular Modeling And Waldon et al. BMC Bioinformatics 2014, 15:334 http://www.biomedcentral.com/1471-2105/15/334 RESEARCH ARTICLE Open Access SketchBio: a scientist’s 3D interface for molecular modeling and animation Shawn M Waldon*, Peter M Thompson, Patrick J Hahn and Russell M Taylor II Abstract Background: Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations. Results: SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches. Conclusions: The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness. Keywords: Molecular modelling, Animation, Collision detection Background both slows the discovery process and provides opportuni- SketchBio is a new tool to help scientists think about 3D ties for miscommunication. This paper describes an effort molecular structures and interactions and to communi- to provide scientists with a tool that is so rapid to learn cate them to others. and powerful to use that they can create these models and We found ourselves repeatedly using 2D hand-drawings animations themselves. of complex 3D structures and their interactions in discus- This tool should be general and widely useful. Many sions with our close collaborators in cell biology, pathol- researchers studying cell structure and physiology seek ogy, and chemistry, despite the fact that the 3D crystal to construct and evaluate dynamic models that incorpo- structures of the proteins making up these structures were rate random thermal motion as well as conformational known. Overall structure comprehension was advanced changes induced through intermolecular interactions. when a hired artist produced 3D scale models and com- Discovering, testing, and communicating hypotheses puter models of the structures [1]. Our group is not alone. about these interactions requires the development of Discussions among collaborators are often done using 2D complex animated 3D molecular structures. Modeling, whiteboard sketches. Presentations often consist of pasted simulation, and rendering these hypothetical scenarios images and 2D PowerPoint animations. involves using a number of tools and databases (PDB, Due to the difficulties involved in learning and using PyMol, Blender, NAMD, etc.) and then converting files 3D modeling and rendering software, many scientists hire to pass geometry and animations between tools. It also professional computer programmers and/or animators to involves manual placement and orientation of 3D objects, work with them to create models and animations rather which is currently done using 2D input devices and by-eye than use these programs themselves. This indirection detection and avoidance of collisions. As a result, it often takes a team months to produce an acceptable model or *Correspondence: [email protected] animation. University of North Carolina at Chapel Hill, 27599 Chapel Hill, NC, USA © 2014 Waldon et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Waldon et al. BMC Bioinformatics 2014, 15:334 Page 2 of 17 http://www.biomedcentral.com/1471-2105/15/334 The aim was to produce a tool that reduces this to a The final driving problem involved cell division (mito- single person working for hours or days. sis). Many proteins beyond cohesin and condensin con- This paper describes that tool, SketchBio. tribute to mitosis. Scientists are able to fluorescently label both these proteins and chromosome locations and deter- mine relative distances and orientations between pairs Driving problems of proteins. With accurate localization and tracking for Fred Brooks posits that the best way to construct a tool 3D images, these techniques provide partial information that is generally usable is to focus on several very different on the 3D layout of proteins and chromosomes in wild- specific problems and build a tool that solves them [2]. type and mutant mitotic spindles. Building models to This approach was followed here. match this information requires the development of semi- The first driving problem for this project was to con- automatic layout of proteins. This will provide a partial set struct a protofibril model based on geometric constraints of constraints for scientists to construct protein-protein among a set of individual fibrinogen molecules. The pro- and protein-chromosome complexes that match experi- tein fibrinogen is the main component of blood clots, mental data. With these enhancements, SketchBio could where it is converted into fibrin and links together with be widely useful to other researchers for the generation other fibrin molecules to form strands. Two of these of hypothetical protein-complex structures from partial strands join together to form a protofibril, which form data. thick fibers that make up a large portion of the blood clot. Based on the crystallized structures of fibrin monomers Design goals from different species and on only two sets of known The application-specific needs from the above collabora- interactions [3], one collaborator sought to construct 3D tors can be summarized as a set of domain-independent protofibril structures matching those seen in her data, design goals for SketchBio: which suggested a structure in which two fibrin strands • twist around each other, and wanted to create a model Easy to learn and to use. Scientists must be able to that shows this interaction at the molecular level. Over rapidly construct models and animations on their several months, this collaborator and her students worked own using interfaces that enable them to concentrate with a computer scientist to use the powerful UCSF their mental efforts on the design challenge rather Chimera tool to construct such a model (“snapshots” than decyphering the interface. • and modeling of the early stages in fibrin polymeriza- Support molecular operations. It must be easy to tion, submitted). Building this model required repeated load molecules, extract the relevant substructures, iteration of hand-placement of two molecules (using mul- describe conformational changes, group molecules, tiple 2D mouse interactions), followed by using repli- and color according to standard data. cation tools to develop candidate models, which were • Appropriately constrain layout. Some molecular then evaluated against the data. The desired use of structures should not overlap, others (drug vs. SketchBio was to construct this protofibril rapidly and protein) overlap as part of their function, others semi-automatically by specifying which location on each (fibrin, actin) assemble into repeated structures. In fibrin should be in close contact with other molecules some cases, the distances between individual and by specifying that the molecules do not overlap. elements is known but their 3D layout is not. This same capability will enable generation of other Supporting all of these cases will enable a biologist to self-symmetric structures such as actin filaments and most rapidly explore the space of possible microtubules. conformations to produce consistent models. The second driving problem was to construct 3D mod- • Support rapidly iterated, in-context design. els and animations of the interaction between actin fila- Understanding the interactions between dozens of ments and vinculin. Actin filaments are one of the three molecules requires repeated adjustment of proposed main components of a cell’s cytoskeleton, and the pro- locations and motions. The reasonableness of tein vinculin binds to actin filaments, connecting them to interactions depends on nearby molecules, which other actin filaments or different proteins. change over time. Generating consistent models The third driving problem was to construct models requires trying and optimizing many potential of the mitotic spindle, a structure that separates chro- solutions before the final model is found. mosomes during cell division. As in the fibrin case, • Support high-quality rendering. Onceaproposed each step of model generation required support from an model has been completed, static and animated artist, animator, and/or programmer to convert a col- images that use the most-effective lighting and laborator’s concepts into geometry for rendering and surface rendering techniques are critical to conveying simulation. the model
Recommended publications
  • Latest Stable Copy and Install It With: Chmod+X Chimera- *.Bin&&./Chimera- *.Bin
    Tangram Suite Documentation Release 0.0.8 InsiliChem Mar 26, 2019 General instructions 1 What is Tangram Suite 3 2 How to install Tangram Suite5 3 General usage 7 4 FAQ & Known issues 9 5 List of Tans 11 6 Tangram BondOrder 13 7 Tangram QMSetup 15 8 Tangram DummyAtoms 17 9 Tangram GAUDIView 19 10 Tangram MMSetup 21 11 Tangram NCIPlot 23 12 Tangram NormalModes 25 13 Tangram OrbiTraj 27 14 Tangram PLIP 29 15 Tangram PoPMuSiCGUI 31 16 Tangram PropKaGUI 33 17 Tangram ReVina 35 18 Tangram SubAlign 37 19 Tangram TalaDraw 39 i ii Tangram Suite Documentation, Release 0.0.8 It’s composed of several independent graphical interfaces and commands for UCSF Chimera. General instructions 1 Tangram Suite Documentation, Release 0.0.8 2 General instructions CHAPTER 1 What is Tangram Suite In progress 3 Tangram Suite Documentation, Release 0.0.8 4 Chapter 1. What is Tangram Suite CHAPTER 2 How to install Tangram Suite 2.1 Install the full Tangram Suite (recommended) 1 - If you don’t have UCSF Chimera installed, download the latest stable copy and install it with: chmod+x chimera- *.bin&&./chimera- *.bin 2 - Download the latest installer from the releases page (Linux and MacOS only) and run it with: bash tangram-*.sh 2.2 Using the conda meta-package Instead of using the Bash installer, you can use conda (if you are already using it) to create a new environment with the tangram metapackage, which will handle all the dependencies. While in alpha, both insilichem channels are needed (the main one and also the dev label): conda create-n tangram-c insilichem/label/dev-c insilichem-c omnia-c rdkit-c ,!conda-forge tangram 2.3 Updating extensions Each extension will check if there’s a new release available every time you launch it.
    [Show full text]
  • Journal of Molecular Graphics and Modelling 73 (2017) 179–190
    Journal of Molecular Graphics and Modelling 73 (2017) 179–190 Contents lists available at ScienceDirect Journal of Molecular Graphics and Modelling journa l homepage: www.elsevier.com/locate/JMGM Combined Monte Carlo/torsion-angle molecular dynamics for ensemble modeling of proteins, nucleic acids and carbohydrates a b c d,1 Weihong Zhang , Steven C. Howell , David W. Wright , Andrew Heindel , e a, b, Xiangyun Qiu , Jianhan Chen ∗, Joseph E. Curtis ∗∗ a Kansas State University, Manhattan, KS, USA b NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD, USA c Centre for Computational Science, Department of Chemistry, University College London, 10 Gordon St., London, UK d James Madison University, Department of Chemistry & Biochemistry, Harrisonburg, VA, USA e Department of Physics, The George Washington University, Washington, DC, USA a r t i c l e i n f o a b s t r a c t Article history: We describe a general method to use Monte Carlo simulation followed by torsion-angle molecular dynam- Received 13 October 2016 ics simulations to create ensembles of structures to model a wide variety of soft-matter biological systems. Received in revised form 19 January 2017 Our particular emphasis is focused on modeling low-resolution small-angle scattering and reflectivity Accepted 17 February 2017 structural data. We provide examples of this method applied to HIV-1 Gag protein and derived fragment Available online 23 February 2017 proteins, TraI protein, linear B-DNA, a nucleosome core particle, and a glycosylated monoclonal antibody. This procedure will enable a large community of researchers to model low-resolution experimental data MSC: with greater accuracy by using robust physics based simulation and sampling methods which are a 00-01 99-00 significant improvement over traditional methods used to interpret such data.
    [Show full text]
  • UCSF Chimera Was Developed by the Computer Graphics Laboratory at the University of California, San Francisco, Under Support of NIH Grant P41-RR01081
    matrixcopy apply the transformation matrix of one model to another tcolor color using texture map colors UCSF Chimera matrixget write the current transformation matrices to a ®le texture de®ne texture maps and associated colors QUICK REFERENCE GUIDE June 2007 matrixset read and apply transformation matrices from a ®le thickness move the clipping planes in opposite directions minimize energy-minimize structures turn rotate about the X, Y, or Z axis mmaker (matchmaker) align models in sequence, then in 3D vdw* display van der Waals (VDW) surface modelcolor set color at the model level vdwde®ne* set VDW radii Commands modeldisplay* set display at the model level vdwdensity set VDW surface dot density *reverse function Äcommand available move translate along the X, Y, or Z axis version show copyright information and Chimera version movie capture image frames and assemble them into a movie viewdock start ViewDock and load docking results 2dlabels create arbitrary text labels and place them in 2D namesel name and save the current selection wait suspend command processing until motion has stopped ac enable accelerators (keyboard shortcuts) neon create a shadowed stick/tube image (not on Windows) window adjust the view to contain the speci®ed atoms addaa add an amino acid to a peptide C-terminus objdisplay* display graphical objects windowsize adjust the dimensions of the graphics window addcharge assign partial charges to atoms open* read structures and data, execute command ®les write save a molecule model as a PDB ®le addh add hydrogens pdbrun
    [Show full text]
  • 3D-Printing Models for Chemistry
    3D-Printing Models for Chemistry: A Step-by-Step Open-Source Guide for Hobbyists, Corporate ProfessionAls, and Educators and Student in K-12 and Higher Education Poster Elisabeth Grace Billman-Benveniste+, Jacob Franz++, Loredana Valenzano-Slough+* +Department of Chemistry, Michigan Technological University, ++Department of Mechanical Engineering, Michigan Technological University *Corresponding Author References 1. “LulzBot TAZ 5.” LulzBot, 14 Aug. 2018, www.lulzbot.com/store/printers/lulzbot-taz-5 2. Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; ZakrzeWski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; HasegaWa, J.; Ishida, M.; NakaJima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016. 3.
    [Show full text]
  • Biological Sciences 1
    Biological Sciences 1 BIOL UN3208 Introduction to Evolutionary Biology or EEEB UN2001 BIOLOGICAL SCIENCES Environmental Biology I: Elements to Organisms. Departmental Office: 600 Fairchild, 212-854-4581; Interested students should consult listings in other departments for [email protected]; [email protected] courses related to biology. For courses in environmental studies, see listings for Earth and environmental sciences or for ecology, evolution, Director of Undergraduate Studies, Undergraduate Programs and and environmental biology. For courses in human evolution, see listings Laboratories: for anthropology or for ecology, evolution, and environmental biology. Prof. Deborah Mowshowitz, 744D Mudd; 212-854-4497; For courses in the history of evolution, see listings for history and for [email protected] philosophy of science. For a list of courses in computational biology and genomics, visit http://systemsbiology.columbia.edu/courses. Biology Major and Concentration Advisers: For a list of current biology, biochemistry, biophysics, and neuroscience and behavior advisers, please visit http://biology.columbia.edu/ Advanced Placement programs/advisors Transfer Credit A-F: Prof. Alice Heicklen, 744B Mudd; [email protected] Transfer credits granted toward the degree are not automatically counted G-O: Prof. Mary Ann Price, 744A Mudd; [email protected] toward the major. The department determines which transfer credits P-Z: Prof. Tulle Hazelrigg, 753A Mudd, [email protected] can be counted toward the major. For most majors, at least four biology Backup Advisor: Prof. Deborah Mowshowitz, 744D Mudd; 212-854-4497; or biochemistry courses and at least 18 credits of the total (biology, [email protected] biochemistry, math, physics, and chemistry) must be taken at Columbia.
    [Show full text]
  • CCP4 Molecular Graphics Documentation Contents Documentation On-Line Documentation Tutorials Ccp4mg Home Contents Quick Reference Print Version Contact References
    CCP4 Molecular Graphics file:///E:/ccp4mg-win/help/index.html CCP4 Molecular Graphics Documentation Contents Documentation On-line Documentation Tutorials CCP4mg Home Contents Quick Reference Print version Contact References Documentation Contents General Graphics Window - mouse bindings and short cuts The Tools menu The View menu Projects - data organisation Installation of support programs Molecular models Reading coordinate files and atom typing The Coordinate Model Interface Atom selection Structure Analysis Surfaces and Electrostatic Potentials Symmetry Related Models Animations Other types of data Electron density maps Vectors Electron density in GAUSSIAN cube format Text and imported images Applications Superpose automatic protein superposition and interactive superposition of any structures Presentation Graphics Picture Wizard set up complex pictures quickly Movies Presentations Geometry Run Coot Other utilities Web tools History and Scripting Editing and Saving Files PDF Creator - PDF4Free v2.0 http://www.pdf4free.com 1 of 3 01/11/2007 18:42 CCP4 Molecular Graphics file:///E:/ccp4mg-win/help/index.html Lighting Saving the program status Picture Definition Files (also Object attributes and Introduction to Python) Making presentations Quick Reference See Display Table for general overview of the display table. For information on specific type of data click the appropriate data type in the File list below. File Tools View Applications Coordinate Files General tools General tools Movies Downloading Coordinate .. .. Superpose Files Read electron density Picture Save/restore view Lighting map/MTZ Wizard Read QM maps Save/restore status Transparency Geometry Add vectors/labels Picture definition files View from Rotate,translate,align Add image History and Scripting view Add legend Presentation/Notebook RocknRoll Add crystal List monomer definition Model definition file Preferences Open presentation Tutorials Output screen image Windows Bring a 'lost' window to the front.
    [Show full text]
  • Coot: Model-Building Tools for Molecular Graphics Crystallography ISSN 0907-4449
    research papers Acta Crystallographica Section D Biological Coot: model-building tools for molecular graphics Crystallography ISSN 0907-4449 Paul Emsley* and Kevin Cowtan CCP4mg is a project that aims to provide a general-purpose Received 26 February 2004 tool for structural biologists, providing tools for X-ray Accepted 4 August 2004 structure solution, structure comparison and analysis, and York Structural Biology Laboratory, University of York, Heslington, York YO10 5YW, England publication-quality graphics. The map-®tting tools are avail- able as a stand-alone package, distributed as `Coot'. Correspondence e-mail: [email protected] 1. Introduction Molecular graphics still plays an important role in the deter- mination of protein structures using X-ray crystallographic data, despite on-going efforts to automate model building. Functions such as side-chain placement, loop, ligand and fragment ®tting, structure comparison, analysis and validation are routinely performed using molecular graphics. Lower Ê resolution (dmin worse than 2.5 A) data in particular need interactive ®tting. The introduction of FRODO (Jones, 1978) and then O (Jones et al., 1991) to the ®eld of protein crystallography was in each case revolutionary, each in their time breaking new ground in demonstrating what was possible with the current hardware. These tools allowed protein crystallographers to enjoy what is widely held to be the most thrilling part of their work: giving birth (as it were) to a new protein structure. The CCP4 program suite (Collaborative Computational Project, Number 4, 1994) is an integrated collection of software for macromolecular crystallography, with a scope ranging from data processing to structure re®nement and validation.
    [Show full text]
  • Development and Application of a Computational Platform for Complex Molecular Design Jaime Rodríguez-Guerra Pedregal
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Development and Application of a Computational Platform for Complex Molecular Design a dissertation submitted by Jaime Rodríguez-Guerra Pedregal & directed by Prof. Dr. Jean-Didier Maréchal in fulfillment of the requirements for the degree of Doctor of Biotechnology Tutor: Prof. Dr. Jordi Joan Cairó Badillo Department of Chemical, Biological and Environmental Engineering Universitat Autònoma de Barcelona July 2018 Development and Application of a Computational Platform for Complex Molecular Design a dissertation submitted by & recommended for acceptance by advisor Jaime Rodríguez-Guerra Pedregal Prof. Dr. Jean-Didier Maréchal Tutor: Prof. Dr. Jordi Joan Cairó Badillo Department of Chemical, Biological and Environmental Engineering Universitat Autònoma de Barcelona July 2018 ©2018 – Jaime Rodríguez-Guerra Pedregal Licensed as Creative Commons BY-NC-ND Attribution-NonCommercial-NoDerivs In the beginning, there was nothing. And God said «Let there be light». And there was light. There was still nothing, but you could see it a lot better. —WoodyAllen. Development and Application of a Computational Platform for Complex Molecular Design by Jaime Rodríguez-Guerra Pedregal Abstract In this dissertation, a series of novel computational modeling tools is reported.
    [Show full text]
  • Hands-On Tutorials of Autodock 4 and Autodock Vina
    Hands-on tutorials of AutoDock 4 and AutoDock Vina Pei-Ying Chu (朱珮瑩) Supervisor: Jung-Hsin Lin (林榮信) Research Center for Applied Sciences, Academia Sinica 2018 Frontiers in Computational Drug Design, Academia Sinica, March 16-20, 2018 AutoDock http://autodock.scripps.edu AutoDock is a suite of automated docking tools. It is designed to predict how small molecules, such as substrates or drug candidates, bind to a receptor of known 3D structure. AutoDock 4 is free and is available under the GNU General Public License. 2 AutoDock Vina http://vina.scripps.edu/ Because the scoring functions used by AutoDock 4 and AutoDock Vina are different and inexact, on any given problem, either program may provide a better result. AutoDock Vina is available under the Apache license, allowing commercial and 3 non-commercial use and redistribution. http://autodock.scripps.edu/downloads These programs were installed on VM. 4 http://mgltools.scripps.edu/ AutoDockTools (ADT) is developed to help set up the docking. ADT is included in MGLTools packages. 5 In general, each docking (AutoDock 4 and/or AutoDock Vina) requires: 1. structure of the receptor (protein), in pdbqt format 2. structure of the ligand (small molecule, drug, etc.) in pdbqt format 3. docking and grid parameters (search space) PDBQT format is very similar to PDB format but it includes partial charges ('Q') and AutoDock 4 (AD4) atom types ('T'). • Preparing the ligand involves ensuring that its atoms are assigned the correct AutoDock4 atom types, adding Gasteiger charges if necessary, merging non-polar hydrogens, detecting aromatic carbons if any, and setting up the 'torsion tree'.
    [Show full text]
  • Mai Muuttunut Pilit Muut Aidi Mini
    MAIMUUTTUNUT US009963689B2 PILIT MUUT AIDI MINI (12 ) United States Patent ( 10 ) Patent No. : US 9 ,963 , 689 B2 Doudna et al. ( 45) Date of Patent: May 8 , 2018 ( 54 ) CASI CRYSTALS AND METHODS OF USE FOREIGN PATENT DOCUMENTS THEREOF WO WO 2013 / 126794 AL 8 / 2013 ( 71 ) Applicant: The Regents of the University of wo WO 2013 / 142578 A19 / 2013 California , Oakland , CA (US ) WO WO 2013 / 176772 A1 11/ 2013 ( 72 ) Inventors : Jennifer A . Doudna , Oakland , CA OTHER PUBLICATIONS (US ) ; Samuel H . Sternberg , Oakland , McPherson , A . Current Approaches to Macromolecular Crystalli CA (US ) ; Martin Jinek , Oakland , CA zation . European Journal of Biochemistry . 1990 . vol . 189 , pp . (US ) ; Fuguo Jiang , Oakland , CA (US ); 1 - 23 . * Emine Kaya , Oakland , CA (US ) ; Kundrot, C . E . Which Strategy for a Protein Crystallization Project ? Cellular Molecular Life Science . 2004 . vol . 61, pp . 525 - 536 . * David W . Taylor, Jr. , Oakland , CA Benevenuti et al. , Crystallization of Soluble Proteins in Vapor (US ) Diffusion for X - ray Crystallography , Nature Protocols , published on - line Jun . 28 , 2007 , 2 ( 7 ) : 1633 - 1651. * ( 73 ) Assignee : THE REGENTS OF THE Cudney R . Protein Crystallization and Dumb Luck . The Rigaku UNIVERSITY OF CALIFORNIA , Journal. 1999 . vol. 16 , No . 1 , pp . 1 - 7 . * Drenth , “ Principles of Protein X - Ray Crystallography ” , 2nd Edi Oakland , CA (US ) tion , 1999 Springer - Verlag New York Inc ., Chapter 1 , p . 1 - 21. * Moon et al . , “ A synergistic approach to protein crystallization : ( * ) Notice : Subject to any disclaimer , the term of this Combination of a fixed -arm carrier with surface entropy reduction ” , patent is extended or adjusted under 35 Protein Science , 2010 , 19 : 901 -913 .
    [Show full text]
  • Architecture De Dataflow Pour Des Systèmes Modulaires Et Génériques De Simulation De Plante Christophe Pradal
    Architecture de dataflow pour des systèmes modulaires et génériques de simulation de plante Christophe Pradal To cite this version: Christophe Pradal. Architecture de dataflow pour des systèmes modulaires et génériques desim- ulation de plante. Modélisation et simulation. Université Montpellier, 2019. Français. NNT : 2019MONTS034. tel-02879776 HAL Id: tel-02879776 https://tel.archives-ouvertes.fr/tel-02879776 Submitted on 24 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITE DE MONTPELLIER PAR LA VALIDATION DES ACQUIS DE L’EXPERIENCE Année universitaire 2018-2019 En Informatique École doctorale I2S – Information, Structures, Systèmes Unité de recherche UMR AGAP – Université de Montpellier SYNTHÈSE DES TRAVAUX DE RECHERCHE Architecture de Dataflow pour des systèmes modulaires et génériques de simulation de plante Présentée par Christophe PRADAL Le 17 juillet 2019 Référent : Christophe GODIN RAPPORT DE GESTION Devant le jury composé de Christophe GODIN, Directeur de recherche, Inria, Lyon
    [Show full text]
  • UCSF Chimera[Mdash]A Visualization System for Exploratory Research And
    UCSF Chimera—A Visualization System for Exploratory Research and Analysis ERIC F. PETTERSEN, THOMAS D. GODDARD, CONRAD C. HUANG, GREGORY S. COUCH, DANIEL M. GREENBLATT, ELAINE C. MENG, THOMAS E. FERRIN Computer Graphics Laboratory, Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94143-2240 Received 24 February 2004; Accepted 6 May 2004 DOI 10.1002/jcc.20084 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1605–1612, 2004 Key words: molecular graphics; extensibility; visualization; multiscale modeling; sequence alignment Introduction had not anticipated.
    [Show full text]