Landforms of the United States and Canada

Total Page:16

File Type:pdf, Size:1020Kb

Landforms of the United States and Canada Physical Geography of the United States & Canada Ch. 1 ~ Blue Book ~ Social Studies Unit Name: ______________________ Section: 6 - _______ 0 Lesson 1 ~ Land and Water ~ Outline ~ Pages 9-14 Where in the World Are We? The United States and Canada are located in ________ ______________. The _______________ ________ borders them to the east, the ________________________ borders them to the west, and the ___________ Ocean borders Canada to the north. Mexico and the ______ ___ ___________ border the United States to the south. Hawaii and __________________ are also part of the United States. _________________ has more land that the United States and is the __________-largest country in the world. The United States is the ____________ largest country but has more ____________ than Canada. Landforms of the United States and Canada The ___________ _______________ are the largest mountain chain in North America, extending about _______ miles along the western section of the continent. The ___________________ Mountains are the second largest, and stretch about _________________ miles. The Appalachians meet the _______________ Highlands in Canada. Between these two mountain chains lies a huge ________________ area. In Canada, these lowlands are called the _______________ Plains and in the United States they are called the _________________ Plains and the _______________ Plains. Most of this area has rich ____________ for farming. 1 Special Features of the United States The United States has a ______________ area along the eastern and southern coast, which attracted many settlers to this area. This area is flat and has _______________ land, as well as access to the sea. West of the Rockies lies a region of __________________ and _______________. The _______________ Salt Lake is located in the northeast section of this valley. ________ __________ is in the southwestern section and most of his area is below _______________ level. This is also the _______________ place in North America, where temperatures climb to _____________________. Two additional mountain ranges to the west of Death Valley are _______ Nevada in __________ and the _________________ in Washington and Oregon. The Cascades were formed by _________________. Mount ___ __________ erupted in 1980. Special Features of Canada Mount ____________, Canada’s highest peak is found in the _______________ Territory. It is part of the ___________ Mountains. Beyond the Interior Plains, lies the ___________________ Shield. This large area covers about ____________ of Canada. Few people live here because the land is ____________ (rocky soil, no fertile soil, can’t farm). Southeast of the Shield are the ____ _____________ ____________. These are located along the ____ ______________ River, and are the smallest region in Canada. They are home to more than half of the country’s _________________, and this region is also Canada’s manufacturing center. The farmers in this region produce _____ ___________ of the country’s crops because of the fertile soil. 2 Major Bodies of Water There are important lakes and rivers in both the U.S. and Canada for _______________, recreation and ________________. The Great Lakes The world’s largest group of fresh-water ________, is made up of Lake _____________, Lake _____________, Lake _____________, Lake _____________, and Lake _____________. Lake _____________ is the only one entirely in the U.S. The other four are part of a ________________ between the two countries. These lakes formed by ______________, which dug deep trenches in the land. Mighty Rivers Canada’s two major rivers are the _________ River and the ______ ________________ River. The Mackenzie River, which is the country’s ___________________ river, forms in the Rockies and flows north to the _______________ Ocean. The St. Lawrence _____________ connects the Great Lakes to the ______________ Ocean, which makes it one of North America’s most important routes. The St. Lawrence River is called the ____________________. In the United States, the longest river is the __________________ ____________. It begins in _________________ and flows south of the Gulf of ____________. Two major rivers, the ___________ River and the ____________ River are tributaries of the Mississippi. A tributary is a ____________or river that flows into a ____________ river.. The Fraser, _________________, and the __________________ rivers flow ___________ from the Rockies. The Platt and the ______________ rivers flow ________ from 3 the Rockies. The Rockies form the __________________ ___________, which is the boundary that separates rivers flowing towards __________________ sides of the continent. Lesson 1 ~ Land and Water ~ Review ~ Pages 9-14 Introduction ~ p. 9 1. What is the purpose of this passage? To recall ________________ knowledge and the reader’s ______________ experiences. Where in the World Are We? ~ p. 10 2. What does the word border mean in paragraph one? A ___________ refers to where two ____________________ meet. 3. Give two examples of how physical features have affected life in the U.S. and Canada. 1) ________ area – good soil to grow __________ 2) _________________ - rugged, not a good ____________ region 4. Why did so many people coming to the U.S. settle along the coastal plains? Many settled along the coastal plains because of the rich, ___________ __________. 5. In the chart below, identify the borders of the United States and Canada. 4 United States Canada North South East West 6. In the chart below, identify the landforms of the United States and Canada. Mountains Plains Name Where? Name Where? United States Canada 5 Special Features and Bodies of Water of the U.S. 6 Special Features and Bodies of Water of Canada 7 8 Chapter 1 ~ Section 1 ~ Key Terms Use the references in the back of your textbook to define each of the following. glacier: a huge, ________-moving mass of ________ and ______ tributary: a river or stream that ____________ into a ____________ river Continental Divide: the ________________ that separates rivers flowing toward ________________ sides of a continent; in North America, in the ____________ Mountains (p. 14) Rocky Mountains: the major mountain __________ in western North America, extending south from ______________, Canada, through the ______________ United States to ____________ (p. 10) Appalachian Mountains: a mountain system in _________________ North America (p. 11) Death Valley: the______________, driest ______________ of North America, located in southeastern ____________________ (p. 11) Great Lakes: a group of five large lakes in central North America (p. 13) Lake ___________ H Lake ___________ O Lake ___________ M Lake ___________ E Lake ___________ S St. Lawrence River: a river in ______________ North America; the _________ - longest river in ____________ (p. 12) Mississippi River: a large river in the ______________ United States flowing south from __________________to the Gulf of ____________ (p. 14) 9 10 Canadian Regions Map Activity Using a color code key on your map label and color the 6 main regions of Canada. Place the names of the regions in the key. 1. Interior Plains 2. Canadian Shield 3. Appalachian Highlands 4. Great Lakes – St. Lawrence Lowlands 5. Arctic Islands 6. Western Mountain Region Also include and label the following items on your map. 1. Compass Rose 2. Arctic Ocean 3. Pacific Ocean 4. Atlantic Ocean 5. Ottawa 6. Hudson Bay 7. Great Lakes 11 Lesson 2 ~ Climate and Vegetation ~ Outline ~ Pgs. 15-20 I. Climate Zones A. Climate zones in the United States and Canada range from the ___________ climate in the north to the __________ climate of the Southwestern United States. B. Climate zones are affected by the __________ of the region as well as _______________, mountains, and ___________. C. Canada’s Climates – Braving the Cold 1. Generally the farther a location is from the ________________, the colder its climate. 2. Much of Canada lies north of the _____________ line of latitude. 3. Areas of Canada that are near the ocean generally have fairly _______________ climates year round. 4. Being far from the ocean also affects climate. Inland areas, such as _________, often have climate extremes with very cold winters and very warm summers. 5. Mountains also affect Canada’s climate, especially its ________________. Winds blowing from the ______________ Ocean rise as they meet mountain ranges in the west. This causes the winds to ____________ and drop their _________________ on the mountains. 6. The area on the side of the mountains away from the wind is a __________ _______________, which is an area on the dry, sheltered side of a mountain that receives ____________ rainfall. 12 D. Climate of the United States 1. Latitude also affects climate in the U.S. ____________ is cold most of the year because it is far from the equator. 2. Florida and Hawaii, on the other hand, lie near or within the _____________, where it is almost always hot. 3. The _____________ Ocean and mountains in the west also affect climate in the United States. 4. Parts of California, Nevada, and Arizona that are in the rain shadow are semiarid or _________________. 5. East of the Great Plains, the country has ___________ climates. a. The __________ – summers are warm and winters are cold and snowy b. The __________ – summers tend to be long and hot while winters are mild c. The __________ __________ – violent weather in summer and fall (tropical storms and hurricanes) II. Natural Vegetation Zones A. There are ___ major kinds of natural vegetation or _______ life. 1. ___________________ 2. ___________________ 3. ___________________ 4. ___________________ 13 B. Northern Tundra 1. The __________ is found in the far north. 2. It is a ______________, __________ region that is covered with snow for more than half the year. 3. The Arctic tundra contains _________________, or permanently frozen soil. 4. Few people live in the tundra, although some __________, a native people of Canada and Alaska, do. C. Prairies 1. Prairies are regions of _________ or rolling ________ covered with tall _________________. 2. They are located in areas that have ______________ climates.
Recommended publications
  • Salmon Decline in Western North America: Historical Context
    Salmon Decline in Western North America: Historical Context Robert T. Lackey Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon 97331 Email: [email protected] Phone: (541) 737-0569 Web: http://fw.oregonstate.edu/content/robert-lackey Citation: Lackey, Robert T. 2009. Salmon in Western North America: Historical Context. In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Washington, DC, Environmental Information Coalition, National Council for Science and the Environment). http://www.eoearth.org/article/Salmon_in_western_North_America:_assessing_the_future Introduction Wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia have been on a 160 year downward trend and are now at very low levels. Efforts to reverse the decline have been extensive and expensive, but have not met with much success. Salmon in the lower 48 states are well on their way to attaining a status enjoyed by some of their notable brethren — wolves, condors, grizzles, bison — wild animals that are unlikely to disappear entirely, but struggle to hang on as remnants of once flourishing species in small portions of their original range. A few entrepreneurs may be marketing the superior taste of buffalo burgers, but wild bison today are found only in Yellowstone and a few other refuges. This prediction will not surprise anyone familiar with the state of wild salmon runs. Consider the following facts: in California, Oregon, Idaho, Washington, and southern British Columbia, many runs are reduced to less than 10% of their historical numbers; some have disappeared. Many salmon runs are dominated by hatchery-bred fish. Even for the Columbia River, once the mightiest salmon-producing river south of Canada, over 80% of the total run is now comprised of hatchery-bred fish.
    [Show full text]
  • Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
    Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault.
    [Show full text]
  • Persistence of Pressure Patterns Over North America and the North Pacific Since AD 1500
    ARTICLE Received 13 Jan 2014 | Accepted 5 Aug 2014 | Published 11 Sep 2014 DOI: 10.1038/ncomms5912 Persistence of pressure patterns over North America and the North Pacific since AD 1500 Erika K. Wise1 & Matthew P. Dannenberg1 Changes in moisture delivery to western North America are largely controlled by interrelated, synoptic-scale atmospheric pressure patterns. Long-term records of upper-atmosphere pressure and related circulation patterns are needed to assess potential drivers of past severe droughts and evaluate how future climate changes may impact hydroclimatic systems. Here we develop a tree-ring-based climate field reconstruction of cool-season 500 hPa geopotential height on a 2° Â 2° grid over North America and the North Pacific to AD 1500 and examine the frequency and persistence of preinstrumental atmospheric pressure patterns using Self-Organizing Maps. Our results show extended time periods dominated by a set of persistent upper-air pressure patterns, providing insight into the atmospheric conditions leading to periods of sustained drought and pluvial periods in the preinstrumental past. A striking shift from meridional to zonal flow occurred at the end of the Little Ice Age and was sustained for several decades. 1 Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. Correspondence and requests for materials should be addressed to E.K.W. (email: [email protected]). NATURE COMMUNICATIONS | 5:4912 | DOI: 10.1038/ncomms5912 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5912 he position of the mid-latitude storm track, which Pressure anomalies in the upper atmosphere can persist for represents the primary large-scale moisture-delivery path- years to decades and influence temperature, precipitation and Tway to North America, is closely connected to the strength storm tracks over North America9.
    [Show full text]
  • Chapter 15 Comparative Phylogeography of North- Western North America: a Synthesis
    Chapter 15 Comparative phylogeography of north- western North America: a synthesis S. J. Brunsfeld,* J. Sullivan,†D. E. Soltis‡and P. S. Soltis§ Introduction Phylogeography is concerned with the principles and processes that determine the geographic distributions of genealogical lineages, within and among closely related species (Avise et al. 1987;Avise 2000).Although this field of study is very new (only a little more than a decade has passed since the term ‘phylogeography’was first coined; see Avise et al. 1987),the scientific literature in this research area is now voluminous. To date, most phylogeographic investigations of natural populations have focused on muticellular animals (Hewitt 1993; Patton et al. 1994; daSilva & Patton 1998; Eizirik et al. 1998;Avise 2000; Hewitt 2000; Schaal & Olsen 2000; Sullivan et al. 2000). This bias is due in large part to the ready availability of population-level genetic markers afforded by the animal mitochondrial genome. The more slowly evolving chloroplast genome,in contrast,often does not provide sufficient variation to reconstruct phylogeny at the populational level (Soltis et al. 1997; Schaal et al. 1998; Schaal & Olsen 2000). Phylogeographic data have accumulated so rapidly for animal taxa that it has been possible to compare phylogeographic structure among codistributed species. In fact, one of the most profound recent contributions of molecular phylogeography is the construction of regional phylogeographic perspec- tives that permit comparisons of phylogeographic structure among codistributed species, and subsequent integration of genealogical data with independent biogeo- graphic and systematic data. Probably the best-known regional phylogeographic analysis for North America involves animals from the southeastern USA (reviewed in Avise 2000).
    [Show full text]
  • Geologic, Climatic, and Vegetation History of California
    GEOLOGIC, CLIMATIC, AND VEGETATION HISTORY OF CALIFORNIA Constance I. Millar I ntroduction The dawning of the “Anthropocene,” the era of human-induced climate change, exposes what paleoscientists have documented for decades: earth’s environment—land, sea, air, and the organisms that inhabit these—is in a state of continual flux. Change is part of global reality, as is the relatively new and disruptive role humans superimpose on environmental and climatic flux. Historic dynamism is central to understanding how plant lineages exist in the present—their journey through time illuminates plant ecology and diversity, niche preferences, range distributions, and life-history characteristics, and is essential grounding for successful conservation planning. The editors of the current Manual recognize that the geologic, climatic, and vegetation history of California belong together as a single story, reflecting their interweaving nature. Advances in the sci- ences of geology, climatology, and paleobotany have shaken earlier interpretations of earth’s history and promoted integrated understanding of the origins of land, climate, and biota of western North America. In unraveling mysteries about the “what, where, and when” of California history, the respec- tive sciences have also clarified the “how” of processes responsible for geologic, climatic, and vegeta- tion change. This narrative of California’s prehistory emphasizes process and scale while also portraying pic- tures of the past. The goal is to foster a deeper understanding of landscape dynamics of California that will help toward preparing for changes coming in the future. This in turn will inform meaningful and effective conservation decisions to protect the remarkable diversity of rock, sky, and life that is our California heritage.
    [Show full text]
  • Lead-Alpha Ages of the Mesozoic Batholiths of Western North America
    Lead-Alpha Ages of the Mesozoic Batholiths of Western North America £y ESPER S. LARSEN, Jr., DAVID GOTTFRIED, HOWARD W. JAFFE, and CLAUDE L. WARING INVESTIGATIONS OF WESTERN BATHOLITHS GEOLOGICAL SURVEY BULLETIN 1070-B This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1958 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director Larsen, Esper Signius, 1879- Lead-alpha ages of the Mesozoic batholiths of western North America. By Esper S. Larsen, Jr. [and others] Washington, U. S. Govt. Print. Off., 1958» iv, 35-62 p. map, diagr., tables. 23 cm. (U. S. Geological Survey. Bulletin 1070-B. Investigations of western batholiths) Bibliography : p. 61-62i 1. Geology, Stratigraphic Mesozoic. 2. Petrology North Amer­ ica Coast Range. 3. Batholiths. i. Title. (Series: TJ. S. Geological Survey. Bulletin 1070-B. Series: U. S. Geological Sur­ vey. Investigations of western batholiths) 552.39 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 15 cents (paper cover) CONTENTS Page ___u___-______--j____-i_---_-_-_ ---- -___---__ _-- 35 Introduction. __________ __ _______ ________ _ ____ 35 Method........___________ 37 Age determinations _______________--__---_-_-__ _____________ 41 Batholithic rocks from Baja California, Oaxaca, and Guerrero, Mexico.._____________-_-_---_------------------------_ -__ 41 Southern California and related batholiths 48 Sierra Nevada and related batholiths _.__ _ ______ __ 49 Idaho batholith....___________-_ ________________ 50 Coast Range batholith __________________________ ___________ 51 Comparison with other age determinations ___________ _____ 58 Significance of the data__ ___.__.,_ _.__ ___________ __ 58 References____________________-------_---_ ___________________ 61 ILLUSTRATIONS Page FIGURE 5.
    [Show full text]
  • Bark Beetles in Western North America: an Annotated Bibliography for Natural Resource Managers
    Bark Beetles in Western North America: An Annotated Bibliography for Natural Resource Managers Gregory S. Pappas University of Wyoming Laramie, WY 2013 i i Compiled by Greg Pappas, candidate for a master of science in botany and environment and natural resources at the University of Wyoming, as part of “Our Future Forests: Beyond Bark Beetles,” a project of the Medicine Bow-Routt National Forests and Ruckelshaus Institute of Environment and Natural Resources conducted in 2013. Cover photo © Joe Riis/U.S. Forest Service 2013 The Medicine Bow-Routt National Forests and Thunder Basin National Grassland cover nearly 2.9 million acres from north central Colorado to central and northeastern Wyoming. http://www.fs.usda.gov/mbr The Ruckelshaus Institute of Environment and Natural Resources at the University of Wyoming supports stakeholder-driven solutions to environmental challenges by communicating relevant research and promoting collaborative decision making. http://www.uwyo.edu/haub/ruckelshaus-institute ii ABSTRACT An unprecedented multi-species bark beetle epidemic has caused severe tree mortality across western North American forests, prompting concerns about the safety, management, and future health and development of these changing landscapes. The significant ecological and socioeconomic impacts associated with bark beetle outbreaks present issues and challenges best addressed through cooperation among community residents, policymakers, and managers. The public's perception of both the epidemic and ability of resource managers to respond effectively varies considerably depending on location and time since disturbance. A thorough understanding of this and other human aspects of bark beetle outbreaks is necessary to alleviate the potential tension between managers and stakeholders created by management actions.
    [Show full text]
  • The Geology of Western North America (Abridged Version)
    THE GEOLOGY OF WESTERN NORTH AMERICA (ABRIDGED VERSION) By JoAnne Nelson, British Columbia Ministry of Energy and Mines, Victoria, BC, Canada [email protected] The geological history of western North America has siliciclastic strata that are now beautifully exposed in the been, and continues to be, shaped by its position on the Canadian Rocky Mountains. The Mt. Brussilof magnesite eastern rim of the Pacific Ocean. The modern Pacific deposit is hosted by Middle Cambrian carbonate within Ocean’s basin is the successor of the original ocean which this continental shelf sequence. Equivalent platformal split Laurentia - our continent’s cratonic core - away from strata are best exposed in the southwestern United States, the rest of the Precambrian supercontinent Rodinia, an the Grand Canyon being a world-renowned example. The ocean that widened until in late Paleozoic time, it became opening of Panthalassa was not a single event in western Panthalassa, the World Ocean. Unlike the eastern side of North America: convincing Cambrian as well as late the continent, where continental collision was followed Proterozoic rift-related sequences occur, and alkalic to by re-opening of the Atlantic Ocean - the “Wilson cycle” ocean-floor basalts in the miogeocline range through - western North America has always faced the same Ordovician into Devonian age. The implied protracted active ocean basin. Its tectonic evolution has always been nature of this rift event, in contrast to the short-lived and that of an active margin, affected first by multi-episodic efficient opening of the Atlantic Ocean, continues to rifting, and then by plate-margin subduction and puzzle.
    [Show full text]
  • On the Northwestern Plains of North America, Archaeological Models of Settlement Systems Are, for the Most Part, Based on the Ec
    INDIGENOUS STEWARDSHIP: LESSONS FROM YESTERDAY FOR THE PARKS OF TOMORROW by Gerald A. Oetelaar and D. Joy Oetelaar 1 ABSTRACT Most researchers today acknowledge the impact of Indigenous populations on the supposed ‘natural’ or ‘pristine’ environments encountered by European explorers and naturalists travelling through the interior of North America. However, few are willing to accept the extent of this landscape management, especially in western North America. In fact, Indigenous populations created their own series of ‘parks’ through species-level, community-level and landscape-level management strategies such as the manipulation of plants, the selective harvest and displacement of resources, and the use of controlled burns. The resultant ‘parks’ were scattered across southern Alberta and were the product of disturbance and contingency guided by Indigenous perceptions of the reciprocal relationship between humans and the world around them. Using examples of managed landscapes scattered across southern Alberta, we discuss the origin of these Indigenous preserves and outline the motivation behind their stewardship. The lesson learned from this Indigenous approach to stewardship, we believe, provides guidelines for the management practices of tomorrow. 2 The establishment of Canada’s first national park in 1885 was, at least partially, motivated by a desire to attract tourists to the west but the current policies and practices of Canada’s protected areas are clearly aimed at conservation and restoration using measures of biodiversity to assess the ecological integrity of the ecosystem. Thus, management efforts are directed at maintaining ecosystems in as natural a state as possible, the latter being determined primarily by climate as modified locally by topography, drainage and soil parent material.
    [Show full text]
  • Biological Evaluation Sensitive Plants and Fungi Tahoe National Forest American River Ranger District Big Hope Fire Salvage and Restoration Project
    BIOLOGICAL EVALUATION SENSITIVE PLANTS AND FUNGI TAHOE NATIONAL FOREST AMERICAN RIVER RANGER DISTRICT BIG HOPE FIRE SALVAGE AND RESTORATION PROJECT Prepared by: KATHY VAN ZUUK Plant Ecologist/Botanist TNF Nonnative Invasive Plant Coordinator February 27, 2014 A Portion of the American Wildfire Area along Foresthill Divide Road 1 TABLE OF CONTENTS Topic Page Executive Summary 4 Introduction 6 Consultation to Date 6 Current Management Direction 8 Alternative Descriptions 9 Existing Environment 11 Description of Affected Sensitive Species Habitat Effects Analysis and 20 Determinations Reasonably Foreseeable Actions/Time Frames for the Analysis/ List of 20 Assumptions Effects to Species without potential habitat in the Project Area 22 • Lemmon’s milk-vetch, Astragalus lemmonii 22 • Modoc Plateau milk-vetch, Astragalus pulsiferae var. coronensis 22 • Sierra Valley Ivesia, Ivesia aperta var. aperta 22 • Dog Valley Ivesia, Ivesia aperta var. canina 23 • Plumas Ivesia, Ivesia sericoleuca 23 • Webber’s Ivesia, Ivesia webberi 23 • Wet-cliff Lewisia, Lewisia cantelovii 24 • Long-petaled Lewisia, Lewisia longipetala 24 • Follett’s mint, Monardella follettii 24 • Layne’s butterweed, Packera layneae 24 • White bark pine, Pinus albicaulis 25 • Sticky Pyrrocoma, Pyrrocoma lucida 25 Effects to Species with potential habitat in the Project Area 26 • Webber’s Milkvetch, Astragalus webberi 26 • Carson Range rock cress, Boechera rigidissima var. demota 27 • Triangle-lobe moonwort, Botrychium ascendens 27 • Scalloped moonwort, Botrychium crenulatum 27 • Common moonwort, Botrychium lunaria 27 • Mingan moonwort, Botrychium minganense 27 • Mountain moonwort, Botrychium montanum 28 • Bolander’s candle moss, Bruchia bolanderi 29 • Clustered Lady’s Slipper Orchid, Cypripedium fasciculatum 29 • Mountain Lady’s Slipper Orchid, Cypripedium montanum 30 • Starved Daisy, Erigeron miser 31 • Donner Pass Buckwheat, Eriogonum umbellatum var.
    [Show full text]
  • The Eastern Pacific Ocean and Hawaii
    THE EASTERN PACIFIC OCEAN AND HAWAII The Geology of North America Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3733735/9780813754659_frontmatter.pdf by guest on 25 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3733735/9780813754659_frontmatter.pdf by guest on 25 September 2021 The Eastern Pacific Ocean and Hawaii Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3733735/9780813754659_frontmatter.pdf by guest on 25 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3733735/9780813754659_frontmatter.pdf by guest on 25 September 2021 c Frontispiece 1: Sea floor photos illustrating types of hydrothermal vents; photos taken during the 1979 RISE expedition to the East Pacific Rise at 21°N (Spiess and others, 1980). See Haymon, this volume (A) "Galapagos-style" vent, characterized by warm fluids (up to ~20°C) oozing out of crevices in basalt, surrounded by clams and tube worms. Vestimentiferan worms in the foreground are approximately 1.5 m in length (photo taken by F. N. Spiess). (B) "White smoker" vent, emitting milky fluids with temperatures less than 300°C from sulfate-sulfide-silicate edifices encrusted with the white tubes of polychaete worms. The smaller edifice at center is approximately 1 m in height (photo taken by I. Juteau). (C) "Black smoker" vent, discharging 380 + 30°C fluids at a high flow rate through a sulfide- sulfate chimney, and precipitating black, fine-grained sulfide mineral particles within the rising plume; a white smoker is shown to the left of the black smoker, and an inactive edifice is on the right.
    [Show full text]
  • Explorers of the Pacific Northwest: an Education Resource Guide
    Explorersof thetheof PacificPacific NorthwNorthwestestest An Education Resource Guide Bureau of Land Management National Historic Oregon Trail Interpretive Center Baker City, Oregon This Education Resource guide was made possible through the cooperative efforts of: Bureau of Land Management Vale District National Historic Oregon Trail Interpretive Center Trail Tenders, Inc. Eastern Oregon University Northeast Oregon Heritage Fund of The Oregon Community Foundation J.G. Edwards Fund of The Oregon Community Foundation Content of this guide was developed by the Interpetive Staff at the National Historic Oregon Trail Interpretive Center, volunteers of Trail Tenders, Inc., and Eastern Oregon University students Michael Pace and Jim Dew. Artwork is by Tom Novak. Project co-ordination and layout by Sarah LeCompte. The Staff of the Interpretive Cen- ter and Trail Tenders would like to thank teachers from Baker City, Oregon 5J School District and North Powder, Oregon School District for their assistance in reviewing and test piloting materials in this guide. National Historic Oregon Trail Interpretive Center Explorers of the Pacific Northwest Introduction to Using This Guide This Education Resource Guide is designed for use by teachers and other educators who are teaching the history of the exploration of the Northwestern United States. Some activities are designed for the classroom while others are specific to the Interpretive Center and would necessitate a field trip to the site. This guide is designed for use by fourth grade teachers who traditionally teach Oregon history, but many activities can be adapted to younger or older students. This guide can be used to help meet benchmark one, benchmark two, and common curricu- lum goals in U.S.
    [Show full text]