Do Egg Parasitoids Increase the Tendency of Lestes Sponsa (Odonata: Lestidae) to Oviposit Underwater?

Total Page:16

File Type:pdf, Size:1020Kb

Do Egg Parasitoids Increase the Tendency of Lestes Sponsa (Odonata: Lestidae) to Oviposit Underwater? Eur. J. Entomol. 112(1): 63–68, 2015 doi: 10.14411/eje.2015.017 ISSN 1210-5759 (print), 1802-8829 (online) Do egg parasitoids increase the tendency of Lestes sponsa (Odonata: Lestidae) to oviposit underwater? FILIP HARABIŠ 1, *, Aleš DOLNÝ 2, *, **, JANA HELEBRANDOVÁ2 and TEREZA RUSKOVÁ2 1 Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21 Prague 6, Czech Republic; e-mail: [email protected] 2 Department of Biology and Ecology / Institute of Environmental Technologies, Faculty of Sciences, University of Ostrava, Chittussiho 10, CZ-710 00 Slezská Ostrava, Czech Republic; e-mails: [email protected]; [email protected]; [email protected] Key words. Odonata, Lestidae, Lestes sponsa, submerged oviposition, egg parasitism, parasitoids, selection of oviposition site, dragonflies Abstract. The selection of oviposition sites by insects can significantly affect egg mortality. Spreadwing damselflies (Odonata: Lesti- dae) predominantly lay their eggs in parts of plants growing above the surface of water and only occasionally also those parts growing underwater. Factors affecting the choice of oviposition site and decision to lay underwater are still poorly understood. We examined whether localities with different risk of egg parasitism, different oviposition strategies (above or below the water surface) and the depth at which the eggs were laid, affected the total number of eggs laid, the proportion parasitized and egg mortality. In general, a signifi- cantly higher proportion of the eggs laid above the surface of water were parasitized but spreadwing damselflies showed significant preference for laying eggs underwater at both of the sites studied. This preference, however, had a different effect on the overall mortal- ity of eggs at the two sites studied. Hence underwater oviposition by damselflies may be seen as a conditional anti-predator strategy, occurring only if the benefits exceed potential risks. Underwater oviposition may provide additional benefits other than protection against egg parasitism. INTRODUCTION several dozen minutes (Waage, 1984; Fincke, 1986; Tsub- As eggs are an immobile stage in the life cycle of insects, aki et al., 2006; Santolamazza et al., 2011). This leaves the they are very vulnerable to predation and parasitism. Dam- main question unanswered: Why do some species of dam- selflies lay eggs in several different ways, which may pro- selflies prefer this high-cost oviposition strategy, especially tect the eggs and significantly reduce egg mortality. Each when eggs laid in plant tissues are well protected (Corbet, strategy, however, incurs certain risks and energy costs 1999; Martens, 2001). Several hypotheses have been pro- (summarized by Corbet, 1999). The most general classi- posed to account for submerged oviposition in damselflies. fication of the modes of oviposition distinguishes between Fincke (1986) describes the evolution of underwater ovi- endophytic and exophytic oviposition, but there is sig- position as a consequence of sexual harassment and male nificant variation within these two groups (Corbet, 1999). guarding behaviour. Another hypothesis (Fincke, 1986; Several species of dragonflies, of the family Aeshnidae and Miller, 1994) stresses the importance of interspecific in- nearly all damselflies oviposit endophytically, which sig- teractions, with endophytic oviposition a means of protect- nificantly mitigate the likelihood of their eggs desiccating ing eggs from abiotic stresses such as drying out and high or freezing and reduces risk of their being eaten by preda- temperatures and incidental predators but not attack by egg tors (Corbet, 1999). Endophytic oviposition, however, is parasitoids (Spence, 1986; Corbet, 1999). time-consuming, involves additional energy costs and The majority of aquatic parasitoids (about 150 species investment in specific morphological structures, because of Hymenoptera) are generalists, utilizing a wide range egg-laying females must insert their eggs into plant tissues of eggs of different host taxa (Fursov, 1995; Bennett, (Matushkina & Gorb, 2007). 2008) and idiobionts, parasitoids that prevent further de- Even more time consuming and risky is the strategy of velopment of their hosts after initially immobilizing them endophytic oviposition in which the adult damselflies lay (Askew & Shaw, 1986; Strand, 1986). Parasitoids may kill eggs underwater (Corbet, 1999). Underwater (submerged) a significant percentage of their hosts and so induce many oviposition by damselflies is often considered to be an inci- behavioural adaptations in aquatic insects (Spence, 1986; dental phenomenon as adult damselflies are not adapted to Gibbons & Pain, 1992; Henriquez & Spence, 1993; Amano stay submerged in water. However, several studies indicate et al., 2008). Several studies on the interactions between that some damselflies (the families Calopterygidae and the egg parasitoid Tiphodytes gerriphagus (Hymenoptera: Coenagrionidae) are able to lay eggs after submergence for Scelionidae) and several species of water striders indicate * The first two authors contributed equally to this work. ** Corresponding author. 63 that these Hemiptera are able to detect parasitoids (Hen- Species studied riquez & Spence, 1993; Hirayama & Kasuya, 2009). In Lestes sponsa is a common species in almost all parts of Eu- addition, there is evidence that submerged oviposition by rope and Asia (Dijkstra & Lewington, 2006). Oviposition is water striders could be a behavioural response to a high predominantly by tandem pairs. The female damselfly lays eggs density of egg parasitoids (Hirayama & Kasuya, 2009). Al- endophytically. Eggs can complete their development in about 8 though these parasitoids can attack eggs underwater, such weeks (Jödicke, 1997), but those laid in August, undergo winter diapause. Larvae begin to hatch only when the water temperature attacks are significantly less frequent than of eggs laid rises above 13°C (Jödicke, 1997). The rate of development inside above the surface of water (Amano et al., 2008; Hirayama the egg and survival greatly depend upon ambient temperature & Kasuya, 2009). The tendency to lay eggs as deeply as (Jödicke, 1997; Corbet, 1999). possible is however limited by increasing mortality of eggs Prior to this study, more than 250 submerged ovipositions by at greater depths, their inability to move underwater and tandem pairs were observed. We only scored instances of sub- so avoid predation and their risk of drowning while lay- merged oviposition when the female was completely submerged ing eggs (Amano et al., 2008; Hirayama & Kasuya, 2008, (including wings). The majority of L. sponsa oviposited underwa- 2009). ter. The situation when a female oviposited partially submerged As noted above, all previous laboratory studies on the was very rare. This occurred only in situations when the pair was distracted, such as by other males (Dolný et al., 2014). effect of parasitoids on the selection by their host of an ovi- position site and the occurrence of submerged oviposition Submerged oviposition and egg mortality were done using water striders. The effects of egg para- Ten days after the last recorded oviposition event (22th August sitoids on the behaviour of damselflies and other aquatic in 2010), random samples of plants were collected at each local- insects are rarely investigated. This may be important be- ity, with five samples at least 2 m apart collected at each locality. cause damselflies have a markedly different oviposition We only sampled Juncus spp. and Equisetum spp., which bear noticeable scars after endophytic oviposition by Lestes. We were behaviour to that of the taxa previously studied. The aim not able to distinguish eggs of different species of Lestes, but L. of the present study is to determine whether L. sponsa has sponsa was the most abundant species at both sites. Earlier in a defensive strategy against egg parasitoids. In addition, the season, when observing the behaviour of L. sponsa, the posi- we wanted to reveal other potential benefits of underwater tion of the water level was marked on the stems of plants using oviposition. Two localities with a high and low population a Centropen Paint Marker, which indicated that the water level density of parasitoids, respectively, were used in this study. did not change during the experiment. A random sample of 204 Specifically, we addressed: (i) is there a difference in the of the collected plants was kept at a temperature of about 10°C overall number of eggs laid, the proportion of parasitized and processed within ten days of collection. Stems were cut into eggs or the number of dead eggs (undeveloped or damaged 5 cm long segments and their position relative to the surface of the water recorded. All eggs were excised from plant tissues in eggs) when L. sponsa lays eggs under or above the surface each segment. Developing, parasitized and dead eggs were visu- of the water, (ii) does the depth in the water or height above ally determined using a dissecting microscope at a magnification the water affect the proportion of the above mentioned egg of 40×. The development of damselfly and egg parasitoids was categories. Our study hypotheses were: (1) parasitoids in- relatively fast and therefore also clearly visible. It was possible fluence damselfly behaviour, therefore in the locality with to distinguish between “developing eggs” and “eggs containing a low risk of parasitism few eggs should be laid under the parasitoids” as parasitoid
Recommended publications
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Dragonflies and Damselflies in Your Garden
    Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups.
    [Show full text]
  • Bedfordshire and Luton County Wildlife Sites
    Bedfordshire and Luton County Wildlife Sites Selection Guidelines VERSION 14 December 2020 BEDFORDSHIRE AND LUTON LOCAL SITES PARTNERSHIP 1 Contents 1. INTRODUCTION ........................................................................................................................................................ 5 2. HISTORY OF THE CWS SYSTEM ......................................................................................................................... 7 3. CURRENT CWS SELECTION PROCESS ................................................................................................................ 8 4. Nature Conservation Review CRITERIA (modified version) ............................................................................. 10 5. GENERAL SUPPLEMENTARY FACTORS ......................................................................................................... 14 6 SITE SELECTION THRESHOLDS........................................................................................................................ 15 BOUNDARIES (all CWS) ............................................................................................................................................ 15 WOODLAND, TREES and HEDGES ........................................................................................................................ 15 TRADITIONAL ORCHARDS AND FRUIT TREES ................................................................................................. 19 ARABLE FIELD MARGINS........................................................................................................................................
    [Show full text]
  • Bedfordshire Naturalist
    The BEDFORDSHIRE NATURALIST BEING THE JOURNAL OF THE BEDFORDSHIRE NATURAL HISTORY SOCIETY AND FIELD CLUB FOR THE YEAR 1958 No. 13 Price Five Shillings PUBLISHED BY THE BEDFORDSHIRE NATURAL HISTORY SOCIETY & FIELD CLUB BEDFORD STONEBRIDGES PRINTERS LIMITED 1959 BEDFORDSHIRE NATURAL HISTORY SOCIETY & FIELD CLUB 1959 President I. G. DONY, Ph.D. Past Presidents SIR FREDERICK MANDER, M.A., B.Sc. OLIVER G. PIKE, F.R.P.S., M.B.O.D. MAJOR SIMON WHITBREAD, B.A., D.L., I.P. Chairman F. G. R. SOPER, I.P. Hon. General Secretary HENRY A. S. KEY, M.P.S., 61B GOLDINGTON ROAD, BEDFORD. Hon. Programme Secretary L. A. SPEED, 226 GOLDINGTON ROAD, BEDFORD. Hon. Treasurer I. M. DYMOND, 91 PUTNOE LANE, BEDFORD. Hon. Editor A. W. GUPPY, 53 GRANGE LANE, BROMHAM. Hon. Librarian MISS E. PROCTOR, B.Sc., THE NATURE ROOM, 4 THE AVENUE, BEDFORD. Council W. DURANT MIssE. PROCTOR A. I. DYMOND- (Co-opted) S. W. RODELL I. I. N. FERGUSON-LEES MISS G. M. TATTAM W. G. HARPER R. G. STEPHENSON E. MEADOWS B. B. WEST K. E. WEST RECORDERS BOTANY: Except Fungi: I. G. Dony, Ph.D., 41 Somerset Avenue, Luton. Fungi: D. A. Reid, B.Sc., The Herbarium, Royal Botanical Gardens, METEOROLOGY: Kew. A. W. -Guppy, B.Sc., .53 Grange Lane, Bromham. PALAEONTOLOGY: P. I., Smart, F.R.E.S., 1 Laburnum Avenue, Bedford. ZOOWGY: Crustacea: Miss E. Proctor, B.Sc., 253 Goldington Road, Bedford. Insecta: Hymenoptera: V. H. Chambers, Ph.D., 47 Westbourne Road, Luton. Lepidoptera: B. B. West, 37 Cardington Road, Bedford. Odonata: K. E. West, 37 Cardington Road, Bedford.
    [Show full text]
  • The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
    The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts.
    [Show full text]
  • (Zygoptera: Lestidae) Reproductive Output
    Odonalologica 38(1): 55-59 March I. 2009 SHORT COMMUNICATIONS Adult survival of Sympecma paedisca (Brauer) duringhibernation (Zygoptera: Lestidae) * R. Manger¹& N.J. Dingemanse² 'Stoepveldsingel 55,9403 SM Assen, The Netherlands; — [email protected] 2 Animal Ecology Group, Centre for Ecological and Evolutionary Studies & Department of Behavioural Biology, Behavioural and Cognitive Neurosciences, University of Groningen, PO Box 14,9750 AA Haren, The Netherlands; — [email protected] Received February 28, 2008 / Revised and Accepted August 4, 2008 The survival of hibernating adults was assessed in its winter habitat in the Neth- erlands to gain insight in the potential importance of this life-history phase for the populationdynamicsof this endangered sp. Compared to other odon., monthlysur- 2004 ± = ± vival rates (Dec. - March 2005) were high (mean SE 0.75 0.08),but overall winter survival was low (0.42). Potential causes of mortality duringhibernation are that effective of this in the discussed. The results imply protection sp. Netherlands of its and habitat. may benefit from protection both breeding wintering INTRODUCTION Changes in species distribution ultimately result from changes in survival and reproductive output (STEARNS, 1992). Our understanding of why species may become less abundantwill therefore in the more or critically depend upon insight key factors affecting these two major fitness components. Identificationof such key factors may greatly enhance our capability of effectively protecting endan- gered species. The aim of this in the factors af- general paper was to improve our insight key fecting the population dynamics of a rare and endangered Dutch odonate, the damselfly Sympecma paedisca. It is, together with S.
    [Show full text]
  • The Phylogeny of the Zygopterous Dragonflies As Based on The
    THE PHYLOGENY OF THE ZYGOPTEROUS DRAGON- FLIES AS BASED ON THE EVIDENCE OF THE PENES* CLARENCE HAMILTON KENNEDY, Ohio State University. This paper is merely the briefest outline of the writer's discoveries with regard to the inter-relationship of the major groups of the Zygoptera, a full account of which will appear in his thesis on the subject. Three papers1 by the writer discussing the value of this organ in classification of the Odonata have already been published. At the beginning, this study of the Zygoptera was viewed as an undertaking to define the various genera more exactly. The writer in no wise questioned the validity of the Selysian concep- tion that placed the Zygopterous subfamilies in series with the richly veined '' Calopterygines'' as primitive and the Pro- toneurinae as the latest and final reduction of venation. However, following Munz2 for the Agrioninae the writer was able to pick out here and there series of genera where the devel- opment was undoubtedly from a thinly veined wing to one richly veined, i. e., Megalagrion of Hawaii, the Argia series, Leptagrion, etc. These discoveries broke down the prejudice in the writer's mind for the irreversibility of evolution in the reduction of venation in the Odonata orders as a whole. Undoubt- ably in the Zygoptera many instances occur where a richly veined wing is merely the response to the necessity of greater wing area to support a larger body. As the study progressed the writer found almost invariably that generalized or connecting forms were usually sparsely veined as compared to their relatives.
    [Show full text]
  • Libellen Als Indikatoren Für Den Erfolg Von Renaturierungsmaß
    © Naturkdl. Station Stadt Linz/Austria; download unter www.biologiezentrum.at BEWERTUNG – ENTOMOLOGIE ÖKO·L 36/2 (2014): 17-26 Univ. Doz. Dr. Andreas Libellen als Indikatoren für den CHOVANEC Erfolg von Renaturierungsmaß- Umweltbundesamt Spittelauer Lände 5 nahmen an Fließgewässern 1090 Wien andreas.chovanec@ am Beispiel der Krems im Bereich umweltbundesamt.at Ansfelden/Oberaudorf Abb. 1: Schematische Darstellung des Untersuchungsgebietes mit den sechs Untersuchungsabschnitten (A-F). Die Anga- ben zur Strömungsgeschwindigkeit in den Abschnitten beziehen sich auf niedrige bis mittlere Wasserführungen; strichlierte Linie: Autobahn A1 Abb. 2: Abschnitt A, regulierter Abschnitt der Krems. Die Verbesserung des ökologischen Zustandes der heimischen Fließgewässer stellt eine der größten zukünftigen Herausfor- derungen für die österreichische Wasserwirtschaft dar. Das Fließgewässer-Netz in Oberösterreich umfasst insgesamt etwa 18.000 km. Von den Gewässern mit einem Einzugsgebiet > 10km2 (Länge 5.400 km) erreichen nur knapp 14 % den sehr guten oder guten ökologischen Zustand (BMLFUW 2010). Es gilt insbesondere, die Durchgängigkeit des Längskontinuums wiederherzustellen, Gewässer mit Umland und Zubringern zu vernetzen sowie die Habitatvielfalt monotoner Flussläufe durch Restrukturierungen zu steigern. In vielen Fällen erfolgen diese Maßnahmen im Zusammenhang mit Projekten zur Erhöhung der Hochwassersicherheit. Die im Jahr 2008 fertiggestellten hydrologischer und morphologischer auf Veränderungen ihres Lebens- Maßnahmen an der unteren Krems Sicht besonderen Vorrang haben. raumes reagieren (z. B. RAAB 2002, im Bereich Ansfelden/Oberaudorf Ziel der vorliegenden Studie war die CHOVANEC u. a. 2012). Libellen sind sind ein Beispiel für wasserbau- Bewertung der an der Krems durch- dem in Wasserrahmenrichtlinie liche Eingriffe, die sowohl den geführten Maßnahmen aus libellen- und Wasserrechtsgesetz (WRRL, ökologischen Zustand als auch den kundlicher Sicht.
    [Show full text]
  • (Zygoptera: Lestidae) Reproductive Output
    Odonalologica 38(1): 55-59 March I. 2009 SHORT COMMUNICATIONS Adult survival of Sympecma paedisca (Brauer) duringhibernation (Zygoptera: Lestidae) * R. Manger¹& N.J. Dingemanse² 'Stoepveldsingel 55,9403 SM Assen, The Netherlands; — [email protected] 2 Animal Ecology Group, Centre for Ecological and Evolutionary Studies & Department of Behavioural Biology, Behavioural and Cognitive Neurosciences, University of Groningen, PO Box 14,9750 AA Haren, The Netherlands; — [email protected] Received February 28, 2008 / Revised and Accepted August 4, 2008 The survival of hibernating adults was assessed in its winter habitat in the Neth- erlands to gain insight in the potential importance of this life-history phase for the populationdynamicsof this endangered sp. Compared to other odon., monthlysur- 2004 ± = ± vival rates (Dec. - March 2005) were high (mean SE 0.75 0.08),but overall winter survival was low (0.42). Potential causes of mortality duringhibernation are that effective of this in the discussed. The results imply protection sp. Netherlands of its and habitat. may benefit from protection both breeding wintering INTRODUCTION Changes in species distribution ultimately result from changes in survival and reproductive output (STEARNS, 1992). Our understanding of why species may become less abundantwill therefore in the more or critically depend upon insight key factors affecting these two major fitness components. Identificationof such key factors may greatly enhance our capability of effectively protecting endan- gered species. The aim of this in the factors af- general paper was to improve our insight key fecting the population dynamics of a rare and endangered Dutch odonate, the damselfly Sympecma paedisca. It is, together with S.
    [Show full text]
  • Atlas of Freshwater Key Biodiversity Areas in Armenia
    Freshwater Ecosystems and Biodiversity of Freshwater ATLAS Key Biodiversity Areas In Armenia Yerevan 2015 Freshwater Ecosystems and Biodiversity: Atlas of Freshwater Key Biodiversity Areas in Armenia © WWF-Armenia, 2015 This document is an output of the regional pilot project in the South Caucasus financially supported by the Ministry of Foreign Affairs of Norway (MFA) and implemented by WWF Lead Authors: Jörg Freyhof – Coordinator of the IUCN SSC Freshwater Fish Red List Authority; Chair for North Africa, Europe and the Middle East, IUCN SSC/WI Freshwater Fish Specialist Group Igor Khorozyan – Georg-August-Universität Göttingen, Germany Georgi Fayvush – Head of Department of GeoBotany and Ecological Physiology, Institute of Botany, National Academy of Sciences Contributing Experts: Alexander Malkhasyan – WWF Armenia Aram Aghasyan – Ministry of Nature Protection Bardukh Gabrielyan – Institute of Zoology, National Academy of Sciences Eleonora Gabrielyan – Institute of Botany, National Academy of Sciences Lusine Margaryan – Yerevan State University Mamikon Ghasabyan – Institute of Zoology, National Academy of Sciences Marina Arakelyan – Yerevan State University Marina Hovhanesyan – Institute of Botany, National Academy of Sciences Mark Kalashyan – Institute of Zoology, National Academy of Sciences Nshan Margaryan – Institute of Zoology, National Academy of Sciences Samvel Pipoyan – Armenian State Pedagogical University Siranush Nanagulyan – Yerevan State University Tatyana Danielyan – Institute of Botany, National Academy of Sciences Vasil Ananyan – WWF Armenia Lead GIS Authors: Giorgi Beruchashvili – WWF Caucasus Programme Office Natia Arobelidze – WWF Caucasus Programme Office Arman Kandaryan – WWF Armenia Coordinating Authors: Maka Bitsadze – WWF Caucasus Programme Office Karen Manvelyan – WWF Armenia Karen Karapetyan – WWF Armenia Freyhof J., Khorozyan I. and Fayvush G. 2015 Freshwater Ecosystems and Biodiversity: Atlas of Freshwater Key Biodiversity Areas in Armenia.
    [Show full text]
  • Sympecma Paedisca (Brauer, 1877)
    > Fiches de protection espèces > Libellules Régions concernées: Lac de Constance et Valais > Sympecma paedisca (Brauer, 1877) Leste enfant – Sibirische Winterlibelle – Leste di Brauer LR: CR | PRIO: 1 | OPN: protégé Description Ecologie Sympecma paedisca est une discrète demoiselle brunâtre. Le Sympecma paedisca colonise une grande diversité de plans d’eau. thorax est orné de bandes foncées, l’abdomen de taches sombres Au nord des Alpes il se reproduit surtout dans des secteurs inon- en forme de torpilles sur la face dorsale des segments 3-6. A la dables ou en voie d’atterrissement de lacs, d’étangs et de rete- différence des autres zygoptères les lestes du genre Sympecma nues, dans des mares de tourbières, petites fosses d’extraction portent au repos leurs quatre ailes jointes sur un même côté du de tourbe de haut-marais ou de marais de transition, dépres- corps. On remarque alors que les ptéro stigmas des ailes anté- sions d’épanchement des eaux de crues et dépressions alimen- rieures et postérieures ne se chevauchent quasi pas. Les imma- tées par la nappe alluviale, parfois aussi dans des mares de tures (été, automne) ont des dessins foncés à reflet métallique gravière ou de marnière fortement envahies par la végétation. de teinte verdâtre, puis cuivrée à bronzée. A maturité sexuelle, Les larves vivent avant tout dans des eaux mésotrophes peu au début du printemps, la coloration est plus mate et plus profondes, dans les secteurs de 5-30 cm de profondeur qui se foncée. Le dessus des yeux se colore en bleu. réchauffent rapidement. Ces milieux sont au moins inondés S.
    [Show full text]
  • An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
    International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999).
    [Show full text]