Database and Distributed Computing Foundations of Blockchains

Total Page:16

File Type:pdf, Size:1020Kb

Database and Distributed Computing Foundations of Blockchains Database and Distributed Computing Foundations of Blockchains Sujaya Maiyya Victor Zakhary Mohammad Javad Amiri Divyakant Agrawal Amr El Abbadi Department of Computer Science, University of California, Santa Barbara Santa Barbara, California {victorzakhary,sujaya-maiyya,amiri,agrawal,amr}@cs.ucsb.edu ABSTRACT 1 INTRODUCTION The uprise of Bitcoin and other peer-to-peer cryptocurren- Bitcoin [26] is considered the first successful global scale cies has opened many interesting and challenging problems peer-to-peer cryptocurrency. The Bitcoin protocol explained in cryptography, distributed systems, and databases. The by the mysterious Nakamoto allows financial transactions main underlying data structure is blockchain, a scalable fully to be transacted among participants without the need for a replicated structure that is shared among all participants and trusted third party, e.g., banks, credit card companies, or Pay- guarantees a consistent view of all user transactions by all Pal. Bitcoin eliminates the need for such a trusted third party participants in the system. In this tutorial, we discuss the by replacing it with a distributed ledger that is fully repli- basic protocols used in blockchain, and elaborate on its main cated among all participants in the cryptocurrency system. advantages and limitations. To overcome these limitations, This distributed ledger is referred to as blockchain. we provide the necessary distributed systems background in managing large scale fully replicated ledgers, using Byzan- tine Agreement protocols to solve the consensus problem. Finally, we expound on some of the most recent proposals to design scalable and efficient blockchains in both permission- less and permissioned settings. The focus of the tutorial is on the distributed systems and database aspects of the recent innovations in blockchains. Figure 1: Blockchain is a chain of blocks of transac- tions linked by hash pointers. KEYWORDS Blockchain, as shown in Figure 1, is a secure linked list Permissionless Blockchain, Permissioned Blockchain, Dis- of blocks containing financial transactions that occur in the tributed Consensus, Byzantine Faults system and linked by hash pointers. The main challenge that ACM Reference Format: Bitcoin addresses is to maintain a consistent view of this Sujaya Maiyya Victor Zakhary Mohammad Javad Amiri, replicated blockchain in a secure and fault-tolerant manner Divyakant Agrawal Amr El Abbadi. 2019. Database and Dis- in a permissionless setting and in the presence of malicious tributed Computing Foundations of Blockchains. In 2019 Interna- participants. Unlike permissioned settings where all the par- tional Conference on Management of Data (SIGMOD ’19), June 30- ticipants in the system are known a priori, a permissionless July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA, setting allows participants to freely join and leave the system 6 pages. https://doi.org/10.1145/3299869.3314030 without maintaining any global knowledge of the number of participants. To address these challenges, Bitcoin builds Permission to make digital or hard copies of all or part of this work for on foundations developed over the last few decades from personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear diverse fields [27], but primarily from the fields of cryp- this notice and the full citation on the first page. Copyrights for components tography [5, 30], distributed systems [8, 20, 21] and data of this work owned by others than ACM must be honored. Abstracting with management [6, 24, 33] as illustrated in Figure 2. Figure 2 credit is permitted. To copy otherwise, or republish, to post on servers or to shows the space of techniques that are used in Bitcoin to redistribute to lists, requires prior specific permission and/or a fee. Request implement a permissionless decentralized payments. Digital permissions from [email protected]. SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands signatures and hashing are the cryptographic foundations © 2019 Association for Computing Machinery. that are used in Bitcoin to support distributed transactions ACM ISBN 978-1-4503-5643-5/19/06...$15.00 stored in a ledger that is replicated across globally distributed https://doi.org/10.1145/3299869.3314030 sites in the presence of malicious faults. the Bitcoin protocol shortcomings in permissionless, e.g., Bit- coinNG [13], Byzcoin [18], Elastico [22], and Algorand [15], or permissioned, e.g., Tendermint [19], Hyperledger Fabric [4], and Quorum [25], settings using efficient and practical solutions that integrate cryptographic and consensus mech- anisms. In this tutorial, our goal is to present to the database com- munity an in-depth understanding of state-of-the-art solu- tions for efficient scalable blockchains. We progress towards this goal by starting from a detailed description of the proto- Figure 2: The space of techniques that are used to im- cols and techniques underlying the design of Bitcoin. Since plement permissionless decentralized cryptosystems. most recent innovations in blockchain design depend criti- cally on consensus protocols in malicious settings, we outline the basic foundations of distributed fault-tolerant consensus In spite of its current success, Bitcoin suffers from scala- protocols. This is followed by a discussion of the most re- bility performance limitations represented by the number of cent proposals to solve the blockchain design problem using transactions executed per second, especially when compared scalable fault-tolerant solutions. with commercially successful On Line Transaction Process- ing (OLTP) financial systems, such as credit card companies. Bitcoin uses a notion of miners who need to perform a com- 2 TUTORIAL OUTLINE putationally challenging Proof of Work (PoW) puzzle before 2.1 Background they can add any block of transactions to the replicated blockchain. Since the PoW puzzle is computationally hard, Consensus and Byzatine Agreement (BA) are well studied prob- very few miners can successfully solve the puzzle, and hence lems that were first proposed by Lamport, Shostak and Pease a successful miner can add a block to the blockchain and be in 1982 [21]. Any solution to the BA problem tries to reach guaranteed, with very high probability, to be unique. Many agreement among a well defined set of processes on a single concerns have been raised about the wasted massive energy value. The distributed systems community has extensively requirements to mine one Bitcoin block. In addition, the dif- explored this problem in both synchronous and asynchro- ficulty of Bitcoin’s Proof of Work (PoW) discourages miners nous systems. In an asynchronous system, the Fisher Lynch from mining independently and pushes them to form few and Patterson (FLP) impossibility result states that consen- powerful mining cartels. Concentrating most of the mining sus is not guaranteed to terminate in the presence of even power in few hands, or pools, risks to derail the whole idea a single crash failure [14]. This led to many BA protocols of decentralization. for synchronous systems, where the lower bound requires This mining approach to determine the process eligible that the number of maliciously faulty processes is at most to add a new block to the block chain is in contrast to the one third of the total number of processes. Synchronous BA distributed systems approach, that has been promoting the protocols require multiple rounds of communication and use of Byzantine Agreement or consensus, which is efficient extensive message passing. On the other hand, several effi- and more egalitarian. In fact, consensus protocols such as cient asynchronous BA protocols have been developed based Paxos have been quite successful in recent years in laying on Lamport’s Paxos protocol [20]. The main challenge such the foundations of large global scale data management sys- asynchronous protocols face is that they do not guarantee ter- tem. Unfortunately, Paxos has many limitations, especially mination. However, many systems have been designed that from a global cryptocurrency point of view, including the depend on Paxos, and have been practically successful [7, 9]. requirement of a permissioned setting, and that participants Paxos, however, assumes that processes may only fail by can only fail by crashing. An alternative to Paxos that toler- crashing. In a cryptocurrency setting, processes may act in a ates malicious failures is Practical Byzantine Fault-Tolerance malicious manner. In 1999, Castro and Liskov proposed the (PBFT) [8]. Although it tolerates malicious failures, PBFT still Practical Byzantine Fault Tolerance (PBFT) algorithm [8], requires a permissioned setting, and requires a large num- which is similar to Paxos in that it uses a small number of ber of message exchanges, hence does not scale to the large message rounds and assumes an asynchronous system. How- number of participants expected in modern day permission- ever, it tolerates malicious faults. During the tutorial, we will less cryptocurrencies. Recently, the security and distributed provide a general overview of the consensus problem and systems communities have been aggressively exploring al- a high level description of various BA protocols. In particu- ternative scalable solutions. These systems attempt to solve lar, we will provide a detailed description of PBFT, given its particular relevance to many recent cryptocurrency propos- The difficulty of PoW aims to
Recommended publications
  • The Power of Abstraction
    The Power of Abstraction Barbara Liskov March 2013 MIT CSAIL Software is Complex Systems are big and they do complicated things and they may be distributed and/or concurrent Addressing Complexity Algorithms, data structures, protocols Addressing Complexity Algorithms, data structures, protocols Programming methodology Programming languages This Talk Programming methodology as it developed Programming languages Programming languages today The Situation in 1970 The software crisis! Programming Methodology How should programs be designed? How should programs be structured? The Landscape E. W. Dijkstra. Go To Statement Considered Harmful. Cacm, Mar. 1968 The Landscape N. Wirth. Program Development by Stepwise Refinement. Cacm, April 1971 The Landscape D. L. Parnas. Information Distribution Aspects of Design Methodology. IFIP Congress, 1971 “The connections between modules are the assumptions which the modules make about each other.” Modularity A program is a collection of modules Modularity A program is a collection of modules Each module has an interface, described by a specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification E.g. a sort routine sort(a) Benefits of Modularity Local reasoning Modifiability Independent development The Situation in 1970 Procedures were the only type of module Not powerful enough, e.g., a file system Not used very much Complicated connections Partitions B.
    [Show full text]
  • MIT Turing Laureates Propose Creation of School of Computing an Open Letter to President Rafael Reif
    9/26/2017 The Tech OPINION LETTER TO THE EDITOR MIT Turing laureates propose creation of School of Computing An open letter to President Rafael Reif By MIT Turing Laureates | Sep. 20, 2017 Facebook Dear Rafael, Twitter There comes a time, in the course of scientic evolution, when a discipline is ready to emerge from the womb of its parent disciplines and take its own place in the world. For Reddit computer science, or more accurately, for the eld of computing, this moment is now. Print Born from a combination of mathematics and electrical engineering, with the original intent of speeding up calculations, computer science has grown to encompass all information processing and most communications and now to provide an alternative evolutionary path to intelligence. Computer science is rapidly becoming an essential part of most academic disciplines, and students are voting with their feet. One third of MIT undergraduates are majoring in computer science. This trend is unlikely to slow down anytime soon. We, the 7 active MIT Turing Award winners, therefore write this open letter to recommend that you consider the bold step of establishing a School of Computing at MIT. The new school, a brother to the Schools of Engineering and Science, will allow the eld of computing, with its many https://thetech.com/2017/09/20/turing-laureates-open-letter-to-reif 1/4 9/26/2017 The Tech facets and sub-elds, to grow and interact naturally with the Institute’s scientic and engineering environment. The Tech Submit Campus Life Stories Today the study of computation is housed primarily in the EECS department within the School of Engineering, but departments are limited in their ability to hire and grow.
    [Show full text]
  • On-The-Fly Garbage Collection: an Exercise in Cooperation
    8. HoIn, B.K.P. Determining lightness from an image. Comptr. Graphics and Image Processing 3, 4(Dec. 1974), 277-299. 9. Huffman, D.A. Impossible objects as nonsense sentences. In Machine Intelligence 6, B. Meltzer and D. Michie, Eds., Edinburgh U. Press, Edinburgh, 1971, pp. 295-323. 10. Mackworth, A.K. Consistency in networks of relations. Artif. Intell. 8, 1(1977), 99-118. I1. Marr, D. Simple memory: A theory for archicortex. Philos. Trans. Operating R.S. Gaines Roy. Soc. B. 252 (1971), 23-81. Systems Editor 12. Marr, D., and Poggio, T. Cooperative computation of stereo disparity. A.I. Memo 364, A.I. Lab., M.I.T., Cambridge, Mass., 1976. On-the-Fly Garbage 13. Minsky, M., and Papert, S. Perceptrons. M.I.T. Press, Cambridge, Mass., 1968. Collection: An Exercise in 14. Montanari, U. Networks of constraints: Fundamental properties and applications to picture processing. Inform. Sci. 7, 2(April 1974), Cooperation 95-132. 15. Rosenfeld, A., Hummel, R., and Zucker, S.W. Scene labelling by relaxation operations. IEEE Trans. Systems, Man, and Cybernetics Edsger W. Dijkstra SMC-6, 6(June 1976), 420-433. Burroughs Corporation 16. Sussman, G.J., and McDermott, D.V. From PLANNER to CONNIVER--a genetic approach. Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 1171-1179. Leslie Lamport 17. Sussman, G.J., and Stallman, R.M. Forward reasoning and SRI International dependency-directed backtracking in a system for computer-aided circuit analysis. A.I. Memo 380, A.I. Lab., M.I.T., Cambridge, Mass., 1976. A.J. Martin, C.S.
    [Show full text]
  • Arxiv:1909.05204V3 [Cs.DC] 6 Feb 2020
    Cogsworth: Byzantine View Synchronization Oded Naor, Technion and Calibra Mathieu Baudet, Calibra Dahlia Malkhi, Calibra Alexander Spiegelman, VMware Research Most methods for Byzantine fault tolerance (BFT) in the partial synchrony setting divide the local state of the nodes into views, and the transition from one view to the next dictates a leader change. In order to provide liveness, all honest nodes need to stay in the same view for a sufficiently long time. This requires view synchronization, a requisite of BFT that we extract and formally define here. Existing approaches for Byzantine view synchronization incur quadratic communication (in n, the number of parties). A cascade of O(n) view changes may thus result in O(n3) communication complexity. This paper presents a new Byzantine view synchronization algorithm named Cogsworth, that has optimistically linear communication complexity and constant latency. Faced with benign failures, Cogsworth has expected linear communication and constant latency. The result here serves as an important step towards reaching solutions that have overall quadratic communication, the known lower bound on Byzantine fault tolerant consensus. Cogsworth is particularly useful for a family of BFT protocols that already exhibit linear communication under various circumstances, but suffer quadratic overhead due to view synchro- nization. 1. INTRODUCTION Logical synchronization is a requisite for progress to be made in asynchronous state machine repli- cation (SMR). Previous Byzantine fault tolerant (BFT) synchronization mechanisms incur quadratic message complexities, frequently dominating over the linear cost of the consensus cores of BFT so- lutions. In this work, we define the view synchronization problem and provide the first solution in the Byzantine setting, whose latency is bounded and communication cost is linear, under a broad set of scenarios.
    [Show full text]
  • Mathematical Writing by Donald E. Knuth, Tracy Larrabee, and Paul M
    Mathematical Writing by Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts This report is based on a course of the same name given at Stanford University during autumn quarter, 1987. Here's the catalog description: CS 209. Mathematical Writing|Issues of technical writing and the ef- fective presentation of mathematics and computer science. Preparation of theses, papers, books, and \literate" computer programs. A term paper on a topic of your choice; this paper may be used for credit in another course. The first three lectures were a \minicourse" that summarized the basics. About two hundred people attended those three sessions, which were devoted primarily to a discussion of the points in x1 of this report. An exercise (x2) and a suggested solution (x3) were also part of the minicourse. The remaining 28 lectures covered these and other issues in depth. We saw many examples of \before" and \after" from manuscripts in progress. We learned how to avoid excessive subscripts and superscripts. We discussed the documentation of algorithms, com- puter programs, and user manuals. We considered the process of refereeing and editing. We studied how to make effective diagrams and tables, and how to find appropriate quota- tions to spice up a text. Some of the material duplicated some of what would be discussed in writing classes offered by the English department, but the vast majority of the lectures were devoted to issues that are specific to mathematics and/or computer science. Guest lectures by Herb Wilf (University of Pennsylvania), Jeff Ullman (Stanford), Leslie Lamport (Digital Equipment Corporation), Nils Nilsson (Stanford), Mary-Claire van Leunen (Digital Equipment Corporation), Rosalie Stemer (San Francisco Chronicle), and Paul Halmos (University of Santa Clara), were a special highlight as each of these outstanding authors presented their own perspectives on the problems of mathematical communication.
    [Show full text]
  • Verification and Specification of Concurrent Programs
    Verification and Specification of Concurrent Programs Leslie Lamport 16 November 1993 To appear in the proceedings of a REX Workshop held in The Netherlands in June, 1993. Verification and Specification of Concurrent Programs Leslie Lamport Digital Equipment Corporation Systems Research Center Abstract. I explore the history of, and lessons learned from, eighteen years of assertional methods for specifying and verifying concurrent pro- grams. I then propose a Utopian future in which mathematics prevails. Keywords. Assertional methods, fairness, formal methods, mathemat- ics, Owicki-Gries method, temporal logic, TLA. Table of Contents 1 A Brief and Rather Biased History of State-Based Methods for Verifying Concurrent Systems .................. 2 1.1 From Floyd to Owicki and Gries, and Beyond ........... 2 1.2Temporal Logic ............................ 4 1.3 Unity ................................. 5 2 An Even Briefer and More Biased History of State-Based Specification Methods for Concurrent Systems ......... 6 2.1 Axiomatic Specifications ....................... 6 2.2 Operational Specifications ...................... 7 2.3 Finite-State Methods ........................ 8 3 What We Have Learned ........................ 8 3.1 Not Sequential vs. Concurrent, but Functional vs. Reactive ... 8 3.2Invariance Under Stuttering ..................... 8 3.3 The Definitions of Safety and Liveness ............... 9 3.4 Fairness is Machine Closure ..................... 10 3.5 Hiding is Existential Quantification ................ 10 3.6 Specification Methods that Don’t Work .............. 11 3.7 Specification Methods that Work for the Wrong Reason ..... 12 4 Other Methods ............................. 14 5 A Brief Advertisement for My Approach to State-Based Ver- ification and Specification of Concurrent Systems ....... 16 5.1 The Power of Formal Mathematics ................. 16 5.2Specifying Programs with Mathematical Formulas ........ 17 5.3 TLA .................................
    [Show full text]
  • The Specification Language TLA+
    Leslie Lamport: The Speci¯cation Language TLA+ This is an addendum to a chapter by Stephan Merz in the book Logics of Speci¯cation Languages by Dines Bj¿rner and Martin C. Henson (Springer, 2008). It appeared in that book as part of a \reviews" chapter. Stephan Merz describes the TLA logic in great detail and provides about as good a description of TLA+ and how it can be used as is possible in a single chapter. Here, I give a historical account of how I developed TLA and TLA+ that explains some of the design choices, and I briefly discuss how TLA+ is used in practice. Whence TLA The logic TLA adds three things to the very simple temporal logic introduced into computer science by Pnueli [4]: ² Invariance under stuttering. ² Temporal existential quanti¯cation. ² Taking as atomic formulas not just state predicates but also action for- mulas. Here is what prompted these additions. When Pnueli ¯rst introduced temporal logic to computer science in the 1970s, it was clear to me that it provided the right logic for expressing the simple liveness properties of concurrent algorithms that were being considered at the time and for formalizing their proofs. In the early 1980s, interest turned from ad hoc properties of systems to complete speci¯cations. The idea of speci- fying a system as a conjunction of the temporal logic properties it should satisfy seemed quite attractive [5]. However, it soon became obvious that this approach does not work in practice. It is impossible to understand what a conjunction of individual properties actually speci¯es.
    [Show full text]
  • Using Lamport Clocks to Reason About Relaxed Memory Models
    Using Lamport Clocks to Reason About Relaxed Memory Models Anne E. Condon, Mark D. Hill, Manoj Plakal, Daniel J. Sorin Computer Sciences Department University of Wisconsin - Madison {condon,markhill,plakal,sorin}@cs.wisc.edu Abstract industrial product groups spend more time verifying their Cache coherence protocols of current shared-memory mul- system than actually designing and optimizing it. tiprocessors are difficult to verify. Our previous work pro- To verify a system, engineers should unambiguously posed an extension of Lamport’s logical clocks for showing define what “correct” means. For a shared-memory sys- that multiprocessors can implement sequential consistency tem, “correct” is defined by a memory consistency model. (SC) with an SGI Origin 2000-like directory protocol and a A memory consistency model defines for programmers the Sun Gigaplane-like split-transaction bus protocol. Many allowable behavior of hardware. A commonly-assumed commercial multiprocessors, however, implement more memory consistency model requires a shared-memory relaxed models, such as SPARC Total Store Order (TSO), a multiprocessor to appear to software as a multipro- variant of processor consistency, and Compaq (DEC) grammed uniprocessor. This model was formalized by Alpha, a variant of weak consistency. Lamport as sequential consistency (SC) [12]. Assume that This paper applies Lamport clocks to both a TSO and an each processor executes instructions and memory opera- Alpha implementation. Both implementations are based on tions in a dynamic execution order called program order. the same Sun Gigaplane-like split-transaction bus protocol An execution is SC if there exists a total order of memory we previously used, but the TSO implementation places a operations (reads and writes) in which (a) the program first-in-first-out write buffer between a processor and its orders of all processors are respected and (b) a read returns cache, while the Alpha implementation uses a coalescing the value of the last write (to the same address) in this write buffer.
    [Show full text]
  • Should Your Specification Language Be Typed?
    Should Your Specification Language Be Typed? LESLIE LAMPORT Compaq and LAWRENCE C. PAULSON University of Cambridge Most specification languages have a type system. Type systems are hard to get right, and getting them wrong can lead to inconsistencies. Set theory can serve as the basis for a specification lan- guage without types. This possibility, which has been widely overlooked, offers many advantages. Untyped set theory is simple and is more flexible than any simple typed formalism. Polymorphism, overloading, and subtyping can make a type system more powerful, but at the cost of increased complexity, and such refinements can never attain the flexibility of having no types at all. Typed formalisms have advantages too, stemming from the power of mechanical type checking. While types serve little purpose in hand proofs, they do help with mechanized proofs. In the absence of verification, type checking can catch errors in specifications. It may be possible to have the best of both worlds by adding typing annotations to an untyped specification language. We consider only specification languages, not programming languages. Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifica- tions; D.2.4 [Software Engineering]: Software/Program Verification—formal methods; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro- grams—specification techniques General Terms: Verification Additional Key Words and Phrases: Set theory, specification, types Editors’ introduction. We have invited the following
    [Show full text]
  • (LA)TEX Changed the Face of Mathematics: An
    20 TUGboat, Volume 22 (2001), No. 1/2 How (LA)TEX changed the face of Mathematics: An E-interview with Leslie Lamport, the author of LATEX∗ A great deal of mathematics, including this journal, is typeset with TEX or LATEX; this has made a last- ing change on the face of (published) mathematics, and has also permanently revolutionized mathemat- ics publishing. Many mathematicians typeset their own mathematics with these systems, and this has also changed mathematical thinking, so that in a ca- sual√ conversation one might write \sqrt{2} instead of 2 on the tablecloth . We take “ca. 20 years of TEX” as the occasion to ask Leslie Lamport, the author of LATEX, some questions. (GMZ) LL: At the time, it never really occurred to me that − − ∗ − − people would pay money for software. I certainly GMZ: How were your own first papers produced? Did didn’t think that people would pay money for a you start out on a typewriter? On roff/troff/nroff? book about software. Fortunately, Peter Gordon A LL: Typically, when writing a paper, I would write at Addison-Wesley convinced me to turn the LTEX a first draft in pen, then go to typewritten drafts. I manual into a book. In retrospect, I think I made would edit each typed draft with pencil or pen until more money by giving the software away and selling it became unreadable, and would then type the next the book than I would have by trying to sell the A draft. I think I usually had two typewritten drafts. software.
    [Show full text]
  • A Fast Mutual Exclusion Algorithm
    A Fast Mutual Exclusion Algorithm LESLIE LAMPORT Digital Equipment Corporation A new solution to the mutual exclusion problem is presented that, in the absence of contention, requires only seven memory accesses. It assumes atomic reads and atomic writes to shared regis- ters. Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management-rnuti mlti General terms: Algorithms Additional Key Words and Phrases: Critical section, multiprocessing I. INTRODUCTION The mutual exclusion problem-guaranteeing mutually exclusive access to a crit- ical section among a number of competing processes-is well known, and many solutions have been published. The original version of the problem, as presented by Dijkstra [2], assumed a shared memory with atomic read and write operations. Since the early 19709, solutions to this version have been of little practical interest. If the concurrent processesare being time-shared on a single processor, then mutual exclusion is easily achieved by inhibiting hardware interrupts at crucial times. On the other hand, multiprocessor computers have been built with atomic test-and- set instructions that permitted much simpler mutual exclusion algorithms. Since about 1974, researchers have concentrated on finding algorithms that use a more restricted form of shared memory or that use message passing instead of shared memory. Of late, the original version of the problem has not been widely studied. Recently, there has arisen interest in building shared-memory multiprocessor computers by connecting standard processors and memories, with as little modifica- tion to the hardware as possible. Because ordinary sequential processors and mem- ories do not have atomic test-and-set operations, it is worth investigating whether shared-memory mutual exclusion algorithms are a practical alternative.
    [Show full text]
  • The Greatest Pioneers in Computer Science
    The Greatest Pioneers in Computer Science Ivan Srba, Veronika Gondová 19th October 2017 5th Heidelberg Laureate Forum 2 Laureates of mathematics and computer science meet the next generation September 24–29, 2017, Heidelberg https://www.heidelberg-laureate-forum.org 3 Awards in Computer Science 4 Awards in Computer Science 5 • ACM A.M. Turing Award • “Nobel Prize of Computing” • Awarded to “an individual selected for contributions of a technical nature made to the computing community” • Accompanied by a prize of $1 million Awards in Computer Science 6 • ACM A.M. Turing Award • “Nobel Prize of Computing” • Awarded to “an individual selected for contributions of a technical nature made to the computing community” • Accompanied by a prize of $1 million • ACM Prize in Computing • Awarded to “an early to mid-career fundamental innovative contribution in computing” • Accompanied by a prize of $250,000 Some of Laureates We Met at 5th HLF 7 PeWe Postcard 8 Leslie Lamport 9 ACM A.M. Turing Award (2013) Source: https://www.heidelberg-laureate-forum.org/blog/laureate/leslie-lamport/ Leslie Lamport 10 ACM A.M. Turing Award (2013) “for fundamental contributions to the theory and practice of distributed and concurrent systems, notably the invention of concepts such as causality and logical clocks, safety and liveness, replicated state machines, and sequential consistency.” • Developed Lamport Clocks for distributed systems • The paper “Time, Clocks, and the Ordering of Events in a Distributed System” from 1978 has become one of the most cited works in computer science • Developed LaTeX • Invented the first digital signature algorithm • Currently work in Microsoft Research Source: https://www.heidelberg-laureate-forum.org/blog/laureate/leslie-lamport/ Balmer’s Peak 11 • The theory that computer programmers obtain quasi-magical, superhuman coding ability • when they have a blood alcohol concentration percentage between 0.129% and 0.138%.
    [Show full text]