Quantum noise extraction from the interference of laser pulses in optical quantum random number generator ROMAN SHAKHOVOY1,2*, DENIS SYCH1,2,3, VIOLETTA SHAROGLAZOVA1,2,4, ALEXANDER UDALTSOV1,2, ALEKSEY FEDOROV1,2,5, AND YURY KUROCHKIN1,2,6 1Russian Quantum Center, 45 Skolkovskoye shosse, Moscow, Russian Federation 2QRate, 100 Novaya str., Skolkovo, Russian Federation 3P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky prosp., Moscow, Russian Federation 4Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russian Federation 5Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Russian Federation 6NTI Center for Quantum Communications, National University of Science and Technology MISiS, 4 Leninsky prospekt, Moscow, Russian Federation *
[email protected] Abstract: We propose a method for quantum noise extraction from the interference of laser pulses with random phase. Our technique is based on the calculation of a parameter, which we called the quantum reduction factor, and which allows determining the contributions of quantum and classical noises in the assumption that classical fluctuations exhibit Gaussian distribution. To the best of our knowledge, the concept of the quantum reduction factor is introduced for the first time. We use such an approach to implement the post-processing-free optical quantum random number generator with the random bit generation rate of 2 Gbps. 1. Introduction Numerous quantum random number generators (QRNGs) based on various quantum effects have been demonstrated over the last two decades [1]. Among them, QRNGs employing different phenomena of quantum optics seem to be very convenient, relatively cheap, and, what is more important nowadays, could provide high random bit generation rates.