Complexity of regular abstractions of one-counter languages Mohamed Faouzi Atig Dmitry Chistikov Piotr Hofman ∗ Uppsala University, Sweden MPI-SWS, Germany LSV, CNRS & ENS Cachan,
[email protected] [email protected] Université Paris-Saclay, France
[email protected] K Narayan Kumar Prakash Saivasan Georg Zetzsche y Chennai Mathematical Institute, Chennai Mathematical Institute, LSV, CNRS & ENS Cachan, India India Université Paris-Saclay, France
[email protected] [email protected] [email protected] Abstract Reasoning about OCA, however, is hardly an easy task. We study the computational and descriptional complexity For example, checking whether two OCA accept some word of the following transformation: Given a one-counter au- in common is undecidable even in the deterministic case; for tomaton (OCA) A, construct a nondeterministic finite au- nondeterministic OCA, even language universality, as well tomaton (NFA) B that recognizes an abstraction of the lan- as language equivalence, is undecidable. For deterministic guage L(A): its (1) downward closure, (2) upward closure, OCA, equivalence is NL-complete; the proof of the member- or (3) Parikh image. For the Parikh image over a fixed al- ship in NL took 40 years [9, 35]. phabet and for the upward and downward closures, we find This lack of tractability suggests the study of finite-state polynomial-time algorithms that compute such an NFA. For abstractions for OCA. Such a transition is a recurrent theme the Parikh image with the alphabet as part of the input, we in formal methods: features of programs beyond finite state find a quasi-polynomial time algorithm and prove a com- are modeled with infinite-state systems (such as pushdown pleteness result: we construct a sequence of OCA that ad- automata, counter systems, Petri nets, etc.), and then finite- mits a polynomial-time algorithm iff there is one for all state abstractions of these systems come as an important OCA.