Ch 6 Chemical Bonding What You Should Learn in This Section (Objectives): Introduction to Chemical Bonding Types of Chemical
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
General Inorganic Chemistry
General Inorganic Chemistry Pre DP Chemistry Period 1 • Teacher: Annika Nyberg • [email protected] • Urgent messages via Wilma! Klicka här för att ändra format på underrubrik i bakgrunden • Course book: • CliffsNotes: Chemistry Quick Review http://www.chem1.com/acad/webtext/virtualtextbook.html Content • Introduction • The Structure of Matter (Chapter 1) • The Atom (Chapter 2 and 3) • Chemical bonding (Chapter 5) • The Mole (Chapter 2) • Solutions (Chapter 9) • Acids and bases (Chapter 10) • Quiz • Revision • EXAM 9.00-11.45 Assessment Exam: 80 % Quiz: 20% + practical work, activity and absences 1. Chemistry: a Science for the twenty-first century ● Chemistry has ancient roots, but is now a modern and active, evolving science. ● Chemistry is often called the central science, because a basic knowledge of chemistry is essential for students in biology, physics, geology and many other subjects. https://www.youtube.com/watch?v=tTlnrhiadnI ● Chemical research and development has provided us with new substances with specific properties. These substances have improved the quality of our lives. Health and medicine vaccines sanitation systems antibiotics anesthesia and all other drugs Energy new alternative energy sources (e.g. solar energy to electric energy, nuclear fission) electric cars with long lasting batteries Environment greenhouse gases acid rain and smog Materials and Technology ● polymers (rubber and nylon), ceramics (cookware), liquid crystals (electronic displays), adhesives (Post-It notes), coatings (latex-paint), silicon chips (computers) Food and Agriculture substances for biotechnology ● The purpose of this course is to make you understand how chemists see the world. ● In other words, if you see one thing (in the macroscopic world) you think another (visualize the particles and events in the microscopic world). -
Basic Chemistry
CH 2- THE CHEMISTRY OF LIFE Atoms . The study of chemistry begins with the basic unit of matter, the atom. The Greek philosopher Democritus called the smallest fragment of matter the atom, from the Greek word atomos. Atoms (cont.) . Placed side by side, 100 million atoms would make a row only about 1 centimeter long. Atoms contain subatomic particles that are even smaller. Atoms (cont.) . What three subatomic particles make up atoms? Atoms (cont.) . The subatomic particles that make up atoms are . protons . neutrons . electrons Atoms (cont.) . Smallest property of an element that still has the properties of that element . “The building blocks of matter” . Atoms are made of smaller (subatomic) particles arranged in a particular way . p+ (proton) . n° (neutron) . e- (electron) Atoms (cont.) . Protons and neutrons have about the same mass. Protons are positively charged particles (+). Neutrons carry no charge (◦). Strong forces bind protons and neutrons together to form the nucleus, which is at the center of the atom. Atoms (cont.) . The electron is a negatively charged particle (−) with 1/1840 the mass of a proton. Electrons are in constant motion in the space surrounding the nucleus (e- cloud). Atoms (cont.) . The subatomic particles in a helium atom. Atoms (cont.) • Electrons are attracted to the positively charged nucleus but remain outside the nucleus because of the energy of their motion. • Because atoms have equal numbers of electrons and protons, and because these subatomic particles have equal but opposite charges, atoms are neutral. Atoms (cont.) . Atomic number- # of p+ AND electrons in an atom . Mass number- total # of p+ + n° in an atom . -
Topological Analysis of the Metal-Metal Bond: a Tutorial Review Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L
Topological analysis of the metal-metal bond: A tutorial review Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L. Kahn, Bernard Silvi To cite this version: Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L. Kahn, Bernard Silvi. Topological analysis of the metal-metal bond: A tutorial review. Coordination Chemistry Reviews, Elsevier, 2017, 345, pp.150-181. 10.1016/j.ccr.2017.04.009. hal-01540328 HAL Id: hal-01540328 https://hal.sorbonne-universite.fr/hal-01540328 Submitted on 16 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Topological analysis of the metal-metal bond: a tutorial review Christine Lepetita,b, Pierre Faua,b, Katia Fajerwerga,b, MyrtilL. Kahn a,b, Bernard Silvic,∗ aCNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. bUniversité de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, i France cSorbonne Universités, UPMC, Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France Abstract This contribution explains how the topological methods of analysis of the electron density and related functions such as the electron localization function (ELF) and the electron localizability indicator (ELI-D) enable the theoretical characterization of various metal-metal (M-M) bonds (multiple M-M bonds, dative M-M bonds). -
Introduction to Aromaticity
Introduction to Aromaticity Historical Timeline:1 Spotlight on Benzene:2 th • Early 19 century chemists derive benzene formula (C6H6) and molecular mass (78). • Carbon to hydrogen ratio of 1:1 suggests high reactivity and instability. • However, benzene is fairly inert and fails to undergo reactions that characterize normal alkenes. - Benzene remains inert at room temperature. - Benzene is more resistant to catalytic hydrogenation than other alkenes. Possible (but wrong) benzene structures:3 Dewar benzene Prismane Fulvene 2,4- Hexadiyne - Rearranges to benzene at - Rearranges to - Undergoes catalytic - Undergoes catalytic room temperature. Faraday’s benzene. hydrogenation easily. hydrogenation easily - Lots of ring strain. - Lots of ring strain. - Lots of ring strain. 1 Timeline is computer-generated, compiled with information from pg. 594 of Bruice, Organic Chemistry, 4th Edition, Ch. 15.2, and from Chemistry 14C Thinkbook by Dr. Steven Hardinger, Version 4, p. 26 2 Chemistry 14C Thinkbook, p. 26 3 Images of Dewar benzene, prismane, fulvene, and 2,4-Hexadiyne taken from Chemistry 14C Thinkbook, p. 26. Kekulé’s solution: - “snake bites its own tail” (4) Problems with Kekulé’s solution: • If Kekulé’s structure were to have two chloride substituents replacing two hydrogen atoms, there should be a pair of 1,2-dichlorobenzene isomers: one isomer with single bonds separating the Cl atoms, and another with double bonds separating the Cl atoms. • These isomers were never isolated or detected. • Rapid equilibrium proposed, where isomers interconvert so quickly that they cannot be isolated or detected. • Regardless, Kekulé’s structure has C=C’s and normal alkene reactions are still expected. - But the unusual stability of benzene still unexplained. -
Symmetry of Three-Center, Four-Electron Bonds†‡
Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue Symmetry of three-center, four-electron bonds†‡ b a c Cite this: Chem. Sci., 2020, 11,7979 Ann Christin Reiersølmoen, § Stefano Battaglia, § Sigurd Øien-Ødegaard, Arvind Kumar Gupta, d Anne Fiksdahl,b Roland Lindh a and Mate Erdelyi *a All publication charges for this article ´ ´ ´ have been paid for by the Royal Society of Chemistry Three-center, four-electron bonds provide unusually strong interactions; however, their nature remains ununderstood. Investigations of the strength, symmetry and the covalent versus electrostatic character of three-center hydrogen bonds have vastly contributed to the understanding of chemical bonding, whereas the assessments of the analogous three-center halogen, chalcogen, tetrel and metallic s^-type long bonding are still lagging behind. Herein, we disclose the X-ray crystallographic, NMR spectroscopic and computational investigation of three-center, four-electron [D–X–D]+ bonding for a variety of cations (X+ ¼ H+,Li+,Na+,F+,Cl+,Br+,I+,Ag+ and Au+) using a benchmark bidentate model system. Formation of a three-center bond, [D–X–D]+ is accompanied by an at least 30% shortening of the D–X Received 11th April 2020 bonds. We introduce a numerical index that correlates symmetry to the ionic size and the electron Accepted 19th June 2020 affinity of the central cation, X+. Providing an improved understanding of the fundamental factors DOI: 10.1039/d0sc02076a Creative Commons Attribution 3.0 Unported Licence. determining bond symmetry on a comprehensive level is expected to facilitate future developments and rsc.li/chemical-science applications of secondary bonding and hypervalent chemistry. -
All About the Chemical Bonds and Compounds
All about the Chemical Bonds and Compounds Video Transcript Almost everything we see or touch in daily life – such as the food we eat, the water we drink, the air we breathe, and so on – is the result of chemical bonding. In other words, the world around us is generally not composed of isolated atoms. Instead, atoms bond to one another to form molecules and hence chemical compounds, which make up the world around us. Chemical bonding is the physical process that causes atoms and molecules to be attracted to each other and held together in more stable chemical compounds. There are three primary types of chemical bonds and compounds: Ionic bonds, covalent bonds, and metallic bonds. With ionic bonds, electrons are exchanged or transferred between atoms. They exist in ionic compounds. Generally, they’re a metal and a nonmetal – sodium chloride, magnesium oxide, etc. With covalent bonds, electrons are shared among the atoms. They exist in covalent and molecular compounds. Generally, they are nonmetals – carbon dioxide, dihydrogen monoxide, etc. With metallic bonds, a pool of electrons roam freely across entire molecule. They exist in metallic compounds. Generally, they’re metals and alloys – copper, gold, etc. A chemical compound is a group of two or more different atoms that are attracted to each other. Compounds can be divided into ionic compounds, covalent compounds, and metallic compounds. This table lists some key properties of each. Be aware that it is the valence electrons (those in the outermost level) that are involved in bonding. Atoms try to fill their outer energy levels because it’s energetically favorable for atoms to be in that configuration and it makes them stable. -
Chemical Formula
Chemical Formula Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHOR Jean Brainard, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2013 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. -
Chapter 10 – Chemical Reactions Notes
Chapter 8 – Chemical Reactions Notes Chemical Reactions: Chemical reactions are processes in which the atoms of one or more substances are rearranged to form different chemical compounds. How to tell if a chemical reaction has occurred (recap): Temperature changes that can’t be accounted for. o Exothermic reactions give off energy (as in fire). o Endothermic reactions absorb energy (as in a cold pack). Spontaneous color change. o This happens when things rust, when they rot, and when they burn. Appearance of a solid when two liquids are mixed. o This solid is called a precipitate. Formation of a gas / bubbling, as when vinegar and baking soda are mixed. Overall, the most important thing to remember is that a chemical reaction produces a whole new chemical compound. Just changing the way that something looks (breaking, melting, dissolving, etc) isn’t enough to qualify something as a chemical reaction! Balancing Equations Notes: Things to keep in mind when looking at the recipes for chemical reactions: 1) The stuff before the arrow is referred to as the “reactants” or “reagents”, and the stuff after the arrow is called the “products.” 2) The number of atoms of each element is the same on both sides of the arrow. Even though there may be different numbers of molecules, the number of atoms of each element needs to remain the same to obey the law of conservation of mass. 3) The numbers in front of the formulas tell you how many molecules or moles of each chemical are involved in the reaction. 4) Equations are nothing more than chemical recipes. -
1 5. Chemical Bonding
5. Chemical Bonding: The Covalent Bond Model 5.1 The Covalent Bond Model Almost all chemical substances are found as aggregates of atoms in the form of molecules and ions produced through the reactions of various atoms of elements except the noble-gas elements which are stable mono-atomic gases. Chemical bond is a term that describes the attractive force that is holding the atoms of the same or different kind of atoms in forming a molecule or ionic solid that has more stability than the individual atoms. Depending on the kinds of atoms participating in the interaction there seem to be three types of bonding: Gaining or Losing Electrons: Ionic bonding: Formed between many ions formed by metal and nonmetallic elements. Sharing Electrons: Covalent bonding: sharing of electrons between two atoms of non-metals. Metallic Bonding: sharing of electrons between many atoms of metals. Ionic Compounds Covalent Compounds Metallic Compounds 1. Metal and non-meal Non-metal and non-meal Metal of one type or, element combinations. elements combinations. combinations of two or metal elements combinations. 2. High melting brittle Gases, liquids, or waxy, low Conducting, high melting, crystalline solids. melting soft solids. malleable, ductile crystalline solids. 3. Do not conduct as a solid Do not conduct electricity at Conduct electricity at solid but conducts electricity any state. and molten states. when molten. 4. Dissolved in water produce Most are soluble in non-polar Insoluble in any type of conducting solutions solvents and few in water. solvents. (electrolytes) and few These solutions are non- are soluble in non-polar conducting (non- solvents. -
A Science That Studies the Composition and Properties of Matter. 1. Matter
Chemistry Basics I. Intro A. Chemistry Def- a science that studies the composition and properties of matter . 1. matter- anything that takes up space and has mass. B. Basic Terms: 1. Atom: neutral particle having one nucleus; the smallest representative sample of an element. In other words it is the base building block, of an element. 2. Element: a substance in which all of the atoms have the same atomic number. A substance that cannot be broken down by chemical reactions into anything that is both stable and simpler. Furthermore, all the atoms within an element have the same number of protons. 3. Molecule: a neutral particle composed of two or more atoms combined in a definite ratio of whole numbers. 4. Compound: a substance consisting of chemically combined atoms from two or more elements and present in a definite ratio.( Oxygen mass is always 8 times that of hydrogen) 5. Physical property: a property that can be observed without changing the chemical makeup of a substance. (eg. Color) Is melting point one? 6. Chemical reaction: chemicals, starting materials (reactants), interact with each other resulting in other substances, ending materials (products), with different properties. 7. Chemical Property: The ability of a substance, either by itself or with other substances, to undergo a change into new substances. 8. Extensive Property: a property that depends on sample size.(Volume) 9. Intensive Property: properties independent of size. ( Color, electrical conductivity, melting point…) 10. Pure substance: a substance that is always the same, regardless of its source. 11. Mixtures: a physical combination of elements or compounds that has no particular proportion by mass. -
Constraint Closure Drove Major Transitions in the Origins of Life
entropy Article Constraint Closure Drove Major Transitions in the Origins of Life Niles E. Lehman 1 and Stuart. A. Kauffman 2,* 1 Edac Research, 1879 Camino Cruz Blanca, Santa Fe, NM 87505, USA; [email protected] 2 Institute for Systems Biology, Seattle, WA 98109, USA * Correspondence: [email protected] Abstract: Life is an epiphenomenon for which origins are of tremendous interest to explain. We provide a framework for doing so based on the thermodynamic concept of work cycles. These cycles can create their own closure events, and thereby provide a mechanism for engendering novelty. We note that three significant such events led to life as we know it on Earth: (1) the advent of collective autocatalytic sets (CASs) of small molecules; (2) the advent of CASs of reproducing informational polymers; and (3) the advent of CASs of polymerase replicases. Each step could occur only when the boundary conditions of the system fostered constraints that fundamentally changed the phase space. With the realization that these successive events are required for innovative forms of life, we may now be able to focus more clearly on the question of life’s abundance in the universe. Keywords: origins of life; constraint closure; RNA world; novelty; autocatalytic sets 1. Introduction The plausibility of life in the universe is a hotly debated topic. As of today, life is only known to exist on Earth. Thus, it may have been a singular event, an infrequent event, or a common event, albeit one that has thus far evaded our detection outside our own planet. Herein, we will not attempt to argue for any particular frequency of life. -
Basic Concepts of Chemical Bonding
Basic Concepts of Chemical Bonding Cover 8.1 to 8.7 EXCEPT 1. Omit Energetics of Ionic Bond Formation Omit Born-Haber Cycle 2. Omit Dipole Moments ELEMENTS & COMPOUNDS • Why do elements react to form compounds ? • What are the forces that hold atoms together in molecules ? and ions in ionic compounds ? Electron configuration predict reactivity Element Electron configurations Mg (12e) 1S 2 2S 2 2P 6 3S 2 Reactive Mg 2+ (10e) [Ne] Stable Cl(17e) 1S 2 2S 2 2P 6 3S 2 3P 5 Reactive Cl - (18e) [Ar] Stable CHEMICAL BONDSBONDS attractive force holding atoms together Single Bond : involves an electron pair e.g. H 2 Double Bond : involves two electron pairs e.g. O 2 Triple Bond : involves three electron pairs e.g. N 2 TYPES OF CHEMICAL BONDSBONDS Ionic Polar Covalent Two Extremes Covalent The Two Extremes IONIC BOND results from the transfer of electrons from a metal to a nonmetal. COVALENT BOND results from the sharing of electrons between the atoms. Usually found between nonmetals. The POLAR COVALENT bond is In-between • the IONIC BOND [ transfer of electrons ] and • the COVALENT BOND [ shared electrons] The pair of electrons in a polar covalent bond are not shared equally . DISCRIPTION OF ELECTRONS 1. How Many Electrons ? 2. Electron Configuration 3. Orbital Diagram 4. Quantum Numbers 5. LEWISLEWIS SYMBOLSSYMBOLS LEWISLEWIS SYMBOLSSYMBOLS 1. Electrons are represented as DOTS 2. Only VALENCE electrons are used Atomic Hydrogen is H • Atomic Lithium is Li • Atomic Sodium is Na • All of Group 1 has only one dot The Octet Rule Atoms gain, lose, or share electrons until they are surrounded by 8 valence electrons (s2 p6 ) All noble gases [EXCEPT HE] have s2 p6 configuration.