1 Enrichment of SARM1 Alleles Encoding Variants with Constitutively
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Genome-Wide Analyses Identify KIF5A As a Novel ALS Gene
This is a repository copy of Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129590/ Version: Accepted Version Article: Nicolas, A, Kenna, KP, Renton, AE et al. (210 more authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 97 (6). 1268-1283.e6. https://doi.org/10.1016/j.neuron.2018.02.027 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Genome-wide Analyses Identify KIF5A as a Novel ALS Gene Aude Nicolas1,2, Kevin P. Kenna2,3, Alan E. Renton2,4,5, Nicola Ticozzi2,6,7, Faraz Faghri2,8,9, Ruth Chia1,2, Janice A. Dominov10, Brendan J. Kenna3, Mike A. Nalls8,11, Pamela Keagle3, Alberto M. Rivera1, Wouter van Rheenen12, Natalie A. Murphy1, Joke J.F.A. van Vugt13, Joshua T. Geiger14, Rick A. Van der Spek13, Hannah A. Pliner1, Shankaracharya3, Bradley N. -
Analysis of Shared Common Genetic Risk Between Amyotrophic Lateral Sclerosis and Epilepsy
Neurobiology of Aging xxx (2020) 1.e1e1.e5 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Negative results Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy Dick Schijvena,b,c, Remi Stevelinkd, Mark McCormackd,e, Wouter van Rheenena, Jurjen J. Luykxb, Bobby P.C. Koelemand, Jan H. Veldinka,*, on behalf of the Project MinE ALS GWAS Consortium International League Against Epilepsy Consortium on Complex Epilepsies a Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands b Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands c Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands d Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands e Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland article info abstract Article history: Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the Received 23 September 2019 latest and largest genome-wide studies in amyotrophic lateral sclerosis (n ¼ 36,052) and epilepsy (n ¼ Received in revised form 31 January 2020 38,349) to determine genetic overlap between these conditions. First, we showed no significant ge- Accepted 10 April 2020 netic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. -
Value of Systematic Genetic Screening of Patients with Amyotrophic Lateral
Neurodegeneration J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-325014 on 14 February 2021. Downloaded from Original research Value of systematic genetic screening of patients with amyotrophic lateral sclerosis Stephanie R Shepheard ,1 Matthew D Parker,1 Johnathan Cooper- Knock ,1 Nick S Verber,1 Lee Tuddenham,1 Paul Heath,1 Nick Beauchamp,2 Elsie Place,2 Elizabeth S A Sollars,2 Martin R Turner ,3 Andrea Malaspina,4 Pietro Fratta,5,6 Channa Hewamadduma,7 Thomas M Jenkins ,1 Christopher J McDermott ,1 Dennis Wang,8 Janine Kirby,1 Pamela J Shaw ,1,7 on behalf of the Project MINE Consortium ► Additional material is ABSTRACT mild cognitive impairment, with approximately published online only. To view, Objective The clinical utility of routine genetic 5% progressing to clinically recognised fronto- please visit the journal online 1 (http:// dx. doi. org/ 10. 1136/ sequencing in amyotrophic lateral sclerosis (ALS) is temporal dementia (FTD). While the majority of jnnp- 2020- 325014). uncertain. Our aim was to determine whether routine ALS cases are considered sporadic (sALS), 5%–10% targeted sequencing of 44 ALS- relevant genes would have been shown to be familial, usually with auto- For numbered affiliations see have a significant impact on disease subclassification somal dominant inheritance, and the genetic cause end of article. and clinical care. of approximately 60%–70% of familial ALS (fALS) 2 Methods We performed targeted sequencing of a 44- cases has now been identified. The most common Correspondence to Professor Pamela J Shaw, gene panel in a prospective case series of 100 patients genetic cause of ALS is due to expansion of a Sheffield Institute for with ALS recruited consecutively from the Sheffield GGGGCC (G4C2) hexanucleotide repeat in the Translational Neuroscience, The Motor Neuron Disorders Clinic, UK. -
Synthesis and Consumption: a Focus on the PARP Family
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press SPECIAL SECTION: REVIEW Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family Michael S. Cohen Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97210, USA Nicotinamide adenine dinucleotide (NAD+) is an essential erate a polymer of ADP-ribose (ADPr), a process known as cofactor for redox enzymes, but also moonlights as a sub- poly-ADP-ribosylation or PARylation (more on this below) strate for signaling enzymes. When used as a substrate by (Fig. 1; Chambon et al. 1963, 1966; Fujimura et al. 1967a,b). signaling enzymes, it is consumed, necessitating the recy- Unlike NAD+-mediated redox reactions, this glycosidic cling of NAD+ consumption products (i.e., nicotinamide) cleavage reaction is irreversible and leads to the consump- via a salvage pathway in order to maintain NAD+ homeo- tion of NAD+. Consistent with this notion, in the 1970s it stasis. A major family of NAD+ consumers in mammalian was shown that NAD+ exhibits a high turnover in human cells are poly-ADP-ribose-polymerases (PARPs). PARPs cells (Rechsteiner et al. 1976). We now know that there are comprise a family of 17 enzymes in humans, 16 of which many “NAD+ consumers” (e.g., other PARP family mem- catalyze the transfer of ADP-ribose from NAD+ to macro- ber, sirtuins, etc.) beyond PARP1, which are found in molecular targets (namely, proteins, but also DNA and nearly all subcellular compartments, including the nucle- RNA). Because PARPs and the NAD+ biosynthetic en- us, cytoplasm, and mitochondria (Fig. -
1 | Page SARM1 Deficiency, Which Prevents Wallerian Degeneration
bioRxiv preprint doi: https://doi.org/10.1101/485052; this version posted December 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SARM1 deficiency, which prevents Wallerian degeneration, upregulates XAF1 and accelerates prion disease Caihong Zhu#, Bei Li#, Karl Frontzek, Yingjun Liu and Adriano Aguzzi* Institute of Neuropathology, University of Zurich, Zurich, Switzerland # equal contribution * Corresponding author: Adriano Aguzzi Institute of Neuropathology, University of Zurich Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland Tel: +41-44-255-2107 Email address: [email protected] Condensed title: SARM1 deficiency accelerates prion diseases Abbreviations: CNS, central nervous system; dpi, days post inoculation; MyD88, myeloid differentiation primary response gene 88; NBH, non-infectious brain homogenates; PK, proteinase K; qRT-PCR, quantitative real-time PCR; RML6, Rocky Mountain Laboratories scrapie strain passage 6; SARM1, sterile α and HEAT/armadillo motifs containing protein; XAF1, X-linked inhibitor of apoptosis-associated factor 1. 1 | Page bioRxiv preprint doi: https://doi.org/10.1101/485052; this version posted December 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract SARM1 (sterile α and HEAT/armadillo motifs containing protein) is a member of the MyD88 (myeloid differentiation primary response gene 88) family which mediates innate immune responses. Because inactivation of SARM1 prevents various forms of axonal degeneration, we tested whether it might protect against prion-induced neurotoxicity. Instead, we found that SARM1 deficiency exacerbates the progression of prion pathogenesis. -
Evidence for Polygenic and Oligogenic Basis of Australian Sporadic
Neurogenetics J Med Genet: first published as 10.1136/jmedgenet-2020-106866 on 14 May 2020. Downloaded from Original research Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis Emily P McCann ,1 Lyndal Henden ,1 Jennifer A Fifita ,1 Katharine Y Zhang,1 Natalie Grima ,1 Denis C Bauer ,2 Sandrine Chan Moi Fat ,1 Natalie A Twine ,1,2 Roger Pamphlett ,3,4,5 Matthew C Kiernan,4,6 Dominic B Rowe ,1,7 Kelly L Williams ,1 Ian P Blair 1 ► Additional material is ABSTRact present with limb onset and 25% with bulbar onset, published online only. To view, Background Amyotrophic lateral sclerosis (ALS) is a while rare cases show truncal onset.3 The median please visit the journal online fatal neurodegenerative disease with phenotypic and disease course is 3 years,2 however survival can be (http:// dx. doi. org/ 10. 1136/ 2 4 jmedgenet- 2020- 106866). genetic heterogeneity. Approximately 10% of cases are as short as 12 months and may exceed 20 years. familial, while remaining cases are classified as sporadic. Around 10%–15% of ALS cases are diagnosed with For numbered affiliations see To date, >30 genes and several hundred genetic variants comorbid frontotemporal dementia (FTD), with up end of article. have been implicated in ALS. to 50% developing some cognitive impairment.5 Methods Seven hundred and fifty- seven sporadic Approximately 10% of ALS cases have a family Correspondence to Dr Ian P Blair, Biomedical ALS cases were recruited from Australian neurology history of disease (familial ALS (FALS)) and two- Sciences, Macquarie University clinics. -
Permeant Fluorescent Probes Visualize the Activation of SARM1 And
RESEARCH ARTICLE Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti- neurodegenerative drug candidate Wan Hua Li1,2, Ke Huang3, Yang Cai4, Qian Wen Wang1, Wen Jie Zhu1, Yun Nan Hou1, Sujing Wang1, Sheng Cao5, Zhi Ying Zhao1, Xu Jie Xie1, Yang Du5, Chi-Sing Lee3*, Hon Cheung Lee1*, Hongmin Zhang4*, Yong Juan Zhao1,2,6* 1State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China; 2Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China; 3Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; 4Department of Biology, Southern University of Science and Technology, Shenzhen, China; 5Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China; 6Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China Abstract SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. *For correspondence: Library screening identified a derivative of nisoldipine (NSDP) as a covalent inhibitor of SARM1 that [email protected] (C-SL); reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, [email protected] (HCL); protecting axons from degeneration. -
Activation of Sarm1 Produces Cadpr to Increase Intra-Axonal Calcium and Promote Axon Degeneration in CIPN
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.440024; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Activation of Sarm1 produces cADPR to increase intra-axonal calcium and promote axon degeneration in CIPN. Yihang Li1,2, Maria F. Pazyra-Murphy1,2, Daina Avizonis3, Mariana de Sa Tavares Russo3, Sophia Tang2, Johann S. Bergholz2,4,5, Tao Jiang2, Jean J. Zhao2,4,5, Jian Zhu6, Kwang Woo Ko7, Jeffrey Milbrandt6,8, Aaron DiAntonio7,8, Rosalind A. Segal1,2 1. Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA 2. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA 3. Metabolomics Innovation Resource, Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada, H3A1A3 4. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA 5. Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA 6. Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA, 63110 7. Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA, 63110 8. Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA HIGHLIGHTS • Paclitaxel induces intra-axonal calcium flux • Sarm1-dependent cADPR production promotes axonal calcium elevation and degeneration • Antagonizing cADPR signaling pathway protects against paclitaxel-induced peripheral neuropathy in vitro and in vivo SUMMARY Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. -
Genetics and Genomics
31st International Symposium on ALS/MND Theme 02 – Genetics and Genomics GEN-01: An Interval Look at Early outcomes of strength (ATLIS), bulbar function (quantitative speech analysis and IOPI), and disease Markers of Disease in Familial ALS progression (change in ALSFRS-R total score over time). Isabel Anez-Brunzual1, Austin Lewis, Katherine Burke1, Multiple measures of strength (ATLIS, HHD) and Diane Lucente1, Jennifer Jockel-Balsarotti2, Margaret cognition (NIH examiner, ALS-CBS) will be evaluated in all participants over time. Clapp2, Amber Malcolm2, Taylor Stirrat1, Stephanie Berry1, Tania Gendron3, Mercedes Prudencio3, Kathryn Results to date: Connaghan4, James Chan5, Jordan Green4, Leonard Petrucelli3, James Berry1, Timothy Miller2, Dr Katharine Interval analysis will be shown for 86 participants Nicholson1 enrolled in the DIALS Network. Forty-one of 86 1Massachusetts General Hospital, Boston, United States, participants are positive for an ALS causative mutation 2Washington University, Saint Louis, United States, 3Mayo (33 C9orf72, 5 SOD1, 1 TARDBP, 1 VAPB, and 1 FIG4). Clinic, Jacksonville, United States, 4MGH Institute of Health Peri-conversion data will be shown for the 4 C9orf72 Professions, Boston, United States, 5Biostatistics Center, MGH, carriers (3 ALS, 1 FTD) who have developed symptoms. Boston, United States Longitudinal strength, bulbar, and cognitive outcome data as well as direct biomarker comparison will be Live Poster Session A, December 9, 2020, 5:10 PM - 5:50 shown. DIALS enrollment and follow-up visits are PM ongoing. Background: Discussion: The validation of sensitive biofluid markers of inciting The DIALS Network dataset is composed of a growing disease pathology and clinical outcomes is crucial to number of pre-symptomatic ALS gene carriers, now detecting early disease, and to understanding the onset including several symptom converters. -
Genetic Analysis of ALS Cases in the Isolated Island Population of Malta
European Journal of Human Genetics (2021) 29:604–614 https://doi.org/10.1038/s41431-020-00767-9 ARTICLE Genetic analysis of ALS cases in the isolated island population of Malta 1,2 1,2 1 1 3 Rebecca Borg ● Maia Farrugia Wismayer ● Karl Bonavia ● Andrew Farrugia Wismayer ● Malcolm Vella ● 4 4 4 1,2 4 Joke J. F. A. van Vugt ● Brendan J. Kenna ● Kevin P. Kenna ● Neville Vassallo ● Jan H. Veldink ● Ruben J. Cauchi 1,2 Received: 6 May 2020 / Revised: 16 October 2020 / Accepted: 23 October 2020 / Published online: 7 January 2021 © The Author(s) 2020. This article is published with open access Abstract Genetic isolates are compelling tools for mapping genes of inherited disorders. The archipelago of Malta, a sovereign microstate in the south of Europe is home to a geographically and culturally isolated population. Here, we investigate the epidemiology and genetic profile of Maltese patients with amyotrophic lateral sclerosis (ALS), identified throughout a 2-year window. Cases were largely male (66.7%) with a predominant spinal onset of symptoms (70.8%). Disease onset occurred around mid-age (median age: 64 years, men; 59.5 years, female); 12.5% had familial ALS (fALS). Annual incidence rate – 1234567890();,: 1234567890();,: was 2.48 (95% CI 1.59 3.68) per 100,000 person-years. Male-to-female incidence ratio was 1.93:1. Prevalence was 3.44 (95% CI 2.01–5.52) cases per 100,000 inhabitants on 31st December 2018. Whole-genome sequencing allowed us to determine rare DNA variants that change the protein-coding sequence of ALS-associated genes. -
Genetic Correlation Between Amyotrophic Lateral Sclerosis and Schizophrenia
ARTICLE Received 6 Jul 2016 | Accepted 3 Feb 2017 | Published 21 Mar 2017 DOI: 10.1038/ncomms14774 OPEN Genetic correlation between amyotrophic lateral sclerosis and schizophrenia Russell L. McLaughlin1,2,*, Dick Schijven3,4,*, Wouter van Rheenen3, Kristel R. van Eijk3, Margaret O’Brien1, Project MinE GWAS Consortiumw, Schizophrenia Working Group of the Psychiatric Genomics Consortiumz, Rene´ S. Kahn4, Roel A. Ophoff4,5,6, An Goris7, Daniel G. Bradley2, Ammar Al-Chalabi8, Leonard H. van den Berg3, Jurjen J. Luykx3,4,9,**, Orla Hardiman2,** & Jan H. Veldink3,** We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; P ¼ 1 Â 10 À 4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P ¼ 8.4 Â 10 À 7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies. 1 Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin DO2 DK07, Republic of Ireland. -
Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: a Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods
The Journal of Neuroscience, April 18, 2018 • 38(16):4031–4047 • 4031 Neurobiology of Disease Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods Nikolaos K. Ziogas1 and Vassilis E. Koliatsos1,2,3 1Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, 2Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and 3Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Traumatic axonal injury (TAI) is a common neuropathology in traumatic brain injury and is featured by primary injury to axons. Here, wegeneratedTAIwithimpactaccelerationoftheheadinmaleThy1-eYFP-Htransgenicmiceinwhichspecificpopulationsofneuronsand their axons are labeled with yellow fluorescent protein. This model results in axonal lesions in multiple axonal tracts along with blood– brain barrier disruption and neuroinflammation. The corticospinal tract, a prototypical long tract, is severely affected and is the focus of this study. Using optimized CLARITY at single-axon resolution, we visualized the entire corticospinal tract volume from the pons to the cervical spinal cord in 3D and counted the total number of axonal lesions and their progression over time. Our results divulged the presence of progressive traumatic axonopathy that was maximal at the pyramidal decussation. The perikarya of injured corticospinal neurons atrophied, but there was no evidence of neuronal cell death. We also used CLARITY at single-axon resolution to explore the role of the NMNAT2-SARM1 axonal self-destruction pathway in traumatic axonopathy. When we interfered with this pathway by genetically ablating SARM1 or by pharmacological strategies designed to increase levels of Nicotinamide (Nam), a feedback inhibitor of SARM1, we found a significant reduction in the number of axonal lesions early after injury.