The Future of Sharing Location Information
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Spectrum Spatial Getting Started Guide
Spectrum™ Technology Platform Version 12.0 SP1 Spectrum Spatial Getting Started Guide Table of Contents 1 - What Is Location Intelligence? 6 - Services Mapping Service 32 2 - What is Spectrum Spatial? Feature Service 33 Geometry Service 40 Map Tiling Service 43 Spectrum Spatial Concepts 6 Web Feature Service (WFS) 43 Web Map Service (WMS) 44 3 - Modules and Stages Web Map Tile Service (WMTS) 44 Named Resource Service 45 Location Intelligence Module 9 Enterprise Routing Services 45 Enterprise Routing Module 16 Enterprise Geocoding Module 16 GeoConfidence Module 17 4 - Named Resources Named Maps 20 Named Tables 20 Named Layers 20 Named Tiles 21 Named Styles 21 Named Connections 21 Named WMTS Layers 21 Named Label Sources 22 5 - Tools Spatial Manager 24 Management Console 24 Enterprise Designer 24 MapInfo Pro 28 Map Uploader 30 MapInfo Workspace (MWS) Import 30 1 - What Is Location Intelligence? Location intelligence is: • An awareness of relationships between location information and business analysis and operations • The ability to use the understanding of geographic relationships to predict how it impacts a business or organization • The capability to react to how location influences an organization by changing business processes in order to minimize risk and maximize opportunities Location Intelligence enables a business to measure, compare and analyze its data from business operations, in conjunction with external data such as transportation networks, regulatory jurisdictions, market characteristics or its own customers. In this section 2 - What is Spectrum Spatial? Spectrum Spatial is an enterprise location intelligence platform designed to provide organizations with a suite of broadly applicable location capabilities, including spatial analysis, mapping, routing, geocoding, and geoprocessing. -
Opengis Web Feature Services for Editing Cadastral Data
OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis T.J. Brentjens Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis Thijs Brentjens Professor: prof. dr. ir. P.J.M. van Oosterom (Delft University of Technology) Supervisors: drs. M.E. de Vries (Delft University of Technology) drs. C.W. Quak (Delft University of Technology) drs. C. Vijlbrief (Kadaster) Delft, April 2004 Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology The Netherlands Het Kadaster Apeldoorn The Netherlands i ii Preface Preface This thesis is the result of the efforts I have put in my graduation research project between March 2003 and April 2004. I have performed this research part-time at the section GIS Technology of TU Delft in cooperation with the Kadaster (the Dutch Cadastre), in order to get the Master of Science degree in Geodetic Engineering. Typing the last words for this thesis, I have been realizing more than ever that this thesis marks the end of my time as a student at the TU Delft. However, I also realize that I have been working to this point with joy. Many people are “responsible” for this, but I’d like to mention the people who have contributed most. First of all, there are of course people who were directly involved in the research project. Peter van Oosterom had many critical notes and - maybe even more important - the ideas born out of his enthusiasm improved the entire research. -
A Pilot for Testing the OGC Web Services Integration of Water-Related Information and Models
RiBaSE: A Pilot for Testing the OGC Web Services Integration of Water-related Information and Models Lluís Pesquer Mayos, Simon Jirka, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH 08193 Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] Christoph Stasch, Joan Masó Pau, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] David Arctur, Center for Research in Water Resources, University of Texas at Austin 10100 Burnet Rd Bldg 119, Austin, TX USA [email protected] Abstract—The design of an interoperability experiment to The OGC is an international industry consortium of demonstrate how current ICT-based tools and water data can companies, government agencies and universities participating work in combination with geospatial web services is presented. in a consensus process to develop publicly available interface This solution is being tested in three transboundary river basins: standards. Some successful examples of OGC standards for Scheldt, Maritsa and Severn. The purpose of this experiment is to general spatial purposes are, for example, the Web Map assess the effectiveness of OGC standards for describing status Service (WMS) for providing interoperable pictorial maps and dynamics of surface water in river basins, to demonstrate over the web and the Keyhole Markup Language (KML) as a their applicability and finally to increase awareness of emerging data format for virtual globes. On the other hand, hydrological standards as WaterML 2.0. -