Detection of Yarkovsky Acceleration in the Context of Precovery Observations and the Future Gaia Catalogue J
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations*
Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations* F. Marchisa,g, J.E. Enriqueza, J. P. Emeryb, M. Muellerc, M. Baeka, J. Pollockd, M. Assafine, R. Vieira Martinsf, J. Berthierg, F. Vachierg, D. P. Cruikshankh, L. Limi, D. Reichartj, K. Ivarsenj, J. Haislipj, A. LaCluyzej a. Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA. b. Earth and Planetary Sciences, University of Tennessee 306 Earth and Planetary Sciences Building Knoxville, TN 37996-1410 c. SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d. Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e. Observatorio do Valongo/UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f. Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil. g. Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h. NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, United States j. Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A * Based in part on observations collected at the European Southern Observatory, Chile Programs Numbers 70.C-0543 and ID 72.C-0753 Corresponding author: Franck Marchis Carl Sagan Center SETI Institute 189 Bernardo Ave. Mountain View CA 94043 USA [email protected] Abstract: We collected mid-IR spectra from 5.2 to 38 µm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. -
XI. Astronomy: Solar-System Debris and Comets
XI. Astronomy: Solar-System Debris and Comets A. Pluto was generally the ninth planet from the Sun. 1. Clyde Tombaugh discovered Pluto in 1930, after calculations suggested that the observed and predicted orbits of Uranus did not agree. a. However, it is now known that Pluto is too small to have produced the perceived discrepancy. b. The discrepancy probably wasn’t real: the wrong mass had been assumed for Neptune when predicting the orbit of Uranus. c. Thus, Pluto just happened to be in the predicted part of the sky! However, the discovery of Pluto remains a testament to Tombaugh’s skill and thoroughness: it was a very dot among tens of thousands of stars in the photographs that he examined. 2. Pluto’s 249-year orbit is very peculiar. a. It is highly eccentric (e = 0.25). b. For 20 years each orbit, Pluto is actually closer to the Sun than Neptune is. (The most recent such interval was 1979-1999). 0 c. The orbit is highly inclined to Earth’s orbital plane (I = 17 ). 3. The physical properties of Pluto are also unusual. a. It is small, with a radius of only 0.2 earth radii and a mass of 0.0025 earth masses, quite unlike the neighboring giant planets. b. It’s density is about 2 g/cm3, between those of the giant and terrestrial planets, and similar to that of Neptune’s moon Triton. Pluto probably consists of icy rocks. c. Pluto’s rotation axis is nearly in the Earth’s orbital plane, like that of Uranus. -
Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments. -
Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations Q ⇑ F
Icarus 221 (2012) 1130–1161 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations q ⇑ F. Marchis a,g, , J.E. Enriquez a, J.P. Emery b, M. Mueller c, M. Baek a, J. Pollock d, M. Assafin e, R. Vieira Martins f, J. Berthier g, F. Vachier g, D.P. Cruikshank h, L.F. Lim i, D.E. Reichart j, K.M. Ivarsen j, J.B. Haislip j, A.P. LaCluyze j a Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA b Earth and Planetary Sciences, University of Tennessee, 306 Earth and Planetary Sciences Building, Knoxville, TN 37996-1410, USA c SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e Observatorio do Valongo, UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f Observatório Nacional, MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil g Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h NASA, Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA j Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, USA article info abstract Article history: We collected mid-IR spectra from 5.2 to 38 lm using the Spitzer Space Telescope Infrared Spectrograph Available online 2 October 2012 of 28 asteroids representative of all established types of binary groups. -
Radar Observations of Asteroid 3908 Nyx
Icarus 158, 379–388 (2002) doi:10.1006/icar.2002.6869 Radar Observations of Asteroid 3908 Nyx Lance A. M. Benner and Steven J. Ostro Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 E-mail: [email protected] R. Scott Hudson School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington 99164-2752 Keith D. Rosema,1 Raymond F. Jurgens, and Donald K. Yeomans Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 Donald B. Campbell National Astronomy and Ionosphere Center, Space Sciences Building, Cornell University, Ithaca, New York 14853 and John F. Chandler and Irwin I. Shapiro Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusets 02138 Received August 30, 2001; revised February 21, 2002 was discovered on August 6, 1980, by H.-E. Schuster at the We report Doppler-only (cw) radar observations of basaltic near- European Southern Observatory in La Silla (Marsden 1980). It Earth asteroid 3908 Nyx obtained at Arecibo and Goldstone in was the subject of an extensive observational campaign at visi- September and October of 1988. The circular polarization ratio of ble, infrared, and radar wavelengths during its approach within 0.75 ± 0.03 exceeds ∼90% of those reported among radar-detected 0.062 AU of Earth in October 1988. Lightcurves obtained in near- Earth asteroids and it implies an extremely rough near-surface 1988 (Drummond and Wisniewski 1990) and in 1996 by Pravec at centimeter-to-decimeter spatial scales. Echo power spectra over and co-workers (in preparation) indicate direct rotation with a narrow longitudinal intervals show a central dip indicative of at 4.426-h period and yield two pole direction solutions that pro- least one significant concavity. -
The Role of Radar in Predicting and Preventing Asteroid and Comet Collisions with Earth Steven J
3 The role of radar in predicting and preventing asteroid and comet collisions with Earth Steven J. Ostro JetPropulsion Laboratory, California Institute of Technology Jon D. Giorgini JetPropulsion Laboratory, California Institute of Technology 1 Introduction The current Spaceguard Survey classifies each known near-Earth asteroid (NEA) as either non-threatening or deserving of additional astrometric attention. For any possibly threatening object, the dominant issues are the uncertainty in its trajectory and physical nature as well as what can be done to reduce that uncertainty. Morrison et al. (2002) note that From the standpoint of an allocator of society’s resources, an uncertain threat calls for adaptive policies, delaying potentially costly action but informing later decision by investing in uncertainty-reduction measures. In the context of the NEO impact hazard, this means avoiding the costs of standing organizational structures and capital expenditures until a threat materializes. Thus reduction in uncertainty is tantamount to ensuring that unnecessary costs are avoided and that necessary actions are undertaken with adequate warning. Ground-based radar is a knowledge-gathering tool that is uniquely able to shrink uncertainty in NEO trajectories and physical properties. The power of radar stems largely from the precision of its measurements (Table 3.1). The resolution of echoes in time delay (range) and Doppler frequency (radial velocity) is often of order 1/100 the extent of a kilometer-sized target, so several thousand radar image pixels can be placed on the target. Delay-Doppler positional measurements often have a fractional precision finer than 1/10 000 000, comparable to sub-milliarcsecond optical astrometry. -
The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes. -
Cumulative Index to Volumes 1-45
The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) .................. -
Download Full Issue
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 47, NUMBER 1, A.D. 2020 JANUARY-MARCH 1. SECTION NEWS: COLLABORATIVE ASTEROID PHOTOMETRY FOR STAFFING CHANGES FOR ASTEROID 2051 CHANG THE MINOR PLANET BULLETIN Alessandro Marchini Frederick Pilcher Astronomical Observatory, DSFTA - University of Siena (K54) Minor Planets Section Recorder Via Roma 56, 53100 - Siena, ITALY [email protected] [email protected] One staffing change and one staffing addition for The Minor Planet Bulletin are announced effective with this issue. Riccardo Papini, Massimo Banfi, Fabio Salvaggio Wild Boar Remote Observatory (K49) MPB Distributor Derald Nye is now retired from his 37 years of San Casciano in Val di Pesa (FI), ITALY service to the Minor Planets Bulletin. Derald stepped in to service at the time the MPB made its transition from the original Editor Melissa N. Hayes-Gehrke, Eric Yates and Section founder, Richard G. Hodgson. As Derald reflected in Department of Astronomy, University of Maryland a short essay written in MPB 40, page 53 (2013), the Distributor College Park, MD, USA 20740 position was the longest job he ever held, having retired from being a programmer for 30 years with IBM. (Work for IBM (Received: 2019 October 15) included programming for the space program.) At its peak, Derald was managing nearly 200 subscriptions. That number dropped to Photometric observations of this main-belt asteroid were the dozen or so libraries maintaining a permanent collection conducted in order to determine its rotation period. The following the MPB transitioning to becoming an on-line electronic authors found a synodic rotation period of 12.013 ± journal with limited printing. -
Proposal for a Multiple-Asteroid-Flyby Mission with Sample Return
Available online at www.sciencedirect.com Advances in Space Research 50 (2012) 327–333 www.elsevier.com/locate/asr Proposal for a multiple-asteroid-flyby mission with sample return Dong Qiao ⇑, Pingyuan Cui, Hutao Cui Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China Received 22 November 2010; received in revised form 15 March 2012; accepted 13 April 2012 Available online 21 April 2012 Abstract Asteroid exploration provides a new approach to study the formation of the solar system and the planetary evolution. Choosing a suitable target and designing of feasible profile for asteroid mission are challenging due to constraints such as scientific value and tech- nical feasibility. This paper investigates a feasible mission scenario among the potential candidates of multiple flybys and sample return missions. First, a group of potential candidates are selected by considering the physical properties and accessibility of asteroids, for the sample return missions. Second, the feasible mission scenarios for multiple flybys and sample return missions to various spectral-type asteroids are investigated. We present the optimized design of preliminary interplanetary transfer trajectory for two kinds of missions. One is the single sample return mission to asteroids with various spectral types. The other is the multiple flybys and sample return mission to several asteroids. In order to find the optimal profiles, the planetary swing-by technique and Differential Evolution algorithm are used. Ó 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Asteroid exploration; Multiple flybys; Sample return; Planetary swing-by; Differential Evolution algorithm 1. -
Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect
University of California Los Angeles Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics by Carolyn Rosemary Nugent 2013 c Copyright by Carolyn Rosemary Nugent 2013 Abstract of the Dissertation Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect by Carolyn Rosemary Nugent Doctor of Philosophy in Geophysics and Space Physics University of California, Los Angeles, 2013 Professor Jean-Luc Margot, Chair This dissertation examines the influence of solar radiation on near-Earth asteroids (NEAs); it investigates thermal properties and examines changes to orbits caused by the process of anisotropic re-radiation of sunlight called the Yarkovsky effect. For the first portion of this dissertation, we used geometric albedos (pV ) and diameters derived from the Wide-Field Infrared Survey Explorer (WISE), as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predic- tions for 540 NEAs out of the current sample of ∼ 8800 known objects. These predictions are intended to assist observers, and should enable future Yarkovsky detections. The second portion of this dissertation introduces a new method for detecting the Yarkovsky drift. We identified and quantified semi-major axis drifts in NEAs by performing orbital fits to optical and radar astrometry of all numbered NEAs. We discuss on a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semi-major axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements. -
Determining the Pyroxene Mineralogies of Near-Earth, Middle-Belt, and Outer-Belt Vestoids
Asteroids, Comets, Meteors (2008) 8274.pdf DETERMINING THE PYROXENE MINERALOGIES OF NEAR-EARTH, MIDDLE-BELT, AND OUTER-BELT VESTOIDS. Thomas H. Burbine1, Paul C.Buchanan2, and Richard P. Binzel3, 1Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075, USA ([email protected]), 2Kilgore College, 1100 Broadway, Kilgore, TX 75662, USA ([email protected]), 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ([email protected]). Introduction: Asteroids with reflectance spectra hundred band centers were averaged and the sample similar to howardites, eucrites, and diogenites (HEDs) standard deviation calculated. are found throughout the asteroid belt and near-Earth Band centers move to shorter wavelengths as the asteroid population. These objects are commonly temperature of the surface decreases [4]. To do the called Vestoids. Asteroid 4 Vesta at a semi-major axis temperature corrections, we use the results of Moroz et (a) of 2.36 AU is the largest (~500 km in diameter) of al. [5] who measured the movement of the band cen- these bodies and also a member of the Vesta dynamical ters for two pyroxenes at different temperatures. family. Vesta is generally assumed to be the parent Outer-Belt Vestoids: We have near-infrared spec- body of almost all HED meteorites. tra of 1459 Magnya (a=3.14 AU) and 7472 Kumakiri However, a number of eucrites have oxygen iso- (a=3.01 AU). Both of these objects are dynamically topic compositions significantly different from most difficult to derive from Vesta. Magnya has a tempera- other measured HEDs, implying that other differenti- ture-corrected Band I center of 0.934±0.002 µm and a ated bodies besides Vesta formed in the asteroid belt.