Prices for Local Area Network Equipment
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Life Cycle of Municipal Wi-Fi
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Tseng, Chien-Kai; Huang, Kuang-Chiu Conference Paper Life Cycle of Municipal Wi-Fi 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017 Provided in Cooperation with: International Telecommunications Society (ITS) Suggested Citation: Tseng, Chien-Kai; Huang, Kuang-Chiu (2017) : Life Cycle of Municipal Wi- Fi, 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017, International Telecommunications Society (ITS), Calgary This Version is available at: http://hdl.handle.net/10419/168493 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. -
CSR Volume 10 #6, July 1999
COMMUNICATIONS STANDARDS REVIEW Volume 10, Number 6 July1999 In This Issue The following reports of recent standards meetings represent the view of the reporter and are not official, authorized minutes of the meetings. Report of ITU-T SG16, Multimedia, May 17 - 28, 1999, Santiago, Chile ....................................................2 Documents Approved by Resolution No. 1 Process................................................................................ 2 Other Documents Approved by the Study Group ...................................................................................3 Documents Determined (i.e., First Part of the Resolution No. 1 Approval Process).......................... 4 WP1, Low Rate Systems ...........................................................................................................................5 WP2, Services and High Rate Systems............................................................................................ ....... 7 WP3, Signal Processing......................................................................................................... ....................8 Q1/16 WP2, Audiovisual/multimedia Services..................................................................................... .. 10 Q2/16 WP2, Interactive Multimedia Information Retrieval Services (MIRS)..................................... 11 Q3/16 WP2, Data Protocols for Multimedia Conferencing.................................................................... 11 Q4/16 WP1, Modems for Switched Telephone Network -
Lab Report: 2.1.3 Connect to an Ethernet Network
Lab Report: 2.1.3 Connect to an Ethernet Network Performance Your Score: 0 of 2 (0%) Elapsed Time: 9 seconds Task Summary Actions you were required to perform: In In Office 1, connect the twisted pair cable between the workstation and the wall plate In In Office 1, confirm that the workstation has a connection to the local network and the Internet Explanation To complete this lab, use twisted pair cable with RJ45 connectors to connect to a wired Ethernet network. RJ45 connectors have eight wires (as seen below) and are larger than RJ11 connectors. Complete the following steps: 1. Under Office 1, select Hardware to go to the workstation. 2. Above the computer, select Back to switch to the back view of the computer. 3. On the Shelf, expand the Cables category. 4. Select the RJ45 cable. 5. In the Selected Component window, drag and drop the connector to the Ethernet port on the computer. 6. In the Selected Component window, drag the other connector to the Ethernet port on the wall outlet. 7. Select Click to view Windows 10 on the monitor to confirm that the workstation has a connection to the local network and the internet. 8. In the notification area, right-click the Network icon and select Open Network and Sharing Center. The diagram should indicate an active connection to the network and the internet. Lab Report: 2.2.3 Connect a Cable Modem Performance Your Score: 0 of 4 (0%) Elapsed Time: 6 seconds Task Summary Actions you were required to perform: In Connect the cable modem to the Internet using the RG-6 cable In Connect the computer to the cable modem using the Ethernet cable In Plug in the cable modem In Confirm that the computer is properly connected to the Internet Explanation In this lab, your task is to complete the following: Connect the components to make the internet connection. -
Ipsec VPN Solutions Using Next Generation Encryption
IPSec VPN Solutions Using Next Generation Encryption Deployment Guide Version 1.5 Authored by: Ben Rosenblum – CCIE #21084 (R&S, SP) IPSec VPN Solutions Using Deployment Guide Next Generation Encryption THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense. The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio- frequency energy. -
High-Speed Internet Connection Guide Welcome
High-Speed Internet Connection Guide Welcome Welcome to Suddenlink High-Speed Internet Thank you for choosing Suddenlink as your source for quality home entertainment and communications! There is so much to enjoy with Suddenlink High-Speed Internet including: + Easy self-installation + WiFi@Home availability + Easy access to your Email + Free access to Watch ESPN This user guide will help you get up and running in an instant. If you have any other questions about your service please visit help.suddenlink.com or contact our 24/7 technical support. Don’t forget to register online for a Suddenlink account at suddenlink.net for great features and access to email, billing statements, Suddenlink2GO® and more! 1 Table of Contents Connecting Your High Speed Internet Connecting Your High-Speed Internet Your Suddenlink Self-Install Kit includes Suddenlink Self-Install Kit ..................................................................................... 3 Connecting your computer to a Suddenlink modem ....................................... 4 the following items: Connecting a wireless router or traditional router to Suddenlink ................. 5 Getting Started Microsoft Windows XP or Higher ......................................................................... 6 Cable Modem Power Adapter Mac OS X ................................................................................................................. 6 Register Your Account Online ................................................................................7 Suddenlink WiFi@Home -
Analysis of Wifi and Wimax and Wireless Network Coexistence
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014 ANALYSIS OF WIFI AND WIMAX AND WIRELESS NETWORK COEXISTENCE Shuang Song and Biju Issac School of Computing, Teesside University, Middlesbrough, UK ABSTRACT Wireless networks are very popular nowadays. Wireless Local Area Network (WLAN) that uses the IEEE 802.11 standard and WiMAX (Worldwide Interoperability for Microwave Access) that uses the IEEE 802.16 standard are networks that we want to explore. WiMAX has been developed over 10 years, but it is still unknown to most people. However compared to WLAN, it has many advantages in transmission speed and coverage area. This paper will introduce these two technologies and make comparisons between WiMAX and WiFi. In addition, wireless network coexistence of WLAN and WiMAX will be explored through simulation. Lastly we want to discuss the future of WiMAX in relation to WiFi. KEY WORDS WiMAX, WiFi, wireless network, wireless coexistence, network simulation 1. INTRODUCTION With the development of multimedia communication, people need wireless broadband access with higher speed, larger coverage and mobility. The emergence of WiMAX (Worldwide Interoperability for Microwave Access) technology met the people's demand for wireless Internet to some extent. If wireless LAN technology (WLAN) solves the access problem of the "last one hundred meters", then WiMAX technology is the best access solution of the "last mile". Though WiMAX is an emerging and extremely competitive wireless broadband access technology, the development prospects of its market is still unknown. Hybrid networks as a supplement to cell based or IP packet based services, can fully reflect the characteristics of wide network coverage. -
The Future of Personal Area Networks in a Ubiquitous Computing World
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Future of Personal Area Networks in a Ubiquitous Computing World A thesis presented in partial fulfillment of the requirements for the degree of Master of Information Sciences in Information Systems at Massey University, Auckland New Zealand Fei Zhao 2008 ABSTRACT In the future world of ubiquitous computing, wireless devices will be everywhere. Personal area networks (PANs), networks that facilitate communications between devices within a short range, will be used to send and receive data and commands that fulfill an individual’s needs. This research determines the future prospects of PANs by examining success criteria, application areas and barriers/challenges. An initial set of issues in each of these three areas is identified from the literature. The Delphi Method is used to determine what experts believe what are the most important success criteria, application areas and barriers/challenges. Critical success factors that will determine the future of personal area networks include reliability of connections, interoperability, and usability. Key application areas include monitoring, healthcare, and smart things. Important barriers and challenges facing the deployment of PAN are security, interference and coexistence, and regulation and standards. i ACKNOWLEDGEMENTS Firstly, I would like to take this opportunity to express my sincere gratitude to my supervisor – Associate Professor Dennis Viehland, for all his support and guidance during this research. Without his advice and knowledge, I would not have completed this research. -
Performance of Light Fidelity and Wireless Fidelity Networks in a WLAN
DOI : https://dx.doi.org/10.26808/rs.re.v4i1.02 International Journal of Research in Engineering & Science ISSN:(P) 2572-4274 (O) 2572-4304 Available online on http://rspublication.com/IJRES/IJRE.html volume 4 Issue 1 Jan.-Feb 2020 Performance of Light Fidelity and Wireless Fidelity Networks in a WLAN S.N. Arinze, G.N. Onoh and D.O. Abonyi Abstract Wireless Fidelity utilizes radio waves. Radio waves have limited bandwidth, fully exploited, and low speed. Light fidelity is a visible light communication used as a medium to carry high-speed data. It can complement the wireless fidelity in accessing the internet, thereby reducing congestion. In this work, a hybrid of light fidelity and wireless fidelity was carried out in an indoor environment. The geometry of the light fidelity access point and wireless fidelity access point was analyzed in the MatLab environment to know the highest power received by the user. Some ranges of received power considered for good reception wereassigned for each of the wireless access points in the MatLab program. Visual Basic, an object-oriented computer programming language, reads the signal coming from the communication port of light fidelity and wireless fidelity. It mimics the analyzed MatLab program of a hybrid network of light fidelity and wireless fidelity and connects to any of the wireless access points based on the set conditions of the satisfied received power. With these, the light fidelity can complement the limited available radio frequency. Index Terms—Light Fidelity, MatLab, Visual Basic, Wireless Fidelity. I. INTRODUCTION Wireless Fidelity network allows more than one device to communicate and share information within defined regions like office, home, and campus. -
Insight MFR By
Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC. -
FORE Systems & Nortel
® FORE Systems & Nortel A Partnership for Leadership Innovation Seamless Networking Quality Responsiveness 1 NAME.Revision #.Code The FORE Systems - Nortel Partnership Presentation Objectives: 1. Partnership Goals & Benefits 2. FORE & Nortel: Leading the ATM Networking Convergence 3. FORE ATM-based Customer Applications 4. The Reality of ATM: Check- Leadership Innovation points and Considerations Quality Responsiveness 2 NAME.Revision #.Code ATM-focused networking through the LAN & WAN Video Data LAN or LAN or Public Broadband Campus Campus Network Voice Single networking technology Seamless ATM networking from desktop-to-desktop Leadership Innovation • Supports existing and future applications Quality • Reduces capital and operating cost Responsiveness 3 NAME.Revision #.Code Providing industry-best integrated solutions for ATM networking... ® • ATM WAN & carrier grade • ATM LAN & ATM WAN access switching networking • First to deliver carrier-grade • World-wide leader in ATM CPE SVCs • Best-in-class LAN ATM features • Best-in-class voice over ATM • ATM integration for legacy LAN • ATM evolution for legacy devices services Leadership Innovation Quality Responsiveness End-to-end solutions through partnership 4 NAME.Revision #.Code The Nortel - FORE Systems ATM Networking Advantage • Seamless ATM networking to the desktop • enabled by common software: ForeThought & ForeView - integrated into Magellan software, and across the ENTIRE network • Advanced ATM features - SVCs, signalling, traffic management Leadership Innovation • True interoperability -
White Paper How to Remotely Access Ethernet I/O Over the Internet
White Paper How to Remotely Access Ethernet I/O Over the Internet ACROMAG INCORPORATED Tel: (248) 295-0880 30765 South Wixom Road Fax: (248) 624-9234 P.O. BOX 437 Wixom, MI 48393-7037 U.S.A. Copyright 2009, Acromag, Inc., Printed in the USA. Data and specifications are subject to change without notice. 8400-517 How to Remotely Access Ethernet I/O Over Internet This white paper details the steps needed to access your I/O module remotely over the internet. This can be done with Ethernet-enabled I/O modules that have the capability to display built-in webpage-based output monitoring. In other words, if your I/O module can serve a webpage over Ethernet, and the network it is connected to has internet access, then you can set it up to view your I/O from any internet connection around the world. Getting Started This white paper makes a few assumptions to simplify the steps needed to connect an Ethernet-enabled I/O module to the internet: You are connecting your I/O module to your company’s existing LAN network, which has access to the internet. Your company’s server or router, also connected to the network and internet, with either static or dynamic IP address assigned by the Internet Service Provider The Layers between Your I/O and the Internet To make an Ethernet-enabled module accessible from the internet, a rudimentary understanding is required of basic network architecture. A basic understanding of the structure of the internet is also very helpful. HTTP communicates over public IP Communicates over private IP addresses through port 80 by default addresses (10.x.x.x, 192.168.x.x, or port 443 for secure HTTPS 172.16.x.x-172.32.x.x) User Browser Internet Server Corporate Ethernet Network I/O or Module Router Firewall *firewall may be software installed on the router or a separate hardware Software Hardware Figure 1: The path from the module to the user 1 The Internet The internet is essentially a group of servers all connected together in a mesh configuration, each serving files, usually in HTML format, to the network. -
Use Case Possibilities with Bluetooth Low Energy in Iot Applications White Paper
Use case possibilities with Bluetooth low energy in IoT applications White paper Author Mats Andersson Senior Director Technology, Product Center Short Range Radio, u-blox Abstract With yearly shipments of more than 10 billion microcontrollers that all can exchange information locally or through the Internet, a huge variety of so called “intelligent devices” are enabled. All these devices can be accessed over the Internet and this evolution is commonly referred to as Internet of Things (IoT). IoT typically requires a local low power wireless connection along with the Internet connection. For most such applications and solutions, a gateway is required to connect sensor nodes to the Internet via a local infrastructure or using a cellular connection. Gateways are important components of the IoT vision. These gateways can be used to connect Bluetooth low energy devices to the Internet and can also be used as "repeaters" to extend the system range. This whitepaper describes how Bluetooth low energy technology works and how it can be used to connect devices to Internet-based services and applications. A significant feature in Bluetooth low energy compared to other IoT wireless technologies is the support for smartphones and tablets. The whitepaper thus also describes how a smartphone or tablet can be used in IoT. www.u-blox.com UBX-14054580 - R01 Use case possibilities with Bluetooth low energy in IoT applications - White paper Contents Contents .............................................................................................................................