Biogeochemical Cycles in Sediment and Water Column of the Wadden Sea: the Example Spiekeroog Island in a Regional Context

Total Page:16

File Type:pdf, Size:1020Kb

Biogeochemical Cycles in Sediment and Water Column of the Wadden Sea: the Example Spiekeroog Island in a Regional Context Ocean & Coastal Management 68 (2012) 102e113 Contents lists available at SciVerse ScienceDirect Ocean & Coastal Management journal homepage: www.elsevier.com/locate/ocecoaman Biogeochemical cycles in sediment and water column of the Wadden Sea: The example Spiekeroog Island in a regional context Melanie Beck*, Hans-Jürgen Brumsack Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany article info abstract Article history: Tidal flats like the Wadden Sea are areas of high primary production and organic matter remineralization Available online 17 June 2012 rates. This paper provides an overview of benthic remineralization pathways and the recycling of various metabolic products, exemplified by interdisciplinary studies around Spiekeroog Island (Germany). Organic matter produced in the Wadden Sea area as well as material imported from the North Sea is remineralized in tidal flat sediments. Wadden Sea sediments may thus be regarded as biogeochemical reactors promoting or accelerating organic matter remineralization. Due to advective flow, which is of special importance in permeable sandy sediments, pore waters enriched in remineralized nutrients and methane are actively released from sediments into the overlying water column. This biogeochemical recycling forms the prerequisite for continuously high primary production in the Wadden Sea, and proves a tight coupling between benthic and pelagic dynamics. Additionally, the export of excess nutrients from the Wadden Sea further offshore may trigger biological activity in coastal waters of the North Sea. In this contribution, we will also summarize open questions which need to be answered for a thorough understanding, management and protection of the unique Wadden Sea ecosystem. In particular, the currently understudied, but potentially significant effects of climate change (e.g., rising sea level and increase in storm surge extremes) on biogeochemical cycles in sediments and open waters of the Wadden Sea are discussed. Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction exhibits high rates of primary production (Cadée and Hegeman, 2002; Loebl et al., 2007; Poremba et al., 1999). These high rates The tidal flats of the Wadden Sea form the largest continuous are not only supported by the presence of well-adapted phyto- area of sand- and mudflats worldwide, accounting for 60% of all plankton and microorganism consortia, but also by enhanced tidal areas in Europe and North Africa (Marencic, 2009). The region nutrient availability due to rapid organic matter (OM) reminerali- sustains a rich and diverse flora and fauna and is of outstanding zation. In intertidal areas, aerobic and anaerobic OM degradation international importance as staging and wintering area for migra- processes are fuelled by filtration of suspended particles and dis- tory birds (Marencic, 2009). Due to its unique nature, the Wadden solved OM from the water column within permeable sediments. Sea has been inscribed on the World Heritage List in 2009 and often Continuous supply of organic substrate supports enhanced micro- serves as a worldwide reference for comparisons with other tidal bial activity, and ultimately the release of metabolic products such flat systems. This highlights the importance to attain the best as nutrients and methane (CH4) to the pore waters. Tidal pumping possible understanding of biological, chemical and physical induces advective flushing of permeable sediments and the trans- processes sustaining this ecosystem. The intense biogeochemical port of remineralization products to the open water column, where cycling of carbon and nutrients has been identified as crucial for they can once again support primary production. Furthermore, the controlling life and ecosystem dynamics in the Wadden Sea. Wadden Sea is an open system where water exchange with the Organisms living in tidal flat ecosystems have to tolerate North Sea occurs through tidal inlets. Thus, the quality of water, extreme environmental gradients in salinity, incident light, oxygen sediment and marine habitats is to a large degree influenced by availability and temperature. Nevertheless, this type of landscape processes occurring in the North Sea and vice versa. In this paper we will summarize benthic remineralization pathways, with a focus on metabolic products including nutrients * Corresponding author. Tel.: þ49 441 7983627; fax: þ49 441 7983404. and CH4. Benthic OM remineralization and the subsequent nutrient E-mail address: [email protected] (M. Beck). recycling are essential mechanisms providing important building 0964-5691/$ e see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ocecoaman.2012.05.026 M. Beck, H.-J. Brumsack / Ocean & Coastal Management 68 (2012) 102e113 103 blocks of life. The trace gas CH4, which is produced as metabolic acceptor in the cascade will occur when the pool of an electron end-member in deeper sediments, may contribute to global acceptor with a higher energy yield is depleted. Nevertheless, warming when released to the atmosphere. However, the assess- microorganisms may create their niche by using substrates not ment of CH4 sources and sinks is still not fully explored in intertidal consumed by the community living in the adjacent zone (van der areas such as the Wadden Sea. Most of the biogeochemical cycles Maarel and Hansen, 1997; Wilms et al., 2006). Furthermore, pore are exemplarily presented using interdisciplinary studies around water exchange may blur the gradients by a continuous resupply of Spiekeroog Island (Germany). Our paper further addresses open electron acceptors (Beck et al., 2008c; Jansen et al., 2009). There- scientific questions and future challenges for the protection of the fore, Fig. 1 does not exhibit the conventional redox sequence in Wadden Sea. A thorough understanding of biogeochemical mineralization pathways, but shows that in the highly dynamic processes in the Wadden Sea will be a requirement for its intertidal sediments, the classical redox cascade may be disturbed sustainable future management, as biogeochemical cycles form an by pore water flow, especially in the strongly irrigated top layer. essential mechanism controlling chemical reactions and biological Finally, processes of OM remineralization lead to the accumulation growth in this ecosystem. Gaps in knowledge, e.g. regarding the of dissolved organic carbon (DOC), alkalinity, and nutrients with effects of climate change on the Wadden Sea, need to be recognized increasing depth in pore waters (Fig. 1). and addressed by future research plans. 2.1. Aerobic oxidation, reduction of nitrate and Mn/Fe oxides 2. OM remineralization in Wadden Sea sediments In the uppermost sediment layer, aerobic respiration dominates Bioturbation, bioirrigation, and/or diffusive and advective OM degradation. The depth where oxygen is still available for processes introduce OM into surface sediments of the Wadden Sea carbon (C) mineralization depends on sediment permeability. The (Meysman et al., 2005, 2007; Rusch et al., 2001; Volkenborn et al., high permeability of sand facilitates advective pore water trans- 2007; see chapter 3) where it is degraded by a cascade of redox port, in contrast to diffusion-controlled muddy sediments. processes. Aerobic respiration is followed by nitrate reduction, Furthermore, pore water flow is enhanced in surface sediments reduction of manganese (Mn) and iron (Fe) oxides, sulfate reduc- with ripple structures due to pressure gradients generated by the tion and finally methanogenesis (Froelich et al., 1979; Jørgensen, interaction of bottom currents with sediment topography (Huettel 2006). Theoretically, the sediments are divided into different and Gust, 1992; Huettel et al., 2003). This pore water flow at the zones, each characterized by a microbial community using sediment surface is an effective mechanism for rapid exchange of a specific electron acceptor. In general, a shift to the next electron oxygen (Precht et al., 2004; Ziebis et al., 1996). Consequently, NO - [µM] Mn [µM] Fe [µM] SO 2- [mM] 3 4 0369120 8 16 24 32 0 4 8 12 16 0 8 16 24 32 0 1 2 3 Depth [m] Depth 4 5 DOC [mM] Alkalinity [mM] NH + [mM] PO 3- [µM] 4 4 Si(OH)4 [µM] 012340 122436480369120 300 600 900 1200 0 300 600 900 1200 0 1 2 3 Depth [m] Depth 4 5 Fig. 1. The redox cascade in Wadden Sea sediments: pore water profiles of nitrate, manganese (Mn), iron (Fe), and sulfate. The compounds are either used as electron acceptors or þ 3À produced during OM remineralization. Dissolved organic carbon (DOC), alkalinity, NH4 ,PO4 , and Si(OH)4 accumulate with depth as they are released when OM or diatom frustules are degraded. The sampling site is located in an intertidal sand flat close to a creek bank in the backbarrier area of Spiekeroog Island. Permanently installed samplers were used to extract pore waters from 20 different depths (Beck et al., 2007). Data are derived from a sampling campaign in April 2006. The figure was modified after Beck et al. (2008a,b). 104 M. Beck, H.-J. Brumsack / Ocean & Coastal Management 68 (2012) 102e113 oxygen is depleted within the uppermost millimeters in clay-rich Sulfate [mM] dsrA targets [g-1 sediment] sediments (Böttcher et al., 2000), whereas oxic conditions persist 0102030 1x106 2x106 down to some centimeters depth in permeable sediments (Jansen 0 et al., 2009). The oxygen penetration in permeable surface sediments leads to enhanced aerobic mineralization. Highest areal oxygen consump-
Recommended publications
  • 25. PELAGIC Sedimentsi
    ^ 25. PELAGIC SEDIMENTSi G. Arrhenius 1. Concept of Pelagic Sedimentation The term pelagic sediment is often rather loosely defined. It is generally applied to marine sediments in which the fraction derived from the continents indicates deposition from a dilute mineral suspension distributed throughout deep-ocean water. It appears logical to base a precise definition of pelagic sediments on some limiting property of this suspension, such as concentration or rate of removal. Further, the property chosen should, if possible, be reflected in the ensuing deposit, so that the criterion in question can be applied to ancient sediments. Extensive measurements of the concentration of particulate matter in sea- water have been carried out by Jerlov (1953); however, these measurements reflect the sum of both the terrigenous mineral sol and particles of organic (biotic) origin. Aluminosilicates form a major part of the inorganic mineral suspension; aluminum is useful as an indicator of these, since this element forms 7 to 9% of the total inorganic component, 2 and can be quantitatively determined at concentration levels down to 3 x lO^i^ (Sackett and Arrhenius, 1962). Measurements of the amount of particulate aluminum in North Pacific deep water indicate an average concentration of 23 [xg/1. of mineral suspensoid, or 10 mg in a vertical sea-water column with a 1 cm^ cross-section at oceanic depth. The mass of mineral particles larger than 0.5 [x constitutes 60%, or less, of the total. From the concentration of the suspensoid and the rate of fallout of terrigenous minerals on the ocean floor, an average passage time (Barth, 1952) of less than 100 years is obtained for the fraction of particles larger than 0.5 [i.
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • NPP) A) Global Patterns B) Fate of NPP
    OCN 401 Biogeochemical Systems (11.1.11) (Schlesinger: Chapter 9) Oceanic Production, Carbon Regeneration, Sediment Carbon Burial Lecture Outline 1. Net Primary Production (NPP) a) Global Patterns b) Fate of NPP 2. Sediment Diagenesis a) Diagenesis of Organic Matter (OM) b) Biogenic Carbonates Net Primary Production: Global Patterns • Oceanic photosynthesis is ≈ 50% of total photosynthesis on Earth - mostly as phytoplankton (microscopic plants) in surface mixed layer - seaweed accounts for only ≈ 0.1%. • NPP ranges from 130 - 420 gC/m2/yr, lowest in open ocean, highest in coastal zones • Terrestrial forests range from 400-800 gC/m2/yr, while deserts average 80 gC/m2/yr. Net Primary Production: Global Patterns (cont’d.) • O2 distribution is an indirect measure of photosynthesis: CO2 + H2O = CH2O + O2 14 • NPP is usually measured using O2-bottle or C-uptake techniques. 14 • O2 bottle measurements tend to exceed C-uptake rates in the same waters. Net Primary Production: Global Patterns (cont’d.) • Controversy over magnitude of global NPP arises from discrepancies in methods for measuring NPP: estimates range from 27 to 51 x 1015 gC/yr. 14 • O2 bottle measurements tend to exceed C-uptake rates because: - large biomass of picoplankton, only recently observed, which pass through the filters used in the 14C technique. - picoplankton may account for up to 50% of oceanic production. - DOC produced by phytoplankton, a component of NPP, passes through filters. - Problems with contamination of 14C-incubated samples with toxic trace elements depress NPP. Net Primary Production: Global Patterns (cont’d.) Despite disagreement on absolute magnitude of global NPP, there is consensus on the global distribution of NPP.
    [Show full text]
  • Progressive and Regressive Soil Evolution Phases in the Anthropocene
    Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal.
    [Show full text]
  • Sediment and Sedimentary Rocks
    Sediment and sedimentary rocks • Sediment • From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) • Types of sedimentary rocks (clastic, chemical and organic) • Sedimentary structures (bedding, cross-bedding, graded bedding, mud cracks, ripple marks) • Interpretation of sedimentary rocks Sediment • Sediment - loose, solid particles originating from: – Weathering and erosion of pre- existing rocks – Chemical precipitation from solution, including secretion by organisms in water Relationship to Earth’s Systems • Atmosphere – Most sediments produced by weathering in air – Sand and dust transported by wind • Hydrosphere – Water is a primary agent in sediment production, transportation, deposition, cementation, and formation of sedimentary rocks • Biosphere – Oil , the product of partial decay of organic materials , is found in sedimentary rocks Sediment • Classified by particle size – Boulder - >256 mm – Cobble - 64 to 256 mm – Pebble - 2 to 64 mm – Sand - 1/16 to 2 mm – Silt - 1/256 to 1/16 mm – Clay - <1/256 mm From Sediment to Sedimentary Rock • Transportation – Movement of sediment away from its source, typically by water, wind, or ice – Rounding of particles occurs due to abrasion during transport – Sorting occurs as sediment is separated according to grain size by transport agents, especially running water – Sediment size decreases with increased transport distance From Sediment to Sedimentary Rock • Deposition – Settling and coming to rest of transported material – Accumulation of chemical
    [Show full text]
  • Coastal and Shelf Sediment Transport: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Coastal and shelf sediment transport: an introduction MICHAEL B. COLLINS 1'3 & PETER S. BALSON 2 1School of Ocean & Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton S014 3ZH, UK (e-mail." mbc@noc, soton, ac. uk) 2Marine Research Division, AZTI Tecnalia, Herrera Kaia, Portu aldea z/g, Pasaia 20110, Gipuzkoa, Spain 3British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK. Interest in sediment dynamics is generated by the (a) no single method for the determination of need to understand and predict: (i) morphody- sediment transport pathways provides the namic and morphological changes, e.g. beach complete picture; erosion, shifts in navigation channels, changes (b) observational evidence needs to be gathered associated with resource development; (ii) the in a particular study area, in which contem- fate of contaminants in estuarine, coastal and porary and historical data, supported by shelf environment (sediments may act as sources broad-based measurements, is interpreted and sinks for toxic contaminants, depending by an experienced practitioner (Soulsby upon the surrounding physico-chemical condi- 1997); tions); (iii) interactions with biota; and (iv) of (c) the form and internal structure of sedimen- particular relevance to the present Volume, inter- tary sinks can reveal long-term trends in pretations of the stratigraphic record. Within this transport directions, rates and magnitude; context of the latter interest, coastal and shelf (d) complementary short-term measurements sediment may be regarded as a non-renewable and modelling are required, to (b) (above) -- resource; as such, their dynamics are of extreme any model of regional sediment transport importance.
    [Show full text]
  • Descriptions of Common Sedimentary Environments
    Descriptions of Common Sedimentary Environments River systems: . Alluvial Fan: a pile of sediment at the base of mountains shaped like a fan. When a stream comes out of the mountains onto the flat plain, it drops its sediment load. The sediment ranges from fine to very coarse angular sediment, including boulders. Alluvial fans are often built by flash floods. River Channel: where the river flows. The channel moves sideways over time. Typical sediments include sand, gravel and cobbles. Particles are typically rounded and sorted. The sediment shows signs of current, such as ripple marks. Flood Plain: where the river overflows periodically. When the river overflows, its velocity decreases rapidly. This means that the coarsest sediment (usually sand) is deposited next to the river, and the finer sediment (silt and clay) is deposited in thin layers farther from the river. Delta: where a stream enters a standing body of water (ocean, bay or lake). As the velocity of the river drops, it dumps its sediment. Over time, the deposits build further and further into the standing body of water. Deltas are complex environments with channels of coarser sediment, floodplain areas of finer sediment, and swamps with very fine sediment and organic deposits (coal) Lake: fresh or alkaline water. Lakes tend to be quiet water environments (except very large lakes like the Great Lakes, which have shorelines much like ocean beaches). Alkaline lakes that seasonally dry up leave evaporite deposits. Most lakes leave clay and silt deposits. Beach, barrier bar: near-shore or shoreline deposits. Beaches are active water environments, and so tend to have coarser sediment (sand, gravel and cobbles).
    [Show full text]
  • Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No
    Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No. 1 What Is Soil Erosion? What Problems Happen On Construction Soil erosion is the detachment and movement of soil Sites? particles by water, wind, ice, or gravity. Safety and Nuisance Issues – Sediment on roadways and in the air can cause safety hazards. Flooding– Excessive sediment accumulation in drainage systems can create blockages that promote flooding. Sediment Build‐Up – Sediment that accumulates in streams, lakes, and bays can only be remediated by costly dredging. Increased Costs – Uncontrolled erosion and sedimentation requires costly maintenance and What Is Sedimentation? repair. It is cheaper and easier to PREVENT Sediment is the result of erosion. Sedimentation is erosion than to fix sedimentation problems. the build‐ up of eroded soil particles that are transported in runoff from their site of origin and Negative Public Perception ‐Observing muddy deposited in drainage systems, on other ground water flowing from construction sites negatively surfaces, or in bodies of water or wetlands. effects public perception. Why Should I Care? It’s the Law– Federal, State and local regulations require construction sites to be compliant with the Clean Water Act. Water Quality‐Erosion from construction projects can be a non‐point source pollutant that deteriorates the health of our lakes, streams and Narragansett Bay. Soil Loss ‐ Much of the total sediment loss that occurs each year is generated by highway construction and land development projects. Quality of Life‐ If you enjoy fishing, eating local Sediment‐filled runoff from a RIDOT construction site shellfish or swimming at one of Rhode Island’s beautiful beaches, this pollution can threaten your quality of life.
    [Show full text]
  • An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: Hypercal—A New Practice for Micropaleontological and Paleoclimatic Proxies
    Journal of Marine Science and Engineering Article An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: HyPerCal—A New Practice for Micropaleontological and Paleoclimatic Proxies Stergios D. Zarkogiannis 1,2,* , George Kontakiotis 2 , Georgia Gkaniatsa 2, Venkata S. C. Kuppili 3,4, Shashidhara Marathe 3, Kazimir Wanelik 3, Vasiliki Lianou 2, Evanggelia Besiou 2, Panayiota Makri 2 and Assimina Antonarakou 2 1 Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK 2 Department of Historical Geology-Paleontology, Faculty of Geology & Geoenvironment, School of Earth Sciences, National & Kapodistrian University of Athens, 157 84 Athens, Greece; [email protected] (G.K.); [email protected] (G.G.); [email protected] (V.L.); [email protected] (E.B.); [email protected] (P.M.); [email protected] (A.A.) 3 Diamond Light Source, Harwell Science and Innovation Campus, Oxford OX11 0DE, UK; [email protected] (V.S.C.K.); [email protected] (S.M.); [email protected] (K.W.) 4 Canadian Light Source, Spectromicroscopy (SM) Beamline, Saskatoon, SK S7N 2V3, Canada * Correspondence: [email protected] Received: 11 November 2020; Accepted: 1 December 2020; Published: 7 December 2020 Abstract: Paleoclimatic and paleoceanographic studies routinely rely on the usage of foraminiferal calcite through faunal, morphometric and physico-chemical proxies. The application of such proxies presupposes the extraction and cleaning of these biomineralized components from ocean sediments in the most efficient way, a process which is often labor intensive and time consuming. In this respect, in this study we performed a systematic experiment for planktonic foraminiferal specimen cleaning using different chemical treatments and evaluated the resulting data of a Late Quaternary gravity core sample from the Aegean Sea.
    [Show full text]
  • Sedimentary Rocks
    Sedimentary Rocks • a rock resulting from the consolidation of loose sediment that has been derived from previously existing rocks • a rock formed by the precipitation of minerals from solution Sedimentary Stages of the Rock Cycle Weathering Erosion Transportation Deposition (sedimentation) Burial Diagenesis Fig. 5.1 1 Table 5.1 Sorting Fig 5.2 Transport will effect the sediment in several ways Sorting:Sorting a measure of the variation in the range of grain sizes in a rock or sediment • Well-sorted sediments have been subjected to prolonged water or wind action. • Poorly-sorted sediments are either not far- removed from their source or deposited by glaciers. 2 Fig. 5.3 Sedimentary Environments Fig. Story 5.5 Table 5.2 3 Sedimentary Structures Stratification = Bedding = Layering This layering that produces sedimentary structures is due to: • Particle size • Types (s) of particles Sedimentary Layering Other Examples of Sedimentary Structures • Cross-beds • Ripple marks • Mudcracks • Raindrop impressions • Fossils 4 Cross-bedded sandstone Fig. 5.6 Fig. 5.7 Ripples on a beach Fig. 5.8 5 Ripples Preserved in Sandstone Fig. 5.9 Fig. 5.9 6 Fig. 5.10 Turbidity Currents Suspension of water sand, and mud that moves downslope (often very rapidly) due to its greater density that the surrounding water (often triggered by earthquakes). The speed of turbidity currents was first appreciated in 1920 when a current broke lines in the Atlantic. This event also demonstrated just how far a single deposit could travel. From Sediment to Sedimentary Sock (lithification) • Compaction:Compaction reduces pore space. clays and muds are up to 60 % water; 10% after compaction • Cementation:Cementation chemical precipitation of mineral material between grains (SiO2, CaCO3, Fe2O3) binds sediment into hard rock.
    [Show full text]
  • Combining Marine Macroecology and Palaeoecology in Understanding Biodiversity: Microfossils As a Model
    Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12223 Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model Moriaki Yasuhara1,2,3,∗, Derek P. Tittensor4,5, Helmut Hillebrand6 and Boris Worm4 1School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China 2Swire Institute of Marine Science, The University of Hong Kong, Cape d’Aguilar Road, Shek O, Hong Kong SAR, China 3Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China 4Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada 5United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK 6Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany ABSTRACT There is growing interest in the integration of macroecology and palaeoecology towards a better understanding of past, present, and anticipated future biodiversity dynamics. However, the empirical basis for this integration has thus far been limited. Here we review prospects for a macroecology–palaeoecology integration in biodiversity analyses with a focus on marine microfossils [i.e. small (or small parts of) organisms with high fossilization potential, such as foraminifera, ostracodes, diatoms, radiolaria, coccolithophores, dinoflagellates, and ichthyoliths]. Marine microfossils represent a useful model
    [Show full text]
  • Description of a Contourite Depositional System on the Demerara Plateau: Results from Geophysical Data and Sediment Cores
    1 Marine Geology Achimer August 2016, Volume 378, Pages 56-73 http://dx.doi.org/10.1016/j.margeo.2016.01.003 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00308/41957/ © 2016 Elsevier B.V. All rights reserved Description of a contourite depositional system on the Demerara Plateau: Results from geophysical data and sediment cores Tallobre Cédric 1, 2, *, Loncke Lies 1, 2, Bassetti Maria-Angela 1, 2, Giresse Pierre 1, 2, Bayon Germain 3, Buscail Roselyne 1, 2, Durrieu De Madron Xavier 1, 2, Bourrin François 1, 2, Vanhaesebroucke Marc 1, 2, Sotin Christine 1, 2, Iguanes Scientific Party 1 Univ. Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, 52 Avenue Paul Alduy, 66860 Perpignan, France 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, 52 Avenue Paul Alduy, 66860 Perpignan, France 3 IFREMER, Unité de Recherche Géosciences Marines, 29280 Plouzané, France * Corresponding author : Cédric Tallobre, email address : [email protected] Abstract : The Demerara Plateau, belonging to the passive transform margin of French Guiana, was investigated during the IGUANES cruise in 2013. The objectives of the cruise were to explore the poorly-known surficial sedimentary column overlying thick mass transport deposits as well as to understand the factors controlling recent sedimentation. The presence of numerous bedforms at the seafloor was observed thanks to newly acquired IGUANES bathymetric, high resolution seismic and chirp data, while sediment cores allowed the characterization of the deposits covering the mass transport deposits. Modern oceanographic conditions were determined in situ, using mooring monitoring over a 10-month period.
    [Show full text]