Enterprise – Automotive Industry

Total Page:16

File Type:pdf, Size:1020Kb

Enterprise – Automotive Industry FINAL REPORT SSUURRVVEEYY OONN MMOOTTOORR VVEEHHIICCLLEE TTYYRREESS && RREELLAATTEEDD AASSPPEECCTTSS (ENTR/02/045) prepared by: commissioned by: The European Commission Enterprise Directorate General Unit ENTR/F/5 TÜV Automotive is accredited under DAR-registration number KBA • P 00001-95 to the accreditation body of the Kraftfahrt-Bundesamt, Federal Republic of Germany. Final Report “Motor Vehicle Tyres And Related Aspects” Commissioned by: The European Commission Enterprise Directorate General Prepared by: TÜV Automotive GmbH Authors: Dipl.-Ing. (FH) Walter Reithmaier Dipl.-Ing. (FH) Thomas Salzinger PRELIMINARY REMARK: The investigations within the scope of this survey and the composition of the present report were carried out in all conscience and to the best of our knowledge. As can be seen in the list of references, some sources refer to pages on the Internet. As this medium is subject to fast changes, some references may no longer be found at the addresses given in the list. The list of references represents the state at delivery of the first draft version of this report. ______________________________________________________________ SURVEY ON MOTOR VEHICLE TYRES AND RELATED ASPECTS – 2003 - Page 2 CONTENTS: A: GENERAL PART 0 GLOSSARY OF ABBREVIATIONS................................................................................ 9 1 INTRODUCTION................................................................................................... 11 1.1 BACKGROUND AND PURPOSE............................................................................. 11 1.2 APPROACH ...................................................................................................... 11 B: TOPICAL PART 2 ANALYSIS OF TYRE-RELATED ACCIDENT RESEARCH DATA AND CONTRIBUTION OF TYRES TO HIGHER TRAFFIC SAFETY ...................................................................... 13 2.1 ANALYSIS OF DATA FROM ACCIDENT RESEARCH RELATED TO TYRES ............................... 13 2.1.1 TASK DESCRIPTION ........................................................................................ 13 2.1.2 APPROACH ................................................................................................... 13 2.1.3 PROBLEMS INVOLVED WITH DATA COLLECTION, AVAILABILITY AND QUALITY ............... 15 2.1.4 THE ROLE OF TECHNICAL DEFECTS IN ROAD ACCIDENTS .......................................... 17 2.1.5 DETAILS OF TECHNICAL DEFECTS IN ROAD ACCIDENTS ............................................ 19 2.1.6 RESULTS CONCERNING FAILURES IN TYRE CHECKS WITHOUT PRIOR ACCIDENT .............. 24 2.1.7 CONCLUSIONS AND SUMMARY ........................................................................... 26 2.2 CONTRIBUTION OF THE TYRES TO TRAFFIC AND DRIVING SAFETY FROM A TECHNICAL PERSPECTIVE (PASSENGER CARS)........................................................... 28 2.2.1 STRUCTURAL DAMAGE ..................................................................................... 28 2.2.1.1 RELATED TO APPLICATION AND OPERATION ........................................................ 28 2.2.1.1.1 UNDER-INFLATION/OVERLOADING......................................................... 28 2.2.1.1.2 TYRE AGE/AGING BEHAVIOUR .............................................................. 29 2.2.1.1.3 INCORRECT LOAD/SPEED INDICES ......................................................... 29 2.2.1.1.4 EXTERNAL IMPACTS ........................................................................... 30 2.2.1.2 RELATED TO RETREADING .............................................................................. 30 2.2.1.3 RELATED TO CONCEPT/DESIGN ........................................................................ 30 2.2.2 ROAD PERFORMANCE OF THE TYRE ..................................................................... 33 ______________________________________________________________ SURVEY ON MOTOR VEHICLE TYRES AND RELATED ASPECTS – 2003 - Page 3 2.2.2.1 INFLATION PRESSURE .................................................................................... 34 2.2.2.1.1 CORRECT INFLATION PRESSURE............................................................ 34 2.2.2.1.2 OVER-INFLATION .............................................................................. 35 2.2.2.1.3 UNDERINFLATION ............................................................................. 35 2.2.2.2 RELATED TO CONCEPT/DESIGN ........................................................................ 37 2.2.2.2.1 DECELERATION PROPERTIES ................................................................ 38 2.2.2.2.2 AQUAPLANING PERFORMANCE .............................................................. 40 2.2.2.2.3 CORNERING STABILITY ....................................................................... 41 2.2.2.2.4 GENERAL VEHICLE HANDLING/DRIVING SAFTEY......................................... 41 2.2.3 CONCLUSION ................................................................................................ 44 2.2.4 CONTRIBUTION OF THE TYRES TO TRAFFIC AND DRIVING SAFETY FROM A TECHNICAL PERSPECTIVE (MOTORCYCLES).......................................................................... 46 2.2.4.1 HANDLING AND MANOEUVRABILITY................................................................... 46 2.2.4.2 DRIVING STABILITY ...................................................................................... 47 2.2.4.2.1 WOBBLE (SHIMMY) ........................................................................... 47 2.2.4.2.2 KICKBACK ....................................................................................... 48 2.2.4.2.3 WEAVE........................................................................................... 48 2.2.4.3 BRAKING/ACCELERATING ............................................................................... 49 2.2.4.4 SUMMARY AND CONCLUSION ........................................................................... 49 2.3 SUMMARY OF WORKSHOP MEETINGS...................................................................... 51 2.3.1 MEETINGS WITH REPRESENTATIVES OF TYRE MANUFACTURERS (ETRTO).................... 51 2.3.1.1 MEETINGS WITH REPRESENTATIVES OF PASSENGER CAR MANUFACTURERS (ACEA/VDA) ............................................................................................. 53 2.3.1.2 MEETINGS WITH REPRESENTATIVES OF MOTORCYCLE MANUFACTURERS AND MOTOR CYCLE TYRE MANUFACTURERS.......................................................................... 54 3 RESEARCH OF THE CURRENT AND FUTURE STATE OF TECHNOLOGICAL DEVELOPMENTS WITH RESPECT TO TYRES AND RELATED COMPONENTS AND SYSTEMS ........................................................................................................... 56 3.1 TYRES............................................................................................................ 56 3.1.1 TYRES AND COMBINED SYSTEMS WITH RUN-FLAT TECHNOLOGY ................................. 56 3.1.1.1 TYRES WITH RUN-FLAT-PROPERTIES ................................................................. 57 ______________________________________________________________ SURVEY ON MOTOR VEHICLE TYRES AND RELATED ASPECTS – 2003 - Page 4 3.1.1.2 ADD-ON SYSTEMS WITH RUN-FLAT PROPERTIES ................................................... 58 3.1.1.3 TYRE/WHEEL SYSTEMS WITH RUN-FLAT-PROPERTIES ............................................ 60 3.1.1.3.1 SPECIAL DESIGNATIONS (PAX) ............................................................ 61 3.1.1.4 SUMMARY AND DISCUSSION OF RUN-FLAT-TECHNOLOGY ........................................ 61 3.1.2 PRESSURE WARNING AND MONITORING SYSTEMS................................................... 63 3.1.2.1 PASSIVE/INDIRECT SYSTEMS........................................................................... 64 3.1.2.2 ACTIVE/DIRECT SYSTEMS............................................................................... 65 3.1.2.3 SUMMARY AND DISCUSSION OF PRESSURE WARNING AND MONITORING SYSTEMS ......... 68 3.1.3 PUNCTURE REPAIR SETS .................................................................................. 69 3.1.3.1 INSTANT TYRE SEALANTS ............................................................................... 69 3.1.3.2 PREVENTIVE PUNCTURE SEALANT LIQUIDS .......................................................... 70 3.1.4 TYRE SENSORSING ......................................................................................... 71 3.1.4.1 SIDE-WALL-TORSION SENSOR (SWT)............................................................... 71 3.1.4.2 SURFACE-ACOUSTIC WAVE SENSOR (SAW) ........................................................ 72 3.1.4.3 TYRE IDENTIFICATION CHIPS .......................................................................... 73 3.1.4.4 SUMMARY AND DISCUSSION OF TYRE SENSORING ................................................. 75 3.2 RELATED SYSTEMS AND COMPONENTS.................................................................... 76 3.2.1 ELECTRONIC SYSTEMS FOR IMPROVED VEHICLE CONTROL ........................................ 76 3.2.1.1 ANTI-LOCK BRAKE SYSTEM (ABS) .................................................................... 76 3.2.1.2 BRAKE ASSISTANT SYSTEMS ............................................................................ 76 3.2.1.3 ELECTRONIC TRACTION CONTROL (ETC) ........................................................... 77 3.2.1.4 CORNERING BRAKE CONTROL .......................................................................... 77 3.2.1.5 ELECTRONIC STABILITY PROGRAM (ESP) ..........................................................
Recommended publications
  • Blowout Resistant Tire Study for Commercial Highway Vehicles
    Final Technical Report for Task Order No. 4 (DTRS57-97-C-00051) Blowout Resistant Tire Study for Commercial Highway Vehicles Z. Bareket D. F. Blower C. MacAdam The University of Michigan Transportation Research Institute August 31,2000 Technical Report Documen~tationPage Table of Contents 1. Overview ..................... ..........................................................................................1 2 . Crash Data Analysis of Truck Tire Blowouts ........................................ 3 Truck tire blowouts in FARS (Fatality Analysis Reporting System) and TIFA (Trucks Involved in Fatal Accidents) ........................................................................................3 Truck tire blowouts in GES .........................................................................................8 Fatalities and injuries in truck tire blowout crashes ..................................................10 State data analysis ....................................................................................................10 Crashes related to truck tire debris ...........................................................................12 3 . Information Review of Truck Tire Blowouts .........................................................15 Literature Review ................. .............................................................................15 Federal Motor Carrier Safety Regulations, Rules and Notices ...................................21 Patent Database Research ....................... .. .......................................................23
    [Show full text]
  • Prestone Ebook Winter Driving 3
    A Prestone ebook: WINTER DRIVING Of all the seasons, winter creates the most challenging driving conditions, and can be extremely tough on your car. Treacherous weather coupled with dark evenings can make driving hazardous, so it’s vital you ready yourself and your car before the season takes hold. From heavy rain to ice and snow, winter will throw all sorts of extreme weather your way — so it’s best to be prepared. By checking the condition of your car and changing your driving style to adapt to the hazardous conditions, you can keep driving no matter how extreme the weather becomes. To help you stay safe behind the wheel this season, here’s an in-depth guide on the dos and don’ts of winter driving. From checking your vehicle’s coolant/antifreeze to driving in thick fog, heavy rain and high winds — this guide is packed with tips and advice on driving in even the most extreme winter weather. PREPARING YOUR VEHICLE FOR WINTER DRIVING Keeping your car in a good, well maintained condition is important throughout the year, but especially so in winter. At a time when extreme weather can strike at any moment, your car needs to be prepared and ready for the worst. The following checks will help to make sure your car is ready for even the toughest winter conditions. COOLANT / ANTIFREEZE Whatever the weather, your car needs coolant/antifreeze all year round to make sure the engine doesn’t overheat or freeze up. By adding a quality coolant/antifreeze to your engine, it’ll be protected in all extremes — from -37°C to 129°C and you’ll also be protected against corrosion.
    [Show full text]
  • The Parliament of the Commonwealth of Australia Tyre Safety Report Op the House of Representatives Standing Committee on Road Sa
    THE PARLIAMENT OF THE COMMONWEALTH OF AUSTRALIA TYRE SAFETY REPORT OP THE HOUSE OF REPRESENTATIVES STANDING COMMITTEE ON ROAD SAFETY JUNE 1980 AUSTRALIAN GOVERNMENT PUBLISHING SERVICE CANBERRA 1980 © Commonwealth of Australia 1980 ISBN 0 642 04871 1 Printed by C. I THOMPSON, Commonwealth Govenimeat Printer, Canberra MEMBERSHIP OF THE COMMITTEE IN THE THIRTY-FIRST PARLIAMENT Chairman The Hon. R.C. Katter, M.P, Deputy Chai rman The Hon. C.K. Jones, M.P. Members Mr J.M. Bradfield, M.P. Mr B.J. Goodluck, M.P. Mr B.C. Humphreys, M.P. Mr P.F. Johnson, M.P. Mr P.F. Morris, M.P. Mr J.R. Porter, M.P. Clerk to the Committee Mr W. Mutton* Advisers to the Committee Mr L. Austin Mr M. Rice Dr P. Sweatman Mr Mutton replaced Mr F.R. Hinkley as Clerk to the Committee on 7 January 1980. (iii) CONTENTS Chapter Page Major Conclusions and Recommendations ix Abbreviations xvi i Introduction ixx 1 TYRES 1 The Tyre Market 1 -Manufacturers 1 Passenger Car Tyres 1 Motorcycle Tyres 2 - Truck and Bus Tyres 2 ReconditionedTyi.es 2 Types of Tyres 3 -Tyre Construction 3 -Tread Patterns 5 Reconditioned Tyres 5 The Manufacturing Process 7 2 TYRE STANDARDS 9 Design Rules for New Passenger Car Tyres 9 Existing Design Rules 9 High Speed Performance Test 10 Tests under Conditions of Abuse 11 Side Forces 11 Tyre Sizes and Dimensions 12 -Non-uniformity 14 Date of Manufacture 14 Safety Rims for New Passenger Cars 15 Temporary Spare Tyres 16 Replacement Passenger Car Tyres 17 Draft Regulations 19 Retreaded Passenger Car Tyres 20 Tyre Industry and Vehicle Industry Standards 20
    [Show full text]
  • Motorcycle Tyres
    MOTORCYCLE TYRES SAFE TYRES SAVE LIVES tyresafe.org Motorcycle Tyres and Your Safety General Advice in tyre size or type (construction) Tyres are the only parts of the should not be undertaken without motorcycle which are in contact seeking advice from the motorcycle with the road. Safety in acceleration, or tyre manufacturers, as the effect braking, steering and cornering all on motorcycle handling, safety and depend on a relatively small area clearances must be taken into account. of road contact. It is therefore of The tyre industry has long recognised paramount importance that tyres the consumer’s role in the regular care should be maintained in good condition and maintenance of their tyres. The at all times and that when the time point at which a tyre is replaced is a comes to change them suitable decision for which the owner of the replacements are fitted. tyre is responsible. The original tyres for a motorcycle In some other European countries it are determined by joint consultation is illegal to use replacements which between the motorcycle and differ in certain respects (e.g. size, load, tyre manufacturers and take into construction, and speed rating) from account all aspects of operation. the tyre fitted originally by the vehicle It is recommended that changes manufacturer. DIAGONAL RADIAL PLY BIAS-BELTED (CROSS PLY) BELTS ANGLED FABRIC ANGLED FABRIC PLIES FABRIC BELT AT PLIES (NOT ANGLED) PLIES SIMILAR BEAD FILLER ANGLES TO PLIES INNER INNER INNER TUBELESS TUBELESS TUBELESS LINING WIRE BEAD LINING WIRE BEAD LINING WIRE BEAD (ON TUBELESS TYRES) (ON TUBELESS TYRES) (ON TUBELESS TYRES) Choosing the Right Tyre All three construction types can be manufactured in differing tread profiles Today’s motorcycles vary in design and patterns which may also be and specification including scooter and available for front and rear fitment.
    [Show full text]
  • Traction of an Aircraft Tire on Grooved and Porous Asphaltic Concrete
    Transportation Research Record 1000 15 Traction of an Aircraft Tire on Grooved and Porous Asphaltic Concrete SATISH K. AGRAWAL and HECTOR DAJUTOLO ABSTRACT however, their cost-effectiveness has been demon­ strated by the Federal Aviation Administration (FAA) in the portland cement concrete (PCC) surface by The Federal Aviation Administration is en­ full-scale tire tests under controlled dynamic con­ gaged in an experimental program to deter­ ditions (1). Because BO percent of all the runways mine the effectiveness of various surface in the united States are of asphaltic concrete con­ treatments to eliminate aircraft hydroplan­ struction, it is important to evaluate the effec­ ing when landing on wet runways. The surface tiveness of these experimental grooves cut in treatments included saw-cut grooves, reflex­ asphaltic concrete. It is also necessary to deter­ percussive grooves, and porous friction mine the relative braking performance of an aircraft overlays in the asphaltic concrete runways. tire, under controlled dynamic conditions, on saw­ Experiments were conducted on a 1.25-mile cut grooves cut in the asphaltic concrete surface, long track that included a 300-ft test bed particularly in the absence of any such investiga­ containing concrete with 40-ft sections of tion in the past. Full-scale aircraft tests have various surface treatments. Test speeds be­ been conducted on asphaltic concrete surfaces by the tween 70 and 150 knots were achieved by the National Aeronautics and Space Administration use of a jet-powered pusher car that also (NASA) i however, groove-spacing was not a variable supported a dynamometer and tire-wheel as­ in that study.
    [Show full text]
  • TIRE PRESSURE MONITORING SYSTEM FMVSS No
    U.S. Department Of Transportation PRELIMINARY ECONOMIC ASSESSMENT TIRE PRESSURE MONITORING SYSTEM FMVSS No. 138 Office of Regulatory Analysis and Evaluation Plans and Policy July 2001 Table of Contents Executive Summary....................................................................................................................i Introduction.............................................................................................................................I-1 Background and Alternatives ...............................................................................................II-1 Tire Pressure Survey and Test Results ................................................................................III-1 Target Population................................................................................................................. IV-1 Benefits ..................................................................................................................................V-1 Human Factors Issues ........................................................................................................V-1 Stopping Distance..............................................................................................................V-3 Fuel Economy .................................................................................................................V-40 Tread Life .......................................................................................................................V-46 Unquantifiable Benefits ...................................................................................................V-53
    [Show full text]
  • Tis 682-2540 (1997)
    TIS 682-2540 (1997) Thai Industrial Standard for Motorcycle Tyres 1. Scope 1.1 This standard specifies the class and type, maximum load, size and general requirements, marking and labelling, sampling and criteria for conformity and testing. 2. Definition For the purpose of this standard, the following definitions apply: 2.1 A motorcycle tyre, hereinafter referred to as ‘tyre’, means a tyre that is designed to be assembled with a motorcycle rim, to carry a load when inflated, to reduce vibration and to cause the motorcycle to move upon applying traction. 2.2 A bias ply tyre means a tyre with a structure in which the carcass cords are arranged diagonally at approximately 30- 70° to the centre line of the tread (see Figure 1), either “with breaker” or “without breaker”. 2.3 A radial ply tyre means a tyre with a structure in which the carcass cords are arranged at 90° or the angle near to the tread line and bound tight by a belt (see Figure 1). Centre line of tread Centre line of tread Tread Belt Figure 1 Bias ply tyre and radial ply tyre (Clause 2.2 and Clause 2.3) - 1 - - TIS 682-2540 (1997) Sectional height Overall diameter Sectional height Overall diameter Cross section Cross section Overall width Overall width Rim Rim diameter diameter A-type tread B-type tread Overall diameter Sectional height Sectional height Overall diameter Cross section Cross section Overall width Overall width Rim Rim diameter diameter C-type tread D-type tread Figure 2 Overall width, cross section width, overall diameter, and cross section height (Clauses 2.13, 2.14, 2.15 and 2.17) 2.4 Tread means the part of the tyre which normally comes into contact with the ground and is characterised as having a tread rib, tread element or tread block.
    [Show full text]
  • Automotive Engineering II Lateral Vehicle Dynamics
    INSTITUT FÜR KRAFTFAHRWESEN AACHEN Univ.-Prof. Dr.-Ing. Henning Wallentowitz Henning Wallentowitz Automotive Engineering II Lateral Vehicle Dynamics Steering Axle Design Editor Prof. Dr.-Ing. Henning Wallentowitz InstitutFürKraftfahrwesen Aachen (ika) RWTH Aachen Steinbachstraße7,D-52074 Aachen - Germany Telephone (0241) 80-25 600 Fax (0241) 80 22-147 e-mail [email protected] internet htto://www.ika.rwth-aachen.de Editorial Staff Dipl.-Ing. Florian Fuhr Dipl.-Ing. Ingo Albers Telephone (0241) 80-25 646, 80-25 612 4th Edition, Aachen, February 2004 Printed by VervielfältigungsstellederHochschule Reproduction, photocopying and electronic processing or translation is prohibited c ika 5zb0499.cdr-pdf Contents 1 Contents 2 Lateral Dynamics (Driving Stability) .................................................................................4 2.1 Demands on Vehicle Behavior ...................................................................................4 2.2 Tires ...........................................................................................................................7 2.2.1 Demands on Tires ..................................................................................................7 2.2.2 Tire Design .............................................................................................................8 2.2.2.1 Bias Ply Tires.................................................................................................11 2.2.2.2 Radial Tires ...................................................................................................12
    [Show full text]
  • AUTOMATIC TYRE PRESSURE MONITORING SYSTEM USING WIRELESS COMMUNICATON Prof
    AUTOMATIC TYRE PRESSURE MONITORING SYSTEM USING WIRELESS COMMUNICATON Prof. Mr. Prashant. G. Salunkhe 1, Mr. Harshal R. Kulthe 2, Mr. Saiprasad N. Kolhe 3, Mr. Ayaan A. Khan4 1 Guide Department of Electronics and Telecommunication, 2 3 4 Research Scholar, Sandip Foundation, SITRC College, Nasik, Maharashtra (India) ABSTRACT Tyre pressure monitoring system (TPMS) is an electronic system that monitors the air pressure of an automobile tyre and alerts the driver by displaying the real pressure or just a warning light. This project is focused on designing and developing a direct TPMS which the measurement of the air pressure is taken directly using pressure sensor. Suitable components are researched to design the prototype. Main components needed are pressure sensor, voltage-to-frequency converter, transmitter, receiver, and frequency-to-voltage converter. To power the prototype, energy is chosen through wheel rotation. Main components need to be calibrated to ensure the consistency and precision of the prototype in reporting the pressure. Calibration for pressure sensor is performed by simply applying a known value of pressure and the output voltage is measured. For voltage-to- frequency and frequency to-voltage converters, a known value of voltage or frequency is applied and the output is monitored using voltmeter and oscilloscope. The results show promising data by proving the relationship between the input and output for each component. As for the conclusion, although there are many problems and limitations faced, this prototype is a promising product in real world application. I. INTRODUCTION Every year, many accidents occurred and for certain cases, accidents are caused by under-inflated tyres.
    [Show full text]
  • Development of a Steer Axle Tire Blowout Model For
    DEVELOPMENT OF A STEER AXLE TIRE BLOWOUT MODEL FOR TRACTOR SEMITRAILERS IN TRUCKSIM THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Krishnan Veeraraghavan Chakravarthy Graduate Program in Mechanical Engineering The Ohio State University 2013 Master's Examination Committee: Dr. Dennis A. Guenther, Advisor Dr. Gary Heydinger Copyright by Krishnan Chakravarthy Veeraraghavan 2013 ABSTRACT Tractor Semitrailer handling is one of the key issues in today’s highway traffic safety research. When accidents happen with tractor semitrailers, possibilities of multiple vehicle crashes are always high. Thus it is important to study the handling and control of tractor trailers in accident scenarios. Tire blowout is one of the most common types of failure which may cause vehicle crashes. With experimental testing for such studies being expensive, vehicle dynamic simulation goes a long way in supplementing the capabilities of real field testing. The primary goal of this thesis is to develop a tire blowout model for a tractor semitrailer in TruckSim¬¬TM. Experimental data from a left steer axle tire blowout of a tractor trailer is considered for modeling. The effect of tire blowout on vehicle dynamic aspects of the tire like rolling resistance, effective rolling radius, vertical stiffness and other tire forces are studied. The tractor semitrailer model is developed from previously conducted braking simulation models in TruckSim. From the experimental data, the behavior of the tractor trailer and the left steer axle tire are studied. A tire blowout model for the left steer axle of the tractor is created within TruckSim for simulation.
    [Show full text]
  • Aircraft Tire Data
    Aircraft tire Engineering Data Introduction Michelin manufactures a wide variety of sizes and types of tires to the exacting standards of the aircraft industry. The information included in this Data Book has been put together as an engineering and technical reference to support the users of Michelin tires. The data is, to the best of our knowledge, accurate and complete at the time of publication. To be as useful a reference tool as possible, we have chosen to include data on as many industry tire sizes as possible. Particular sizes may not be currently available from Michelin. It is advised that all critical data be verified with your Michelin representative prior to making final tire selections. The data contained herein should be used in conjunction with the various standards ; T&RA1, ETRTO2, MIL-PRF- 50413, AIR 8505 - A4 or with the airframer specifications or military design drawings. For those instances where a contradiction exists between T&RA and ETRTO, the T&RA standard has been referenced. In some cases, a tire is used for both civil and military applications. In most cases they follow the same standard. Where they do not, data for both tires are listed and identified. The aircraft application information provided in the tables is based on the most current information supplied by airframe manufacturers and/or contained in published documents. It is intended for use as general reference only. Your requirements may vary depending on the actual configuration of your aircraft. Accordingly, inquiries regarding specific models of aircraft should be directed to the applicable airframe manufacturer.
    [Show full text]
  • Final Year Project Report
    FINAL YEAR PROJECT REPORT “Tire Pressure Monitoring System” Project Advisor Mr.Farhan Iqbal Submitted by Basit Ali -081220-154 Bilal Akram - 081220-235 Usama Jameel- 081220-160 Department of Electrical Engineering School of Science and Technology University of Management and Technology Tire Pressure Monitoring System 1 “Tire Pressure Monitoring System” Project Report submitted to the Department of Electrical Engineering, University of Management and Technology in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical Engineering Basit Ali - 081220-154 Bilal Akram - 081220-235 Usama Jameel - 081220-160 Project Advisor: ____________________ Mr. FarhanIqbal Tire Pressure Monitoring System 2 Acknowledgements Thanks to Allah Almighty Who gave us the strength to make a decision to choose the project topic for our final project, moreover make us able to work on this project by utilizing all our abilities and powers. He has given us the knowledge to choose the best path among the bests. This project is a culmination of a long period of work and without the support of many individuals; it would never have been existed. First and foremost, we thank our families, for their care and endless support, both moral and financial, to complete this project. We have set a light and ever burning flame of gratitude and deep sense of obligation to our honorable advisor Mr. Farhan Iqbal for his generous assistance and inspiring attitude during the course of our project. Not only he helped us in our project but also did his best efforts in familiarizing us with basic concepts of components used which proved to be very helpful while doing our project.
    [Show full text]