RESEARCH ARTICLE Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo Charlene Guillot1,2,3*, Yannis Djeffal1,2,3, Arthur Michaut1,2,3, Brian Rabe2,4, Olivier Pourquie´ 1,2,3* 1Department of Pathology, Brigham and Women’s Hospital, Boston, United States; 2Department of Genetics, Harvard Medical School, Boston, United States; 3Harvard Stem Cell Institute, Boston, United States; 4Howard Hughes Medical Institute, Boston, United States Abstract In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved *For correspondence: transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB.
[email protected] (CG); Posterior to anterior gradients of convergence speed and ingression along the PS lead to
[email protected].