From Minimalist Grammars to Multiple Context-Free Grammars Bruno Mery, Maxime Amblard, Irène Durand, Christian Retoré
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Appendix A: Hierarchy of Grammar Formalisms
Appendix A: Hierarchy of Grammar Formalisms The following figure recalls the language hierarchy that we have developed in the course of the book. '' $$ '' $$ '' $$ ' ' $ $ CFG, 1-MCFG, PDA n n L1 = {a b | n ≥ 0} & % TAG, LIG, CCG, tree-local MCTAG, EPDA n n n ∗ L2 = {a b c | n ≥ 0}, L3 = {ww | w ∈{a, b} } & % 2-LCFRS, 2-MCFG, simple 2-RCG & % 3-LCFRS, 3-MCFG, simple 3-RCG n n n n n ∗ L4 = {a1 a2 a3 a4 a5 | n ≥ 0}, L5 = {www | w ∈{a, b} } & % ... LCFRS, MCFG, simple RCG, MG, set-local MCTAG, finite-copying LFG & % Thread Automata (TA) & % PMCFG 2n L6 = {a | n ≥ 0} & % RCG, simple LMG (= PTIME) & % mildly context-sensitive L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies, DOI 10.1007/978-3-642-14846-0, c Springer-Verlag Berlin Heidelberg 2010 216 Appendix A For each class the different formalisms and automata that generate/accept exactly the string languages contained in this class are listed. Furthermore, examples of typical languages for this class are added, i.e., of languages that belong to this class while not belonging to the next smaller class in our hier- archy. The inclusions are all proper inclusions, except for the relation between LCFRS and Thread Automata (TA). Here, we do not know whether the in- clusion is a proper one. It is possible that both devices yield the same class of languages. Appendix B: List of Acronyms The following table lists all acronyms that occur in this book. (2,2)-BRCG Binary bottom-up non-erasing RCG with at most two vari- ables per left-hand side argument 2-SA Two-Stack Automaton -
An Introduction to Multiple Context Free Grammars for Linguists Alexander Clark September 20, 2014
An introduction to multiple context free grammars for linguists Alexander Clark September 20, 2014 This is a gentle introduction to Multiple Context Free Grammars (mcfgs), intended for linguists who are familiar with context free grammars and movement based analyses of displaced constituents, but unfamiliar with Minimalist Grammars or other mildly context-sensitive formalisms.1 1 I originally wrote this for LOT 2012. This is a lightly edited version with a few corrections. Introduction So to start, a very small bit of historical background – not by any means a proper survey. We are all familiar with the Chomsky hier- archy 2. This defined a collection of different formalisms that have 2 N. Chomsky. Three models for various types of power. This was an incredible intellectual accomp- the description of language. IEEE Transactions on Information Theory, 2(3): ishment, but Chomsky (unsurprisingly) didn’t get it absolutely right 113–124, 1956 first time. Before Chomsky’s pioneering work, there were three very natural classes of languages – the class of finite languages, the class of regular languages, and the class of computable languages. We blur here some technical distinc- Chomsky identified the class of context free grammars (CFGs), and tions between recursive, primitive recursive and recursively enumerable he recognised (correctly, but on the basis of incorrect arguments) that languages that are not relevant to the this was insufficient for describing natural languages. discussion. In the context of linguistics, it is clear that Chomsky’s initial at- tempt to formalise a richer model than context free grammars ended up with a class that is much too powerful to be useful: the context sensitive grammars are equivalent just to Turing machines with a certain bound and have a completely intractable parsing problem. -
Formal Language Theory: Refining the Chomsky Hierarchy
Formal Language Theory: Refining the Chomsky Hierarchy Gerhard J¨ager & James Rogers 1 Introduction The field of formal language theory — initiated by Noam Chomsky in the 1950s, building on earlier work by Axel Thue, Alan Turing, and Emil Post — provides a measuring stick for linguistic theories that sets a minimal limit of descriptive adequacy. Chomsky suggested a series of massive simplifications and abstrac- tions to the empirical domain of natural language. (In particular, this approach ignores meaning entirely. Also, all issues regarding the usage of expressions, like their frequency, context dependence, and processing complexity, are left out of consideration. Finally, it is assumed that patterns that are productive for short strings apply to strings of arbitrary length in an unrestricted way.) The im- mense success of this framework — influencing not just linguistics to this day, but also theoretical computer science and, more recently, molecular biology — suggests that these abstractions were well chosen, preserving essential aspects of the structure of natural languages.1 An expression in the sense of formal language theory is simply a finite string of symbols, and a (formal) language is a set of such strings. The theory explores the mathematical and computational properties of such sets. As a starting point, formal languages are organized into a nested hierarchy of increasing complexity. In its classical formulation [3], this so-called Chomsky Hierarchy has four lev- els of increasing complexity: regular, context-free, context-sensitive, and com- putably enumerable languages. Subsequent work in formal linguistics showed that this four-fold distinction is too coarse-grained to pin down the level of com- plexity of natural languages along this domain. -
Local and Transderivational Constraints in Syntax and Semantics
UNIVERSITYOF CALIFORNIA Los Angeles Local and Transderivational Constraints in Syntax and Semantics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Linguistics by Thomas Graf 2013 c Copyright by Thomas Graf 2013 ABSTRACTOFTHE DISSERTATION Local and Transderivational Constraints in Syntax and Semantics by Thomas Graf Doctor of Philosophy in Linguistics University of California, Los Angeles, 2013 Professor Edward P.Stabler, Chair A long-standing tension in Minimalist syntax is that between the structure-building operations Merge and Move on the one hand and the constraints restricting the shape of the structures built by said operations on the other. Proposals differ vastly in how much weight they attribute to each component, partially because there seems to be no principled connection between the two — constraints can easily be grafted onto any syntactic theory, and the choice of constraints is apparently independent of the types of posited operations. As a consequence, many foundational questions still lack satisfying answers: What kinds of constraints are there? What is their respective power, and are there any factors that could limit it? Are there phenomena that can only be explained via constraints? Why would syntax have both operations and constraints? My thesis explores these and related questions from a mathematically informed perspective. The central result is that Minimalist syntax can express a constraint purely via the operation Merge iff computing said constraint requires only a finitely bounded amount of working memory iff the constraint can be defined by an extension of first-order logic known as monadic second-order logic. -
Extending Tree-Adjoining Grammars and Minimalist Grammars with Unbounded Scrambling: an Overview of the Problem Area
Extending Tree-adjoining grammars and Minimalist Grammars with unbounded scrambling: an overview of the problem area Alexander Perekrestenko Universitat Rovira i Virgili Departamento de Filologías Románicas Grupo de Investigación en Lingüística Matemática Pl. Imperial Tarraco 1; 43005 Tarragona [email protected] Abstract In this paper we give an overview of restricted formalisms used as a basis for formal syntactic theories and discuss the problem of extending these formalisms with an adequate representation of nonlocal scrambling, the phenomenon of structural discontinuity leading to the intermingling of the fragments belonging to different syntactic constituents. Keywords: syntax, restricted formalisms, Tree-adjoining Grammars, Minimalist Grammars, scrambling Resumen En este artículo presentamos unos formalismos restringidos utilizados como base para distintas teorías formales de sintaxis y tratamos el problema de la extensión de estos formalismos para la representación correcta del fenómeno sintáctico llamado scrambling no local. Este fenómeno de discontinuidad estructural hace que se entremezclen fragmentos de diferentes constituyentes sintácticos. Palabras clave: sintaxis, formalismos restringidos, gramáticas de adjunción de árboles, gramáticas minimalistas, scrambling Resum En aquest article presentem uns formalismes restringits usats com a base per a diferents teories sintàctiques formals i tractem el problema de l’extensió d’aquests formalismes per a la representació correcta del fenomen sintàctic conegut com a scrambling no local. Aquest fenomen de discontinuïtat estructural fa que es barregin fragments pertanyents a diferents constituents sintàctics. Paraules clau: sintaxi, formalismes restringits, gramàtiques d’adjunció d’arbres, gramàtiques minimalistes, scrambling Table of contents 1. Introduction 2. Formalisms 3. Tree-adjoining grammars 4. Scrambling 5. Minimalist Grammars 6. Conclusions 7. References 8. -
A Note on Automata
Journal of mathematics and computer Science 15 (2015) 88 - 96 A Note on Automata Dasharath Singh1, Ahmed Ibrahim Isah2 1 (Former Professor, Indian Institute of Technology, Bombay) Professor, Mathematics Department, Ahmadu Bello University, Zaria, Nigeria [email protected] 2 Mathematics Department, Ahmadu Bello University, Zaria, Nigeria [email protected] Article history: Received November 2014 Accepted February 2015 Available online February 2015 Abstract In this paper, a brief description of finite automata and the class of problems that can be solved by such devices is presented. The main objective is to introduce the concept of length product, illustrate its application to finite automata, and prove some related results. Keywords: Formal language, Automata, Length product 1. Introduction Formal languages (or simply languages) were developed in the 1950s by Noam Chomsky in an endeavor to systematically describe natural languages with an objective to make passages easier from one language to another using computers. Although, endeavors in this direction have only been partially successful, it has found a number of applications in computer science such as compiler construction for high-level programming languages, etc. A language is a set of strings over an alphabet. A language can be finite or infinite. A finite language can be described by listing its strings which is not the case for infinite languages; even for some finite languages the listing could be quite cumbersome. Moreover, in general, for a language to be interesting mathematically, it needs to have an infinite set of strings. Formal language theory develops mathematical and computational techniques for specifying languages. How simple or complex a language could be depends on the level of its description.