Other Special Diodes and Photonic Devices
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fundamentals of Microelectronics Chapter 3 Diode Circuits
9/17/2010 Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors CH7 CMOS Amplifiers CH8 Operational Amplifier As A Black Box 1 Chapter 3 Diode Circuits 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes 2 1 9/17/2010 Diode Circuits After we have studied in detail the physics of a diode, it is time to study its behavior as a circuit element and its many applications. CH3 Diode Circuits 3 Diode’s Application: Cell Phone Charger An important application of diode is chargers. Diode acts as the black box (after transformer) that passes only the positive half of the stepped-down sinusoid. CH3 Diode Circuits 4 2 9/17/2010 Diode’s Action in The Black Box (Ideal Diode) The diode behaves as a short circuit during the positive half cycle (voltage across it tends to exceed zero), and an open circuit during the negative half cycle (voltage across it is less than zero). CH3 Diode Circuits 5 Ideal Diode In an ideal diode, if the voltage across it tends to exceed zero, current flows. It is analogous to a water pipe that allows water to flow in only one direction. CH3 Diode Circuits 6 3 9/17/2010 Diodes in Series Diodes cannot be connected in series randomly. For the circuits above, only a) can conduct current from A to C. CH3 Diode Circuits 7 IV Characteristics of an Ideal Diode V V R = 0⇒ I = = ∞ R = ∞⇒ I = = 0 R R If the voltage across anode and cathode is greater than zero, the resistance of an ideal diode is zero and current becomes infinite. -
VOLTAGE REGULATORS 1. Zener Controlled Transistor Voltage Regulator
VOLTAGE REGULATORS A voltage regulator is a voltage stabilizer that is designed to automatically stabilize a constant voltage level. A voltage regulator circuit is also used to change or stabilize the voltage level according to the necessity of the circuit. Thus, a voltage regulator is used for two reasons:- 1. To regulate or vary the output voltage of the circuit. 2. To keep the output voltage constant at the desired value in-spite of variations in the supply voltage or in the load current. To know more on the basics of this subject, you may also refer Regulated Power Supply. Voltage regulators find their applications in computers, alternators, power generator plants where the circuit is used to control the output of the plant. Voltage regulators may be classified as electromechanical or electronic. It can also be classified as AC regulators or DC regulators. We have already explained about IC Voltage Regulators. Electronic Voltage Regulator All electronic voltage regulators will have a stable voltage reference source which is provided by the reverse breakdown voltage operating diode called zener diode. The main reason to use a voltage regulator is to maintain a constant dc output voltage. It also blocks the ac ripple voltage that cannot be blocked by the filter. A good voltage regulator may also include additional circuits for protection like short circuits, current limiting circuit, thermal shutdown, and over voltage protection. Electronic voltage regulators are designed by any of the three or a combination of any of the three regulators given below. 1. Zener Controlled Transistor Voltage Regulator A zener controlled voltage regulator is used when the efficiency of a regulated power supply becomes very low due to high current. -
ON Semiconductor Is
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. -
Special Diodes 2113
CHAPTER54 Learning Objectives ➣ Zener Diode SPECIAL ➣ Voltage Regulation ➣ Zener Diode as Peak Clipper DIODES ➣ Meter Protection ➣ Zener Diode as a Reference Element ➣ Tunneling Effect ➣ Tunnel Diode ➣ Tunnel Diode Oscillator ➣ Varactor Diode ➣ PIN Diode ➣ Schottky Diode ➣ Step Recovery Diode ➣ Gunn Diode ➣ IMPATT Diode Ç A major application for zener diodes is voltage regulation in dc power supplies. Zener diode maintains a nearly constant dc voltage under the proper operating conditions. 2112 Electrical Technology 54.1. Zener Diode It is a reverse-biased heavily-doped silicon (or germanium) P-N junction diode which is oper- ated in the breakdown region where current is limited by both external resistance and power dissipa- tion of the diode. Silicon is perferred to Ge because of its higher temperature and current capability. As seen from Art. 52.3, when a diode breaks down, both Zener and avalanche effects are present although usually one or the other predominates depending on the value of reverse voltage. At reverse voltages less than 6 V, Zener effect predominates whereas above 6 V, avalanche effect is predomi- nant. Strictly speaking, the first one should be called Zener diode and the second one as avalanche diode but the general practice is to call both types as Zener diodes. Zener breakdown occurs due to breaking of covalent bonds by the strong electric field set up in the depletion region by the reverse voltage. It produces an extremely large number of electrons and holes which constitute the reverse saturation current (now called Zener current, Iz) whose value is limited only by the external resistance in the circuit. -
Power Supply Using Power Transistors
Section F6: Power Supply Using Power Transistors In this section of our studies we will be looking at the design of power supplies using power transistors. We discussed the concepts of rectification and filtering using regular and zener diodes in Section B, and we are going to start this section with a twist on our previous work – adding a BJT. After this introduction using discrete transistors, we will be examining design approaches using integrated circuits – both the 7800 series of integrated circuit regulators and the LM317 adjustable regulator. Power Supply Using Discrete Components In Section B9 (3.4 of your text), we used the zener diode as the voltage-controlling device in the design of a regulated power supply. The figure to the right is a modified version of Figure 8.20 in your text, where the notation has been changed to correctly reproduce Figure 3.39. As we saw earlier, this is a fairly well behaved circuit that supplies a nearly constant output voltage over a wide range of currents. However, as we always must, we can do better. A better regulation may be obtained if the zener diode is connected to the base circuit of a power transistor in the EF (CC) configuration as shown below (Figure 8.21 of your text). In the configuration above, the transistor is referred to as a pass transistor. Because of the current amplifying properties of the BJT in the EF (CC)configuration, the current through the zener diode may be small. With the smaller current, there is little voltage drop across the diode resistance, which allows the zener to approximate an ideal constant voltage source. -
Chip Varistors Countermeasure for Surge Voltage and Static Electricity
Chip Varistors Countermeasure for surge voltage and static electricity AVR series Type: AVR-M AVRL Issue date: September 2013 • All specifications are subject to change without notice. • Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications. (2/11) Varistors(SMD) Conformity to RoHS Directive Countermeasure for Surge Voltage and Static Electricity AVR Series AVR-M, AVRL Types Varistors are voltage dependent nonlinear resistive elements with a resistance that decreases rapidly when the voltage is over the constant value. Varistor is equivalent with Zener diode of two series connection. Therefore, do not have polarity. CURRENT vs. VOLTAGE CHARACTERISTICS EQUIVALENT CIRCUIT 2 Zener Diodes ) 10–1 A ( 10–2 Zener diode /Vz:6.8V –3 Positive direction 10 Chip varistor Current /V1mA:12V 10–4 A capacitance content 10–5 –18 –14–10–610–262 14 18 –10–5 –10–4 –10–3 Negative direction –10–2 –10–1 Voltage(V) THE EFFECT OF THE VARISTOR WITHOUT VARISTOR WITH VARISTOR A malfunction and failure of electronic equipment Suppress abnormal voltage by inserting varistor in a circuit ESD, Surge voltage ESD, Surge voltage Power line IC Power line IC Signal line Signal line Insert a varistor between a line and ground : Chip varistor • All specifications are subject to change without notice. 002-01 / 20130927 / e9c11_avr.fm (3/11) FEATURES INTERNAL STRUCTURE • No polarity, due to symmetrical current-voltage characteristics. Inner electrode Varistor body Equivalent to anode common type Zener diode. -
Zener Diode Theory
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. -
PIN Diode Drivers Literature Number: SNVA531
PIN Diode Drivers Literature Number: SNVA531 PIN Diode Drivers National Semiconductor PIN Diode Drivers Application Note 49 March 1986 INTRODUCTION The charge control model of a diode1,2 leads to the charge The DH0035/DH0035C is a TTL/DTL compatible, DC continuity equation given in Equation (1). coupled, high speed PIN diode driver. It is capable of deliver- ing peak currents in excess of one ampere at speeds up to 10 MHz. This article demonstrates how the DH0035 may be (1) applied to driving PIN diodes and comparable loads which = require high peak currents at high repetition rates. The sa- where: Q charge due excess minority carriers lient characteristics of the device are summarized in Table 1. τ = mean lifetime of the minority carriers Equation (1) implies a circuit model shown in Figure 2. Under TABLE 1. DH0035 Characteristics steady conditions hence: Parameter Conditions Value Differential Supply 30V Max. (2) Voltage (V+ −V−) where: I = steady state “ON” current. Output Current 1000 mA Maximum Power 1.5W tdelay PRF = 5.0 MHz 10 ns + − trise V −V =20V 15 ns 10% to 90% + − tfall V −V =20V 10 ns 90% to 10% PIN DIODE SWITCHING REQUIREMENTS Figure 1 shows a simplified schematic of a PIN diode switch. AN008750-2 Typically, the PIN diode is used in RF through microwave fre- I = Total Current quency modulators and switches. Since the diode is in shunt IDC = SS Control Current with the RF path, the RF signal is attenuated when the diode iRF = RF Signal Current is forward biased (“ON”), and is passed unattenuated when FIGURE 2. -
Driver Circuit for High-Power PIN Diode Switches
APPLICATION NOTE Driver Circuit for High-Power PIN Diode Switches Introduction The Skyworks High-Power Pin Diode Switch Driver Circuit is a TTL/DTL compatible, DC coupled, high-speed PIN diode bias controller. Part No. EN33-X273 This driver reference design is designed to operate with the Skyworks series of high-power SPDT PIN diode switches. These include: SKY12207-306LF SKY12207-478LF SKY12208-306LF SKY12208-478LF SKY12209-478LF SKY12210-478LF SKY12211-478LF SKY12212-478LF SKY12213-478LF SKY12215-478LF Features High drive current capability (± 50 mA to ± 100 mA) This driver is designed to provide forward currents up to 100 mA 28 V back bias in off state for each diode, and 28 V reverse bias. It is designed for SPDT switches operating with a CW input a power up to 100 W. The Fast switching speed approximately 142 nS driver utilizes fast switching NPN transistors and Skyworks Low current consumption discrete PIN diodes. The driver is designed to utilize a VDD set to Single TTL logic input +28 V, but could operate with voltages as low as +5 V. Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of GreenTM, document number SQ04–0074. Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • [email protected] • www.skyworksinc.com 203950A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice. • March 28, 2016 1 APPLICATION NOTE • DRIVER CIRCUIT FOR HIGH-POWER PIN DIODE SWITCHES Table 1. Absolute Maximum Ratings1 Parameter Conditions ANT (+5 V) –0.5 V to 7 V RXTX (+28 V) –0.5 V to 40 V VLGC –0.5 V to 7 V RX drive current 150 mA TX drive current 150 mA Operational temperature –40 to +85°C Storage temperature –55 to +125°C 1 Exposure to maximum rating conditions for extended periods may reduce device reliability. -
PIN Diode Switch Circuit for Short Time High Current Pulse Signal By
PIN Diode Switch Circuit for Short Time High Current Pulse Signal by Rogelio Palomera-Arias B.S. Electrical Engineering University of Puerto Rico Mayagiez Campus, 1996 Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the Massachusetts Institute of Technology June, 1998 © 1998 Rogelio Palomera-Arias. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author: 1--. -- Department of Electial Engineering and Computer Science May 22, 1998 Certified by: / -Dr. Chathan M. Cooke ncipal Research Engineer / ~-hesjs Superxwisor Accepted by: Professor Arthur C. Smith Chair, Department Committee on Graduate Students L'~n ~'" "If your problems have solution, no need to worry. If your problems have no solution, why worry?" - Anonymous PIN Diode Switch Circuit for Short Time High Current Pulse Signal by Rogelio Palomera-Arias Submitted to the Department of Electrical Engineering and Computer Science on May 22, 1998 in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering ABSTRACT The protection of devices from transients is an important general problem and is investigated here in regard to a circuit with a sensor and transient pulses. The specific problem uses a sensor connected in series with a fast pulse source, of about hundred nano seconds duration and five hundred volts size. The method of protection employed is based on using both series isolation and a shunt parallel to the sensor. -
Reverse Recovery Operation and Destruction of MOSFET Body Diode Application Note
Reverse Recovery Operation and Destruction of MOSFET Body Diode Application Note Reverse Recovery Operation and Destruction of MOSFET Body Diode Description This document describes the reverse recovery operation and destruction of the MOSFET body diode. © 2018 1 2018-09-01 Toshiba Electronic Devices & Storage Corporation Reverse Recovery Operation and Destruction of MOSFET Body Diode Application Note Table of Contents Description ............................................................................................................................................ 1 Table of Contents ................................................................................................................................. 2 1. MOSFET body diode ........................................................................................................................ 3 2. Reverse recovery ............................................................................................................................. 4 3. Destruction of the body diode during reverse recovery ............................................................. 5 RESTRICTIONS ON PRODUCT USE.................................................................................................... 9 List of Figures Figure 1 Body diode in a MOSFET .......................................................................................................... 3 Figure 2 Reverse recovery waveform of the body diode .................................................................... 5 Figure 3 -
A Noise Investigation of Tunnel-Diode Microwave Amplifiers* A
1961 PROCEEDINGS OF THE IRE 739 A Noise Investigation of Tunnel-Diode Microwave Amplifiers* A. YARIVt, MEMBER, IRE, AND J. S. COOKt, MEMBER, IRE Summary-An analysis and derivation of the noise figure of a must consider the shot noise accompaniying the tunniel- tunnel-diode microwave amplifier are presented. The agreement be- ing process.7 There are two separate and independenit tween the measured noise figure and the theoretical results is an in- direct check on the existence of full shot noise in germanium tunnel tunineling currents, one consisting of electrons tunnelinlg diodes at microwave frequencies. The limiting noise temperature of from the N to the P side of the junction, which we de- the amplifier is elIR/2k, and can be approached by using diodes with inote by ii, and a second curreit, i2, made up of electrons small (RC) products in which the extreme overcoupling (load mis- crossing the junctioni in the opposite directioni. The niet match) and high gain can be achieved simultaneously. measurable dc current is Io-= ii -| i2 . Since the cur- INTRODUCTION renits ii and i2 are uncorrelated, the total shot noisel is represented by a current generator of mean-square A MPLIFIERS utilizing tunniel diodes were first re- amplitude, ported by Chang' at frequencies up to 80 Mc. He also suggested that the noise conitribution of the diode was due to the shot noise accompanying the j2 = 2e( 1iI + i2 I )B, (1) tunneling process. This suggestion was con1firmed by Lee and MAIonitgomery,2 who showed by measurements where e is the electronic charge and B is the bandwidth at 5 Mc that full shot noise was inideed genierated by the in cycles per seconid in which the noise is conisidered.