Study of Antagonistic Yeasts Isolated from Some Natural Sources of West Bengal Swapan Kr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heat Resistance of Vegetative Cells and Asci of Two Zygosac- Charomyces Yeasts in Broths at Different Water Activity Values
835 Journal of Food Protection, Vol. 50, No. 10, Pages 835-841 (October 1987) Copyright1 International Association of Milk, Food and Environmental Sanitarians Heat Resistance of Vegetative Cells and Asci of Two Zygosac- charomyces Yeasts in Broths at Different Water Activity Values MARCO F. G. JERMINI1 and WILHELM SCHMIDT-LORENZ* Food Microbiology Laboratory, Department of Food Science, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland Downloaded from http://meridian.allenpress.com/jfp/article-pdf/50/10/835/1651027/0362-028x-50_10_835.pdf by guest on 01 October 2021 (Received for publication February 2, 1987) ABSTRACT solutions of sucrose or in sucrose-glucose mixtures at re duced a (19). Since the influence of lyophilization on The heat resistance of vegetative cells and asci of two os- w motolerant yeasts (Zygosaccharomyces rouxii and Z. bailii) was heat resistance has not yet been investigated, great cau tion is needed in evaluating those results. investigated in two different broths of aw 0.963 and 0.858, re spectively. The highest heat resistance was observed with asci Corry (12) demonstrated that the heat resistance of of Z. bailii LMZ 108, showing a decimal reduction time CD- Saccharomyces rouxii at 65°C, pH 6.5 and aw 0.95 was value) at 60°C and aw 0.858 of 14.9 min. Asci of Z. rouxii at the highest levels in solutions of sucrose, less in sor v LMZ 100 were less heat resistant (D60=c- alue at aw 0.858 = 3.5 bitol and least in solutions of glucose, fructose and min). The heat resistance (D-values) of asci at aw 0.963 proved glycerol. -
Deteriorative Changes in Oilseeds Due to Storage Fungi and Efficacy of Botanicals Rajendra B
Curr. Bot. 2(1):17-22, 2011 REGULAR ARTICLE Deteriorative changes in oilseeds due to storage fungi and efficacy of botanicals Rajendra B. Kakde and Ashok M. Chavan Seed Pathology and Fungal Biotechnology Laboratory, Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.) India K EYWORDS A BSTRACT Oilseeds, storage fungi, nutritional changes, Improper storage makes the oilseeds vulnerable to storage fungi which deteriorate the aqueous extract, fungitoxic stored oilseeds both qualitatively and quantitatively. They bring about the variety of biochemical changes in the suitable conditions. Considering this fact, experiments C ORRESPONDENCE were undertaken to understand nutritional changes like change in reducing sugar, change in crude fat content and change in crude fiber content of oilseeds due to Rajendra B. Kakde, Seed Pathology and Fungal artificial infestation of storage fungi. It was found that, Alternaria dianthicola, Biotechnology Laboratory, Department of Botany, Curvularia lunata, Fusarium oxysporum, Fusarium equiseti, Macrophomina Dr. Babasaheb Ambedkar Marathwada University, phaseolina and Rhizopus stolonifer causes decrease in reducing sugar of oilseeds. Aurangabad-431004 (M.S.) India Alternaria dianthicola, Curvularia pellescens, Macrophomina phaseolina, Penicillium digitatum and Penicillium chrysogenum hampered the fat content of oilseeds. E-mail: [email protected] Curvularia lunata, Curvularia pellescens, Fusarium oxysporum, Macrophomina phaseolina, Rhizopus stolonifer and Penicillium digitatum increased the fiber content E DITOR in oilseeds. An attempt was also made to control the seed-borne fungi by using Gadgile D.P. aqueous extract of ten medicinal plants. Aqueous extract of Eucalyptus angophoroides was found to be most fungitoxic. CB Volume 2, Year 2011, Pages 17-22 Introduction are not fit for human consumption and are also rejected at the India is one of the largest producers of oilseeds in the industrial level. -
Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult. -
Microsatellite Characterization and Marker Development for the Fungus Penicillium Digitatum, Causal Agent of Green Mold of Citrus
Received: 31 August 2018 | Revised: 14 November 2018 | Accepted: 16 November 2018 DOI: 10.1002/mbo3.788 ORIGINAL ARTICLE Microsatellite characterization and marker development for the fungus Penicillium digitatum, causal agent of green mold of citrus Erika S. Varady1,2 | Sohrab Bodaghi1 | Georgios Vidalakis1 | Greg W. Douhan3 1Department of Microbiology and Plant Pathology, University of California, Abstract Riverside, California Penicillium digitatum is one of the most important postharvest pathogens of citrus on 2 Department of Molecular Biology and a global scale causing significant annual losses due to fruit rot. However, little is Biochemistry, University of California Irvine, Irvine, California known about the diversity of P. digitatum populations. The genome of P. digitatum has 3University of California Cooperative been sequenced, providing an opportunity to determine the microsatellite distribu‐ Extension, Tulare, California tion within P. digitatum to develop markers that could be valuable tools for studying Correspondence the population biology of this pathogen. In the analyses, a total of 3,134 microsatel‐ Greg W. Douhan, University of California lite loci were detected; 66.73%, 23.23%, 8.23%, 1.24%, 0.16%, and 0.77% were de‐ Cooperative Extension, Tulare, CA. and tected as mono‐, di‐, tri‐, tetra‐, penta‐, and hexanucleotide repeats, respectively. As Georgios Vidalakis, Department of consistent with other ascomycete fungi, the genome size of P. digitatum does not Microbiology and Plant Pathology, University of California Riverside, Riverside, seem to correlate with the density of microsatellite loci. However, significantly longer CA. motifs of mono‐, di‐, and tetranucleotide repeats were identified in P. digitatum com‐ Emails: [email protected]; georgios. [email protected] pared to 10 other published ascomycete species with repeats of over 800, 300, and Funding information 900 motifs found, respectively. -
Microorganisms
microorganisms Article Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146 1, 1, 1 Mariana Andrea Díaz y, Martina María Pereyra y, Fabricio Fabián Soliz Santander , María Florencia Perez 1 , Josefina María Córdoba 1 , Mohammad Alhussein 2, Petr Karlovsky 2,* and Julián Rafael Dib 1,3,* 1 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; [email protected] (M.A.D.); [email protected] (M.M.P.); [email protected] (F.F.S.S.); [email protected] (M.F.P.); cordobajosefi[email protected] (J.M.C.) 2 Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany; [email protected] 3 Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina * Correspondence: [email protected] (P.K.); [email protected] (J.R.D.); Tel.: +49-551-39-12918 (P.K.); +54-381-4344888 (J.R.D.) These authors contributed equally to this work. y Received: 14 September 2020; Accepted: 23 September 2020; Published: 25 September 2020 Abstract: Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. -
F Fbacillus Subtilis F F (Penicillium Digitatum Sacc.) F F 2549 F Bacillus
I! Bacillus subtilis ! (Penicillium digitatum Sacc.) aL ! () *( ! !+ Eb JHK 2549 Nc G + Bacillus spp. @ ! 23 205 4 1 ! / 1 1 ,C ,C,D9/ Penicillium digitatum /E +-/ @ B. subtilis @ ! 9 4 / @ 1 (1:32) P. digitatum (80-100 %) * 4+ -8 1 30-70% 143 LM 4 11! 80% @ Bacillus spp. 9 !/ B. subtilis 155 1 , 2 1. 1+/ EC 50 / 3 , P. digitatum / 77.26 81.35 E+ / @ 1 ,C ! 4 1* 1! ! E+ E QR-/ E1 3 CHCl 3/MeOH/H 2O (65:25:4, , /, ) 3Z 4 Rf / 0.14, 0.19, 0.28, 0.49 0.58 11 E1 EC 50 + 95.73, 14.07, 15.19, 108.59 100 E+ / @ 1 LME, @ B. subtilis 155 * 1! E ]Q 4+! 4! 80% +/ EC 50 ,7 288 E+ / LME, 4 1 Z 4@ )E Q ]/, 2 6 Z 4 15 P. digitatum 11 +! E + 41 ,. P. digitatum (10 4 , / ) --! 1 E +1 3! 4 3 / -3! 4 5 1 +!+E + E1, B. subtilis 155 1 * -1! ! / ^/ 1!/ E1, + 43//,. 24 4! E Z 1 E +11 (99.70%) 3! 4 8 /! 1* (10 / ) Z 11 . 143/ E1 1 E + 3 5 ! -/ 0. 6 4 - 4- 4,. /!E1, + 1* * @ 1 ] / 1- 431+!+ 41E + / @ + (3) Thesis Title Growth Inhibitory Properties of Bacillus subtilis Strains and Their Metabolites Against the Green Mold Pathogen ( Penicillium digitatum Sacc.) of Citrus Author Miss Panpen Hemmanee Major Program Biochemistry Academic Year 2006 ABSTRACT Twenty three strains of Bacillus spp. screened from 205 isolated of soil bacteria showed antagonistic activities towards Penicillium digitatum pathogen, a cause fruit rot disease of citrus. -
Penicillium Digitatum Metabolites on Synthetic Media and Citrus Fruits
J. Agric. Food Chem. 2002, 50, 6361−6365 6361 Penicillium digitatum Metabolites on Synthetic Media and Citrus Fruits MARTA R. ARIZA,† THOMAS O. LARSEN,‡ BENT O. PETERSEN,§ JENS Ø. DUUS,§ AND ALEJANDRO F. BARRERO*,† Department of Organic Chemistry, University of Granada, Avdn. Fuentenueva 18071, Spain; Mycology Group, BioCentrum-DTU, Søltofts Plads, Technical University of Denmark, 2800 Lyngby, Denmark; and Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark Penicillium digitatum has been cultured on citrus fruits and yeast extract sucrose agar media (YES). Cultivation of fungal cultures on solid medium allowed the isolation of two novel tryptoquivaline-like metabolites, tryptoquialanine A (1) and tryptoquialanine B (2), also biosynthesized on citrus fruits. Their structural elucidation is described on the basis of their spectroscopic data, including those from 2D NMR experiments. The analysis of the biomass sterols led to the identification of 8-12. Fungal infection on the natural substrates induced the release of citrus monoterpenes together with fungal volatiles. The host-pathogen interaction in nature and the possible biological role of citrus volatiles are also discussed. KEYWORDS: Citrus fruits; Penicillium digitatum; quivaline metabolites; tryptoquivaline; P. digitatum sterols; phenylacetic acid derivatives; volatile metabolites INTRODUCTION obtained from a Hewlett-Packard 5972A mass spectrometer using an ionizing voltage of 70 eV, coupled to a Hewlett-Packard 5890A gas P. digitatum grows on the surface of postharvested citrus fruits chromatograph. producing a characteristic powdery olive-colored conidia and Preparation of TMS Derivatives and Analysis by GC-MS. TMS is commonly known as green-mold. This pathogen is of main derivatives were obtained according to the procedure previously concern as it is responsible for 90% of citrus losses due to described (7). -
Evaluation of Zygosaccharomyces Bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines
Fermentation 2015, 1, 3-12; doi:10.3390/fermentation1010003 OPEN ACCESS fermentation ISSN 2311-5637 www.mdpi.com/journal/fermentation Article Evaluation of Zygosaccharomyces bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines Jesse M. Zuehlke *, Bradford C. Childs and Charles G. Edwards School of Food Science, Washington State University, Pullman, WA 99164-6376, USA; E-Mails: [email protected] (B.C.C.); [email protected] (C.G.E.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-240-899-4449. Academic Editor: Ronnie G. Willaert Received: 3 February 2015 / Accepted: 17 March 2015 / Published: 26 March 2015 Abstract: An alternative approach to remove residual sugar from red wines using strains of Zygosaccharomyces bailli was studied. Fructose (40 or 60 g/L) and alcohol (13%, 15%, or 17% v/v) were added to a Cabernet Sauvignon wine before inoculation of Z. bailii B2, B6, or W3, or Saccharomyces cerevisiae EC1118. Most yeasts maintained populations ≥106 cfu/mL up to 100 days—the exceptions being W3 and EC1118, which declined to ≤30 cfu/mL in 17% alcohol wines beyond day 75. Wines containing 40 g/L fructose and 13% alcohol achieved dryness (<2 g/L), except those inoculated with B6. At 15% alcohol, B6, W3, and EC1118 consumed large levels of fructose (>80% of the 40 g/L; >50% of the 60 g/L) but limited amounts from wines containing 17% alcohol. Volatile acidities were higher in wines inoculated with strains of Z. bailli compared to S. cerevisiae (0.88 and 0.75 g/L, respectively). -
Glucose Respiration and Fermentation in Zygosaccharomyces Bailii and Saccharomyces Cerevisiae Express Different Sensitivity Patterns to Ethanol and Acetic Acid
Letters in Applied Microbiology 1997, 25, 249–253 Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid L. Fernandes1,M.Coˆrte-Real1, V. Loureiro2, M.C. Loureiro-Dias3 and C. Lea˜o1 1Departamento de Biologia, Universidade do Minho, Braga, 2Laborato´rio de Microbiologia, Departamento de Botaˆnica e Engenharia Biolo´gica, Instituto Superior de Agronomia, Tapada da Ajuda, Lisboa, and 3Laborato´rio de Microbiologia, Instituto Gulbenkian de Cieˆncia, Oeiras, Portugal 1115/96: received 26 April 1996 and revised 17 March 1997 and accepted 19 March 1997 L. FERNANDES, M. COˆ RTE-REAL, V. LOUREIRO, M.C. LOUREIRO-DIAS AND C. LEA˜ O. 1997. In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation of glucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity to the alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as that reported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolic processes in Z. bailii, with the kinetics of inhibition again being exponential. However, inhibition of fermentation was much less pronounced than in S. cerevisiae. The values estimated with Z. bailii for the minimum inhibitory concentration of acetic acid ranged from 100 to 240 mmol l−1 total acetic acid compared with values of near zero reported for S. cerevisiae. The inhibitory effects of acetic acid on Z. bailii were not significantly potentiated by ethanol. INTRODUCTION acids such as acetic acid, etc.) (Thomas and Davenport 1985 ; Malfeito-Ferreira et al. 1990 ; Loureiro and Malfeito-Ferreira Zygosaccharomyces bailii is considered to be one of the most 1993). -
Identification and Molecular Characterization of the Highly Acetic Acid Tolerant Zygosaccharomyces Bailii Strain IST302
Identification and molecular characterization of the highly acetic acid tolerant Zygosaccharomyces bailii strain IST302 João Diogo André Peça Thesis to obtain the Master of Science Degree in Microbiology Supervisor: Prof. Dr. Isabel Maria de Sá-Correia Leite de Almeida Co-supervisor: Dr. Margarida Isabel Rosa Bento Palma Examination Committee Chairperson: Prof. Dr. Arsénio do Carmo Sales Mendes Fialho Supervisor: Prof. Dr. Isabel Maria de Sá-Correia Leite de Almeida Member of the committee: Dr. Paulo Jorge Moura Pinto da Costa Dias July 2016 Agradecimentos Apesar de perceber a globalização em que o mundo científico se insere onde o inglês domina como língua de comunicação entre todos, decido escrever apenas este capítulo em português pois entendo que os agradecimentos, sendo uma mensagem mais emocional e especificamente dirigida a pessoas próximas, só pode ser completamente entendida e percebida se for usada a minha língua materna. Gostaria de começar por agradecer a duas pessoas muito importantes durante o processo de trabalho desta tese, quer na parte laboratorial quer na parte de escrita. À Professora Isabel Sá-Correia, primeiro, por me ter dado a oportunidade de trabalhar consigo e fazer parte do Grupo de Investigação para as Ciências Biológicas do IST (BSRG) tendo sempre palavras assertivas mas construtivas que me fizeram acreditar no meu trabalho. Em segundo, à Dr. Margarida Palma, minha coorientadora, que se mostrou incansável em me apoiar sempre que precisei e mesmo quando não pedia, sendo muito importante no processo experimental e de escrita deste documento. Ciente de que a minha desmotivação por vezes prejudicou este trabalho, sem estas duas pessoas e a paciência que mostraram para comigo, este trabalho não seria possível. -
Activity Interactions of Crude Biopreservatives Against Spoilage Yeast Consortia
fermentation Article Activity Interactions of Crude Biopreservatives against Spoilage Yeast Consortia Maxwell Mewa-Ngongang 1,2,3,* , Heinrich W. du Plessis 1 , Edwin Hlangwani 1,2, Seteno K. O. Ntwampe 2,3 , Boredi S. Chidi 1,2 , Ucrecia F. Hutchinson 1,2,3 and Neil P. Jolly 1 1 Post-Harvest and Agro-Processing Technologies, ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch 7599, South Africa 2 Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa 3 Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa * Correspondence: [email protected]; Tel.: +27-021-809-3442 Received: 29 March 2019; Accepted: 11 June 2019; Published: 29 June 2019 Abstract: It is common to find different spoilage organisms occurring in the same food item, which usually requires food producers to utilize a mixture of synthetic preservatives to control spoilage. This study evaluated the interaction between mixtures of crude biopreservatives against consortia of common spoilage yeasts occurring in beverages. Crude biopreservatives produced from separate yeasts were formulated in different growth inhibition combinations (GICs), i.e., GIC1 (Candida pyralidae Y1117 and Pichia kluyveri Y1125), GIC 2 (C. pyralidae Y1117 and P. kluyveri Y1164), GIC3 (P. kluyveri Y1125 and P. kluyveri Y1164), and GIC4 (C. pyralidae, P. kluyveri Y1125 and P. kluyveri Y1164). The spoilage yeast consortia combinations, i.e., SC1 (Dekkera. anomala and D. bruxellensis), SC2 (D. anomala and Zygosaccharomyces bailii), SC3 (D. -
Comparative Genomics of Protoploid Saccharomycetaceae
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution of protoploid yeast genomes ___________________________________________________________________________ Comparative genomics of protoploid Saccharomycetaceae. The Génolevures Consortium (1) Running title: Evolution of protoploid yeast genomes Key words: protein families, synteny, tandems, annotation, SONS, ancestor genome Corresponding author: Jean Luc Souciet Université de Strasbourg, CNRS, UMR 7156 Institut de Botanique, 28 rue Goethe, F-67000 Strasbourg, France Tel: 33 3 90 24 18 17 FAX: 33 3 90 24 20 28 e-mail: [email protected] (1) List of participants and affiliations appear at the end of the paper 1 Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution of protoploid yeast genomes ___________________________________________________________________________ Abstract Our knowledge on yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call “protoploid” because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species, Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade) and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Klyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of ca.