Expression of Zinc Fingers and Homeoboxes 2 (Zhx2) and Zhx2 Target Genes in Multiple Tissues of Wild-Type and Zhx2 Knockout Mice
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. -
Mouse Germ Line Mutations Due to Retrotransposon Insertions Liane Gagnier1, Victoria P
Gagnier et al. Mobile DNA (2019) 10:15 https://doi.org/10.1186/s13100-019-0157-4 REVIEW Open Access Mouse germ line mutations due to retrotransposon insertions Liane Gagnier1, Victoria P. Belancio2 and Dixie L. Mager1* Abstract Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans. Keywords: Endogenous retroviruses, Long terminal repeats, Long interspersed elements, Short interspersed elements, Germ line mutation, Inbred mice, Insertional mutagenesis, Transcriptional interference Background promoter and polyadenylation motifs and often a splice The mouse and human genomes harbor similar types of donor site [10, 11]. Sequences of full-length ERVs can TEs that have been discussed in many reviews, to which encode gag, pol and sometimes env, although groups of we refer the reader for more in depth and general infor- LTR retrotransposons with little or no retroviral hom- mation [1–9]. In general, both human and mouse con- ology also exist [6–9]. While not the subject of this re- tain ancient families of DNA transposons, none view, ERV LTRs can often act as cellular enhancers or currently active, which comprise 1–3% of these genomes promoters, creating chimeric transcripts with genes, and as well as many families or groups of retrotransposons, have been implicated in other regulatory functions [11– which have caused all the TE insertional mutations in 13]. -
Causal Varian Discovery in Familial Congenital Heart Disease - an Integrative -Omic Approach Wendy Demos Marquette University
Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Causal Varian discovery in Familial Congenital Heart Disease - An Integrative -Omic Approach Wendy Demos Marquette University Recommended Citation Demos, Wendy, "Causal Varian discovery in Familial Congenital Heart Disease - An Integrative -Omic Approach" (2012). Master's Theses (2009 -). 140. https://epublications.marquette.edu/theses_open/140 CAUSAL VARIANT DISCOVERY IN FAMILIAL CONGENITAL HEART DISEASE – AN INTEGRATIVE –OMIC APPROACH by Wendy M. Demos A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin May 2012 ABSTRACT CAUSAL VARIANT DISCOVERY IN FAMILIAL CONGENITAL HEART DISEASE – AN INTEGRATIVE –OMIC APPROACH Wendy M. Demos Marquette University, 2012 Background : Hypoplastic left heart syndrome (HLHS) is a congenital heart defect that leads to neonatal death or compromised quality of life for those affected and their families. This syndrome requires extensive medical intervention for the affected to survive. It is characterized by significant underdevelopment or non-existence of the components of the left heart and the aorta, including the left ventricular cavity and mass. There are many factors ranging from genetics to environmental relationships hypothesized to lead to the development of the syndrome, including recent studies suggesting a link between hearing impairment and congenital heart defects (CHD). Although broadly characterized those factors remain poorly understood. The goal of this project is to systematically utilize bioinformatics tools to determine the relationships of novel mutations found in exome sequencing to a familial congenital heart defect. Methods A systematic genomic and proteomic approach involving exome sequencing, pathway analysis, and protein modeling was implemented to examine exome sequencing data of a patient with HLHS. -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
Rabbit Anti-ZHX1 Antibody-SL19163R
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-ZHX1 antibody SL19163R Product Name: ZHX1 Chinese Name: 锌指及同源结构域蛋白1抗体 ZHX 1; ZHX1; ZHX1_HUMAN; Zinc finger and homeodomain protein 1; Zinc fingers Alias: and homeobox 1; Zinc fingers and homeoboxes 1; Zinc fingers and homeoboxes protein 1. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Cow,Horse,Sheep, ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100-500IF=1:100- 500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 98kDa Cellular localization: The nucleus Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLHwww.sunlongbiotech.com conjugated synthetic peptide derived from human ZHX1:551-650/873 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. PubMed: PubMed The members of the zinc fingers and homeoboxes gene family are nuclear homodimeric transcriptional repressors that interact with the A subunit of nuclear factor-Y (NF-YA) Product Detail: and contain two C2H2-type zinc fingers and five homeobox DNA-binding domains. -
Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3-Phosphate Kinase/PTEN Pathway1
[CANCER RESEARCH 63, 1382–1388, March 15, 2003] Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3-Phosphate Kinase/PTEN Pathway1 Ana I. Jimenez, Paloma Fernandez, Orlando Dominguez, Ana Dopazo, and Montserrat Sanchez-Cespedes2 Molecular Pathology Program [A. I. J., P. F., M. S-C.], Genomics Unit [O. D.], and Microarray Analysis Unit [A. D.], Spanish National Cancer Center, 28029 Madrid, Spain ABSTRACT the cell cycle in G1 (8, 9). However, the intrinsic mechanism by which LKB1 activity is regulated in cells and how it leads to the suppression Germ-line mutations in LKB1 gene cause the Peutz-Jeghers syndrome of cell growth is still unknown. It has been proposed that growth (PJS), a genetic disease with increased risk of malignancies. Recently, suppression by LKB1 is mediated through p21 in a p53-dependent LKB1-inactivating mutations have been identified in one-third of sporadic lung adenocarcinomas, indicating that LKB1 gene inactivation is critical in mechanism (7). In addition, it has been observed that LKB1 binds to tumors other than those of the PJS syndrome. However, the in vivo brahma-related gene 1 protein (BRG1) and this interaction is required substrates of LKB1 and its role in cancer development have not been for BRG1-induced growth arrest (10). Similar to what happens in the completely elucidated. Here we show that overexpression of wild-type PJS, Lkb1 heterozygous knockout mice show gastrointestinal hamar- LKB1 protein in A549 lung adenocarcinomas cells leads to cell-growth tomatous polyposis and frequent hepatocellular carcinomas (11, 12). suppression. To examine changes in gene expression profiles subsequent to Interestingly, the hamartomas, but not the malignant tumors, arising in exogenous wild-type LKB1 in A549 cells, we used cDNA microarrays. -
The Middle Temporal Gyrus Is Transcriptionally Altered in Patients with Alzheimer’S Disease
1 The middle temporal gyrus is transcriptionally altered in patients with Alzheimer’s Disease. 2 1 3 Shahan Mamoor 1Thomas Jefferson School of Law 4 East Islip, NY 11730 [email protected] 5 6 We sought to understand, at the systems level and in an unbiased fashion, how gene 7 expression was most different in the brains of patients with Alzheimer’s Disease (AD) by mining published microarray datasets (1, 2). Comparing global gene expression profiles between 8 patient and control revealed that a set of 84 genes were expressed at significantly different levels in the middle temporal gyrus (MTG) of patients with Alzheimer’s Disease (1, 2). We used 9 computational analyses to classify these genes into known pathways and existing gene sets, 10 and to describe the major differences in the epigenetic marks at the genomic loci of these genes. While a portion of these genes is computationally cognizable as part of a set of genes 11 up-regulated in the brains of patients with AD (3), many other genes in the gene set identified here have not previously been studied in association with AD. Transcriptional repression, both 12 pre- and post-transcription appears to be affected; nearly 40% of these genes are transcriptional 13 targets of MicroRNA-19A/B (miR-19A/B), the zinc finger protein 10 (ZNF10), or of the AP-1 repressor jun dimerization protein 2 (JDP2). 14 15 16 17 18 19 20 21 22 23 24 25 26 Keywords: Alzheimer’s Disease, systems biology of Alzheimer’s Disease, differential gene 27 expression, middle temporal gyrus. -
Antisense Afp Transcripts in Mouse Liver and Their Potential Role in Afp Gene Regulation
University of Kentucky UKnowledge Theses and Dissertations--Microbiology, Microbiology, Immunology, and Molecular Immunology, and Molecular Genetics Genetics 2017 ANTISENSE AFP TRANSCRIPTS IN MOUSE LIVER AND THEIR POTENTIAL ROLE IN AFP GENE REGULATION Maria S. Dixon University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.356 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Dixon, Maria S., "ANTISENSE AFP TRANSCRIPTS IN MOUSE LIVER AND THEIR POTENTIAL ROLE IN AFP GENE REGULATION" (2017). Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics. 14. https://uknowledge.uky.edu/microbio_etds/14 This Doctoral Dissertation is brought to you for free and open access by the Microbiology, Immunology, and Molecular Genetics at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
2Ecb Lichtarge Lab 2006
Pages 1–5 2ecb Evolutionary trace report by report maker September 17, 2010 4.3.3 DSSP 4 4.3.4 HSSP 4 4.3.5 LaTex 4 4.3.6 Muscle 4 4.3.7 Pymol 4 4.4 Note about ET Viewer 4 4.5 Citing this work 4 4.6 About report maker 5 4.7 Attachments 5 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 2ecb): Title: The solution structure of the third homeobox domain of human zinc fingers and homeoboxes protein Compound: Mol id: 1; molecule: zinc fingers and homeoboxes protein 1; chain: a; fragment: homeobox domain; engineered: yes Organism, scientific name: Homo Sapiens; 2ecb contains a single unique chain 2ecbA (89 residues long). This is an NMR-determined structure – in this report the first model in the file was used. CONTENTS 2 CHAIN 2ECBA 2.1 Q9UKY1 overview 1 Introduction 1 From SwissProt, id Q9UKY1, 80% identical to 2ecbA: 2 Chain 2ecbA 1 Description: Zinc fingers and homeoboxes protein 1. 2.1 Q9UKY1 overview 1 Organism, scientific name: Homo sapiens (Human). 2.2 Multiple sequence alignment for 2ecbA 1 Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 2.3 Residue ranking in 2ecbA 1 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 2.4 Top ranking residues in 2ecbA and their position on Catarrhini; Hominidae; Homo. the structure 2 Function: Acts as a transcriptional repressor. 2.4.1 Clustering of residues at 25% coverage. 2 Subunit: Forms homodimers. Also forms heterodimers with ZHX3 2.4.2 Possible novel functional surfaces at 25% which is a prerequisite for repressor activity and with ZHX2. -
ZHX2 Promotes Hif1α Oncogenic Signaling in Triple-Negative Breast
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.27.445959; this version posted May 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 ZHX2 Promotes HIF1 Oncogenic Signaling in Triple-Negative Breast Cancer 2 Wentong Fang,1,2* Chengheng Liao, 3* Rachel Shi, 3 Jeremy M. Simon, 2,4,5 Travis S. 3 Ptacek, 2,5 Giada Zurlo, 3 Youqiong Ye, 6,7 Leng Han, 7 Cheng Fan, 2 Christopher Llynard 4 Ortiz, 8,9,10 Hong-Rui Lin, 8 Ujjawal Manocha, 2 Weibo Luo, 3 William Y. Kim, 2 Lee-Wei Yang, 5 8,9,11 and Qing Zhang3* 6 7 1 Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, 8 Nanjing, Jiangsu 210029, China 9 2 Lineberger Comprehensive Cancer Center, University of North Carolina School of 10 Medicine, Chapel Hill, NC 27599, USA 11 3 Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 12 75390, USA 13 4 Department of Genetics, Neuroscience Center, University of North Carolina, Chapel Hill, 14 NC 27599, USA 15 5 UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of 16 North Carolina, Chapel Hill, NC 27599, USA 17 6 Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong 18 University School of Medicine, Shanghai, 200025, China 19 7 Department of Biochemistry and Molecular Biology, The University of Texas Health 20 Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA 21 8 Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 22 300, Taiwan bioRxiv preprint doi: https://doi.org/10.1101/2021.05.27.445959; this version posted May 28, 2021. -
Knowledge Management Enviroments for High Throughput Biology
Knowledge Management Enviroments for High Throughput Biology Abhey Shah A Thesis submitted for the degree of MPhil Biology Department University of York September 2007 Abstract With the growing complexity and scale of data sets in computational biology and chemoin- formatics, there is a need for novel knowledge processing tools and platforms. This thesis describes a newly developed knowledge processing platform that is different in its emphasis on architecture, flexibility, builtin facilities for datamining and easy cross platform usage. There exist thousands of bioinformatics and chemoinformatics databases, that are stored in many different forms with different access methods, this is a reflection of the range of data structures that make up complex biological and chemical data. Starting from a theoretical ba- sis, FCA (Formal Concept Analysis) an applied branch of lattice theory, is used in this thesis to develop a file system that automatically structures itself by it’s contents. The procedure of extracting concepts from data sets is examined. The system also finds appropriate labels for the discovered concepts by extracting data from ontological databases. A novel method for scaling non-binary data for use with the system is developed. Finally the future of integrative systems biology is discussed in the context of efficiently closed causal systems. Contents 1 Motivations and goals of the thesis 11 1.1 Conceptual frameworks . 11 1.2 Biological foundations . 12 1.2.1 Gene expression data . 13 1.2.2 Ontology . 14 1.3 Knowledge based computational environments . 15 1.3.1 Interfaces . 16 1.3.2 Databases and the character of biological data .