Spent Fuel Performance Assessment and Research
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Spent Nuclear Fuel Pools in the US
Spent Nuclear Fuel Pools in the U.S.: Reducing the Deadly Risks of Storage front cover WITH SUPPORT FROM: WITH SUPPORT FROM: By Robert Alvarez 1112 16th St. NW, Suite 600, Washington DC 20036 - www.ips-dc.org May 2011 About the Author Robert Alvarez, an Institute for Policy Studies senior scholar, served as a Senior Policy Advisor to the Secre- tary of Energy during the Clinton administration. Institute for Policy Studies (IPS-DC.org) is a community of public scholars and organizers linking peace, justice, and the environment in the U.S. and globally. We work with social movements to promote true democracy and challenge concentrated wealth, corporate influence, and military power. Project On Government Oversight (POGO.org) was founded in 1981 as an independent nonprofit that investigates and exposes corruption and other misconduct in order to achieve a more effective, accountable, open, and ethical federal government. Institute for Policy Studies 1112 16th St. NW, Suite 600 Washington, DC 20036 http://www.ips-dc.org © 2011 Institute for Policy Studies [email protected] For additional copies of this report, see www.ips-dc.org Table of Contents Summary ...............................................................................................................................1 Introduction ..........................................................................................................................4 Figure 1: Explosion Sequence at Reactor No. 3 ........................................................4 Figure 2: Reactor No. 3 -
Of Spent Fuel Pools: Tool Survey Scenarios, Technology Considerations, and Evaluation Criteria
PNNL-25137 Maintaining Continuity of Knowledge (CoK) of Spent Fuel Pools: Tool Survey Scenarios, Technology Considerations, and Evaluation Criteria January 2016 JM Benz, PNNL JE Tanner, PNNL HA Smartt, SNL MR MacDougall, PNNL PNNL-25137 Maintaining Continuity of Knowledge (CoK) of Spent Fuel Pools: Tool Survey JM Benz, PNNL JE Tanner, PNNL HA Smartt, SNL MR MacDougall, PNNL January 2016 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Contents 1.0 Introduction ................................................................................................................................ 1 2.0 Scenarios ..................................................................................................................................... 1 2.1 Spent Fuel Pools ................................................................................................................. 1 2.2 Spent Fuel Pool Monitoring ............................................................................................... 3 2.3 Bounding Scenarios............................................................................................................ 4 3.0 Technology Considerations/Constraints ..................................................................................... 5 4.0 Evaluation Criteria ...................................................................................................................... 6 5.0 Conclusion ................................................................................................................................. -
The Nuclear Waste Primer September 2016 What Is Nuclear Waste?
The Nuclear Waste Primer September 2016 What is Nuclear Waste? Nuclear waste is the catch-all term for anything contaminated with radioactive material. Nuclear waste can be broadly divided into three categories: • Low-level waste (LLW), comprised of protective clothing, medical waste, and other lightly-contaminated items • Transuranic waste (TRU), comprised of long-lived isotopes heavier than uranium • High-level waste (HLW), comprised of spent nuclear fuel and other highly-radioactive materials Low-level waste is relatively short-lived and easy to handle. Currently, four locations for LLW disposal exist in the United States. Two of them, Energy Solutions in Clive, Utah and Waste Control Specialists in Andrews, Texas, accept waste from any U.S. state. Transuranic waste is often a byproduct of nuclear weapons production and contains long-lived radioactive elements heavier than uranium, like plutonium and americium. Currently, the U.S. stores TRU waste at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. High-level waste includes spent nuclear fuel and the most radioactive materials produced by nuclear weapons production. Yucca Mountain is the currently designated high-level waste repository for the United States. 1 | What is Spent Nuclear Fuel? Spent nuclear fuel (SNF), alternatively referred to as used nuclear fuel, is the primary byproduct of nuclear reactors. In commercial power reactors in the U.S., fuel begins as uranium oxide clad in a thin layer of zirconium-aluminum cladding. After several years inside of the reactor, around fi ve percent of the uranium has been converted in some way, ranging from short-lived and highly radioactive fi ssion products to long-lived actinides like plutonium, americium, and neptunium. -
SAFETY RE-ASSESSMENT of AECL TEST and RESEARCH REACTORS D. J. WINFIELD Chalk River Nuclear Laboratories ATOMIC ENERGY of CANADA
309 IAEA-SM-310/ 94 SAFETY RE-ASSESSMENT OF AECL TEST AND RESEARCH REACTORS D. J. WINFIELD Chalk River Nuclear Laboratories ATOMIC ENERGY OF CANADA LIMITED 310 IAEA-SM-310/94 SAFETY RE-ASSESSMENT OF AECL TEST AND RESEARCH REACTORS ABSTRACT Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor MAPLE-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration/test reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX and NRU). ZED-2 and PTR are operated by the Reactor Physics Branch, all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault tree analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis and indicates the plan for future analysis. -
Nuclear Transmutation Strategies for Management of Long-Lived Fission
PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 — journal of September 2015 physics pp. 517–523 Nuclear transmutation strategies for management of long-lived fission products S KAILAS1,2,∗, M HEMALATHA2 and A SAXENA1 1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India 2UM–DAE Centre for Excellence in Basic Sciences, Mumbai 400 098, India ∗Corresponding author. E-mail: [email protected] DOI: 10.1007/s12043-015-1063-z; ePublication: 27 August 2015 Abstract. Management of long-lived nuclear waste produced in a reactor is essential for long- term sustenance of nuclear energy programme. A number of strategies are being explored for the effective transmutation of long-lived nuclear waste in general, and long-lived fission products (LLFP), in particular. Some of the options available for the transmutation of LLFP are discussed. Keywords. Nuclear transmutation; long-lived fission products; (n, γ ) cross-section; EMPIRE. PACS Nos 28.41.Kw; 25.40.Fq; 24.60.Dr 1. Introduction It is recognized that for long-term energy security, nuclear energy is an inevitable option [1]. For a sustainable nuclear energy programme, the management of long-lived nuclear waste is very critical. Radioactive nuclei like Pu, minor actinides like Np, Am and Cm and long-lived fission products like 79Se, 93Zr, 99Tc, 107Pd, 126Sn, 129I and 135Cs constitute the main waste burden from a power reactor. In this paper, we shall discuss the management strategies for nuclear waste in general, and long-lived fission products, in particular. 2. Management of nuclear waste The radioactive nuclei which are produced in a power reactor and which remain in the spent fuel of the reactor form a major portion of nuclear waste. -